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Abstract

The Enhanced-Deep-Super-Resolution (EDSR) model is a state-of-the-art convolutional neural network
suitable for improving image spatial resolution. It was previously trained with general-purpose pictures
and then, in this work, tested on biomedical magnetic resonance (MR) images, comparing the network
outcomes with traditional up-sampling techniques. We explored possible changes in the model
response when different MR sequences were analyzed. T1w and T2w MR brain images of 70 human
healthy subjects (F:M, 40:30) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN)
repository were down-sampled and then up-sampled using EDSR model and BiCubic (BC) interpola-
tion. Several reference metrics were used to quantitatively assess the performance of up-sampling
operations (RMSE, pSNR, SSIM, and HFEN). Two-dimensional and three-dimensional reconstructions
were evaluated. Different brain tissues were analyzed individually. The EDSR model was superior to BC
interpolation on the selected metrics, both for two- and three- dimensional reconstructions. The ref-
erence metrics showed higher quality of EDSR over BC reconstructions for all the analyzed images,
with a significant difference of all the criteria in T1w images and of the perception-based SSIM and
HFEN in T2w images. The analysis per tissue highlights differences in EDSR performance related to
the gray-level values, showing a relative lack of outperformance in reconstructing hyperintense areas.
The EDSR model, trained on general-purpose images, better reconstructs MR T1w and T2w images
than BC, without any retraining or fine-tuning. These results highlight the excellent generalization
ability of the network and lead to possible applications on other MR measurements.
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Significance Statement

Super-resolution applications in biomedical images may help in reducing acquisition scan time and con-
currently improving the quality of the exam. Neural networks have been shown to work better than tradi-
tional up-sampling techniques, even though ad hoc training experiments need to be performed for specific
kind of data. In this work, we used a model previously trained with general-purpose images, and we
directly applied to magnetic resonance human brain ones; we verified its ability of reconstructing new
kind of images, comparing the results with traditional up-sampling techniques. Our analysis highlights
the excellent generalization capabilities of the model over the images tested, without need of specific
retraining, suggesting that such results might be reproduced on images from other acquisition systems.Continued on next page.
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Introduction
Super-Resolution (SR) algorithms aim to enhance the spatial resolution of low-

resolution (LR) images, improving the detection of details and fine structures in corre-
sponding high-resolution (HR) ones (Yang et al., 2019). The up-sampling process is an ill-
posed problem by definition: starting from a smaller amount of information, the algorithms
aim to increase it in the most reliable way, keeping track of several sources of noise which
could affect the LR images, related to hardware (e.g., acquisition sensors, acquisition
time, etc.) and/or software (e.g., compression artifacts, stochastic noise, etc) (Umer
et al., 2020). Therefore, multiple putative associations between LR and HR exist, and
the efficiency of up-sampling algorithms must be measured according to their ability to
preserve original information or recover from degradations.
Different kinds of SR models have been developed over the years. Deep learning (DL) SR

techniques were proposed by Dong et al. (2014), starting with convolutional neural networks
(CNNs), a class of artificial neural networks suitable for many visual imagery applications;
they have been widely used in many medical imaging tasks, including classification
(Eroglu et al., 2022) and tumor detection (Çinar and Yildirim, 2020). The residual neural net-
work (ResNet) (He et al., 2016; Dong and Inoue, 2021) has then been proposed for optimiza-
tion and performance improvement: it refers to a class of models in which specific links,
called residual connections, are added to a CNN structure, retaining information from differ-
ent residual structural blocks and helping to overcome performance degradation problems.
At first Kim et al. (2016) introduced residual learning techniques in SR tasks, which are now
widely used for image restoration purposes. In this work, we used the Enhanced-Deep-
Super-Resolution (EDSR) model, based on those techniques.
Deep SR neural networks have been developed in computer vision and image process-

ing research fields, and to date they have been used in multiple real-world areas, including
medical imaging (Zeng et al., 2018; Gupta et al., 2020; Sui et al., 2021; Zhang et al., 2021).
In this work, wewill focus on the application of the EDSRmodel to biomedical images, pre-
cisely to brain data acquired by magnetic resonance (MR) exams.
SR algorithms have already been implemented in clinical practice in some centers. They

can bring several benefits, mainly related to the possibility of improving the trade-off
between speed and accuracy of the exam. A long scan time is required for high-resolution
image acquisition. This fact impacts both on the cost of the exam and on patient discom-
fort, which can influence the appearance of movement artifacts in the reconstructed med-
ical images, worsening the chance of lesion detection, disease diagnosis, and radiomic
feature extraction. Also, in MR imaging (MRI) applications, it leads to a reduced
signal-to-noise ratio and high specific absorption rate (Sui et al., 2021). Therefore, enhanc-
ing the spatial resolution in postprocessing may help to improve the medical imaging
potential (Zeng et al., 2018; Gupta et al., 2020).
It is not trivial to apply DL SR models, or DL models in general, to biomedical images:

purpose-built architectures need to be tailored to a specific data type; also, the lack of
data may be an issue, and data augmentation techniques (Chlap et al., 2021) are often
employed to avoid overfitting; finally, DL algorithms are unsuitable for universal applica-
tion, meaning that they are not guaranteed to generalize on data differing from the ones
used for the training for which retraining or even start-over training stages are usually
required.
In this work, we propose to apply the 2D EDSR model to MR brain images of human

healthy subjects from different sequences, with 2× as up-sampling factor. We use it to
evaluate 2D multislice super-resolved images, and 3D MRI reconstructions obtained
from them. The major novelty of this work lies in the application of EDSR on new data
avoiding retraining stages: usually, data used to train and test a DL model are of the
same kind, and poor generalization over different types of data is an issue in all DL appli-
cations; here, we wanted to test the inherent generalization ability of EDSR, to establish
whether it was possible to reconstruct a kind of data never seen by the model during train-
ing. In case of a positive outcome, the aim was to verify if the results achieved were supe-
rior to those of the traditional bicubic up-sampling method. As a secondary aim, we
propose an original analysis on the explain ability of the model, describing the EDSR func-
tioning with respect to the image pixel intensity. The manuscript is organized as follows: in
theMaterials andMethods, we provide an overview of the EDSRmodel used in this work, a
description of the dataset and of the pipeline workflow developed for the analysis; then we
describe the Results obtained by our pipeline for both 2D and 3D MRI, comparing the
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reconstruction in performances of the EDSR model with the standard up-sampling algorithm; we conclude this work with
the description of pros and cons of our method and discuss the possibility of applying it as a postprocessing technique to
speed up the MR exam acquisition and improve methodological applications such as radiomic feature extraction and arti-
ficial intelligence pipelines.

Materials and Methods
Ethics statement. Ethical approval for the Cam-CAN study was obtained from the Cambridgeshire 2 (now East of

England-Cambridge Central) Research Ethics Committee (reference: 10/H0308/50).

EDSR-2xmodel. The EDSRmodel is a deep 2DCNNbased on residual learning techniques, and it was promoted by the
SNU Computer Vision Laboratory, from Seoul National University, during the example-based single-image SR NTIRE
Challenge 2017, winning the contest (Agustsson and Timofte, 2017; Lim et al., 2017; Timofte et al., 2017). EDSR was
trained with end-to-end DL techniques, achieving the best reconstruction performance. Currently, it is one of the
CNNs with the best results (Bashir et al., 2021; Zhang et al., 2021) even for processing biomedical images, which are
the focus of this work. The single-scale architecture of EDSR was optimized starting from SRResNet (Ledig et al.,
2017), itself derived from the original ResNet architecture: batch normalization layers, which are usually inserted to reduce
the risk of overfitting and to guarantee fast convergence, were removed, resulting in an improvement of model time con-
vergence, flexibility, and performance. The model was trained exploiting the DIV2K dataset, which consists of 1,000
DIVerse 2K RGB general-purpose images collected from dozens of sites, with large diversity of contents (people, hand-
made objects, environments, flora and fauna, etc.). During the contest, no biomedical images were used during the train-
ing and test stages; in this work, we test the model over MR brain images, without retraining or fine-tuning. In the
challenge, high-resolution and corresponding low-resolution images for two, three, and four down-sampling factors
were provided for training (800 images), test (100 images), and validation (100 images) stages.

Dataset description. Data were provided by the CambridgeCentre for Ageing and Neuroscience (Cam-CAN) (Shafto et al.,
2014; Taylor et al., 2017). The repository, based on a large-scale collaborative research project at theUniversity of Cambridge,
containsmultimodal data, including structural and functional (resting and task-based)MR images, magnetoencephalography
data, and several cognitive tests of nearly 700 healthy subjects, 100 per decade from 18 to 88 years old.We considered brain
images of 70 healthy subjects (10 per decade from 18 to 85 years old), maintaining the same structure of the original collec-
tion, representative of the whole dataset. Subjects’ characteristics are summarized in Table 1.

MRI protocol. High-resolution MR brain T1w and T2w images, acquired using a 3 T Siemens Magnetom Trio, were
selected. The MR scan parameters used for the acquisition are as follows: (1) for T1w scans, sagittal 3D MPRAGE,
TR/TE/TI = 2,250/2.99/900 ms; FA= 9°; FOV=256×256× 192 mm3; 1 × 1× 1 mm3 spatial resolution; GRAPPA=2;
TA= 4 min 32 s; and (2) for T2w scans, sagittal 3D SPACE, TR/TE/TI = 2,800/408/900 ms; FOV=256×256× 192 mm3;
1 × 1×1 mm3 spatial resolution; GRAPPA=2; TA= 4 min 30 s. Original images were provided in NIfTI format.

Image processing pipeline. To generate LRmaps, 2D slices from the original imageswere convolvedwith aGaussian filter
based on a 3×3 kernel and unit standard deviation and then two times down-sampled with BiCubic (BC) interpolation. This
degradation process yields MR images with properties closed to those generated by LR MR image acquisition (Zeng et al.,
2018). This pipeline is usually used in SR studies to have pairs of LR–HR images and validate the models. In fact, in an ideal
situation, the same subject, perfectly still, would be scanned both with LR and HR within the same FOV, but this is unrealistic
and it would be necessary to perform some registration operations which is better to avoid since interpolation methods have
to be tested. Also, to make twice as many measurements would require twice of resource in terms of scan time.
The EDSR model and the BC interpolation were used to up-sample LR images. This pipeline, developed in Python 3.7.6

[libraries: OpenCV 4.5.2 (Bradski, 2000), NumPy 1.20.2, NiBabel 3.2.1], was implemented to have a gold-standard (original
HR) and a comparison term (BC up-sampling, a common procedure for up-sampling) against which to assess EDSR recon-
structions. After the down-sampling, images showedmore pronounced ringing or Gibbs’s artifacts. During preliminary stages
of the work, a Gibbs-artifact removal tool (Kellner et al., 2016) was tested on LR images before the application of the two
up-sampling methods, but it did not influence the outcomes. Thus, we decided to exclude this step from the pipeline.

Table 1. Characteristics of the analyzed samples selected from Cam-CAN dataset (Shafto et al., 2014; Taylor et al., 2017)

No of participants 70
Age (mean±SD; years) 53.3 ± 20.0
Age range (years) 18–85
Sex (F:M) 40:30
TIV (mean±SD; mm3) (1.43 ± 0.13) × 106

Cam-CAN, Cambridge Centre for Ageing and Neuroscience; SD, standard deviation; TIV, total intracranial volume.
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EDSR processes 2D images, so we analyzed individually the data extracted from the three principal orthogonal planes
(sagittal, axial, and coronal), yielding respectively 192, 256, and 256 processed slices. The result was a volume composed
of 2D super-resolved slices for each direction. We refer to those volumes as 2D multislice reconstructions. Image dimen-
sions for each direction are shown in Table 2. The 3D reconstructions were built up by averaging 2Dmultislice reconstruc-
tions from the three planes. The pipeline workflow is illustrated in Figure 1, and it was applied to both T1w and T2w images.
An example of EDSR and BC reconstructions is shown in Figure 2.

Image quality assessment. The images involved in the current work were acquired for radiological studies, aiming to
maximize the human readability. Therefore, the human perception plays an important role for the assessment of image
quality and the similarity of images to a reference standard. To model and quantify perceived quality is challenging and
in the literature several measures have been proposed (Bull and Zhang, 2021). In this work we quantified the quality of
EDSR and BC images as the pixel-level fidelity to the ground truth, using standard metrics. Considering N the number
of pixels, G the gold-standard image (original HR), and I the up-sampled image (EDSR or BC), we measured the following:

1. Root mean square error (RMSE) (Agustsson and Timofte, 2017):

RMSE =
����������������∑N

i=1 (Gi − Ii)
2

N

√
=

������
MSE

√
.

2. Peak signal-to-noise ratio (pSNR) (Timofte et al., 2017):

pSNR = 10 · log10
MAX2

G

MSE
.

The RMSE and the pSNR are standard image quality metrics for the absolute error between the obtained image and
reference one. Differences in intensity values are not enough to analyze and quantify the perceptual distortion experienced
by the human vision, so the following perception-based metrics have been used in this study to provide a more compre-
hensive analysis:

3. Structural similarity index (SSIM) (Wang et al., 2004): is one of themost promising perception-basedmetrics. It con-
siders image quality degradation as perceived change in structural information. It is a full referencemetric based on
visible structures in the image, extracting three features (luminance l, contrast c, and structure s) and performing the
measure based on those, i.e.:

SSIM = l · c · s = 2mGmI + c1
m2
G + m2

I + c1
· 2sGsI + c2
s2
G + s2

I + c2
·

sGI + c2
2

sG + sI + c2
2

,

where mG is the average ofG, mI is the average of I, s
2
G is the variance ofG, s2

I is the variance of I, sGI is the covariance ofG
and I, c1 = (k1 L)

2, c2 = (k2 L)
2, L is the dynamic range of the pixel-values, and k1 = 0.01 and k2 = 0.03 by default.

4. High frequency error norm (HFEN) (Sun et al., 2019): quantifies the quality of reconstruction of edges and fine fea-
tures. It is defined as L2 norm difference between G and I, processed by a rotationally symmetric Laplacian of
Gaussian (LoG) filter of size 15× 15 and standard deviation of 1.5, which captures the high-frequency information:

HFEN = ||LoG(G)− LoG(I)||2.

Table 2. Matrix dimension and spatial resolution of T1w and T2w original HR, LR, and up-sampled HR images, through 2D
2x-EDSR and BC interpolation

HR original LR HR EDSR and BC

Sagittal—YZ 192×256×256–1×1×1 mm3 192×128×128–1×2×2 mm3 192×256×256–1×1×1 mm3

Axial—XY 96×128×256–2×2×1 mm3

Coronal—XZ 96×256×128–2×1×2 mm3

In the three cases, the not-down-sampled dimension is underlined. HR, high resolution; LR, low resolution; EDSR, enhanced deep super-resolution; BC, BiCubic.
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Images with low RMSE, high pSNR, high SSIM, and low HFEN indicate high quality of reconstruction. Those metrics
were evaluated with Python 3.7.6 [libraries: Scikit-image 0.16.2 (Van der Walt et al., 2014), SciPy 1.5.3 (Virtanen et al.,
2020), NumPy 1.20.2] for EDSR and BC reconstructed images of each subject and each sequence, using the original
HR images as ground-truth, over a region from which the scalp had been excluded using BET [Brain Extraction Tool

Figure 1. Pipeline applied to original HR T1w, showed in this figure as example, and T2w images to perform 3D reconstructions. The EDSR model is a 2D
CNN, thus sagittal (192 slices), axial (256 slices), and coronal (256 slices) planes were processed separately, and three distinct 2D multislice images were
achieved and then averaged to obtain the final map. The detailed pipeline for 2D SR reconstructions is illustrated in the gray box at the bottom of the panel: the
original 2D images were processed with a Gaussian filter and then down-sampled with BC interpolation. The obtained LR images were up-sampled using the
EDSR model and BC interpolation. SR, super-resolution; EDSR, enhanced deep super-resolution; BC, BiCubic; MRI, magnetic resonance imaging.
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(Smith, 2002)—FSL 6.0.4]. For 2D multislice reconstructions, the metrics were evaluated over 2D slices and the average
among them were considered as follows:

m
〈 〉

plane=
1

Nplane

∑Nplane

j=1

mj,

where plane = sagittal, axial, and coronal; µ=RMSE, pSNR, SSIM, and HFEN; and Nplane = 256, 192, 256, respectively.
For 3D reconstructions, similarity parameters were directly evaluated over the three-dimensional matrices.

Comparison of up-sampling methods. The image quality metrics of EDSR and BC images were compared as follows:

1. Considering the entire brain in 2D multislice reconstruction.

Sagittal, axial, and coronal planes were considered separately. Differences between the three directions for the two
up-sampling methods, EDSR, and BC were evaluated.

2. Considering the entire brain in 3D reconstructions.
3. Considering different brain tissues. The MRtrix3 (Tournier et al., 2019) tool 5ttgen, based on a FreeSurfer (Fischl,

2012) parcellation image map, was used to segment original T1w images into different tissues: gray matter
(GM), divided into cortical cortex GM (CGM) and deep GM nuclei (DGM), white matter (WM), and cerebrospinal fluid
(CSF). An example of CGM, DGM, WM, and CSF appearance in T1w and T2w images is shown in Figure 3. The
up-sampled images from both T1w and T2w examsweremasked using these segmentations to analyze each tissue
separately. DGM and CGMwere considered together to study the whole GM. 3D reconstructions were considered.

4. Considering the entire brain and inverting the gray intensity histograms. The original data included images with
intensity ranging from 0 to 255. The histogram of each original image, T1w and T2w for the 70 selected subjects,
was inverted within the same range. New images were obtained, in which intensities were inverted. Human percep-
tion of hyper- and hypointensity regions obviously changed after this operation. We aimed to test whether this
would influence the EDSR model in performing up-sampling operation and the quantitative evaluation of its recon-
structions. Therefore, after the histogram inversion, the new images were processed, and the statistical analysis
was run again as described above. 3D reconstructions were considered.

Figure 2.Original HR, BC, and EDSR T1w (panel a) and T2w (panel b) images of a representative individual (24 years/M healthy subject) from the Cam-CAN
database (red boxes, zoom-in on brain cortex; blue boxes, zoom-in on brain ventricles; HR, high resolution; EDSR, enhanced deep super-resolution;
BC, BiCubic).
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We compared the distributions of RMSE, pSNR, SSIM, and HFEN obtained by EDSR and BC algorithms applied on both
T1w and T2w images considering ROIs according to the above list. We used the one-sample Kolmogorov–Smirnov test to
quantify the compatibility between the distributions of similarity parameters within the samples. None were normally
distributed, so nonparametric comparison tests (Kruskal–Wallis and Kolmogorov–Smirnov) were selected, considering
p values < 0.05 as significant. The effect sizes were measured by Cohen’s d coefficients (d>0.8 considered as “large”).
The difference was considered significant when at least two out of three measurements showed it. Statistical analysis was
carried out using Matlab R2020 (toolboxes: Statistics and Machine Learning 11.7, Image Processing 11.1).

Results
Entire brain: 2D reconstructions
The reference metric (RMSE, pSNR, SSIM, and HFEN) distributions among the 70-subject samples of EDSR and BC

methods were evaluated as described in the previous section, using the original HR images as the gold standard for
both the up-sampling methods for T1w and T2w images. Sagittal, axial, and coronal 2D slices were considered separately.
Results are reported in Table 3. For each plane, eachmetric, and each sequence, median values [±median absolute devia-
tion (MAD)] are shown. For all the directions, results showed significant differences in favor of the EDSR method on all the
criteria for T1w images and on SSIM and HFEN metrics for T2w images. The metrics ranking among the three directions
were evaluated, both for EDSR and BC methods: no orientation is superior to the others over all the measurements.

Entire brain: 3D reconstructions
From the 2D multislice SR images, 3D reconstructions were obtained (Fig. 1). Results are reported in Table 4. Age, sex,

and total intracranial volume (TIV) were inserted as covariates of no interest in the analysis. Results showed significant
differences in favor of the EDSRmethod on all the metrics for T1w images and on SSIM and HFENmetrics for T2w images.

Different brain tissues
We considered GM,WM, and CSF individually in 3D reconstructions. In Table 5, the results are shown, as the outcomes

described in the previous section. Results showed the following: (1) in GM, significant differences in favor of the EDSR

Figure 3.Brain tissue segmentation using 5ttgen tool fromMRtrix based on a FreeSurfer parcellation imagemap. The considered segmented tissues are as
follows: cortical cortex gray matter (CGM), deep gray matter nuclei (DGM), white matter (WM), and cerebrospinal fluid (CSF) (T1w and T2w images from
24 years/M healthy subject from the Cam-CAN database).
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method on all the criteria for T1w and T2w images; (2) in WM, significant differences in favor of the EDSRmethod on all the
criteria for T2w images, but no difference for T1w images; and (3) in CSF, significant differences in favor of the EDSR
method on all the criteria for T1w images, but no difference for T2w images.

Table 4. Median (±MAD) of RMSE, pSNR, SSIM, and HFEN distributions among the 70-subject samples

3D—brain

T1w T2w

EDSR BC EDSR BC

RMSE ↓ 39.1 ± 26.1* 101.9 ± 59.5 41.3 ± 9.3 46.0 ± 9.4
pSNR ↑ 32.2 ± 2.3* 28.1 ± 2.8 32.0 ± 0.9 31.5 ± 0.8
SSIM ↑ 0.990± 0.002* 0.983 ± 0.003 0.985 ± 0.001* 0.976± 0.002
HFEN ↓ 0.144± 0.049* 0.244 ± 0.061 0.173 ± 0.026* 0.185± 0.021

Measurements are from3D reconstructions for T1w and T2wmaps. The outperforming up-samplingmethod between EDSR and BC is highlighted (*) when there was a
significant difference according to the considered parameters (p-values fromKruskal–Wallis and Kolmogorov–Smirnov tests andCohen’s d effect size). The reference
parameters were measured over the entire brain. MAD, median absolute deviation; RMSE, root mean square error; pSNR, peak signal-to-noise ratio; SSIM, structural
similarity index; HEFN, high frequency error norm; EDSR, enhanced deep super-resolution; BC, BiCubic.

Table 3. Median (±MAD) of RMSE, pSNR, SSIM, and HFEN distributions among the 70-subject samples

2D—Brain

T1w T2w

EDSR BC EDSR BC

Sagittal YZ RMSE ↓ 32.2 ± 22.8* 77.4 ± 59.4 41.5 ± 9.1 40.0 ± 9.2
pSNR ↑ 29.1 ± 2.8* 24.7 ± 2.8 30.0 ± 1.0 30.3 ± 1.0
SSIM ↑ 0.985 ± 0.002* 0.978 ± 0.003 0.978± 0.002* 0.969± 0.002
HFEN ↓ 0.137 ± 0.040* 0.242 ± 0.045 0.174± 0.021* 0.226± 0.008

Axial XY RMSE ↓ 26.4 ± 19.7* 70.4 ± 59.3 39.6 ± 9.2 40.2 ± 8.6
pSNR ↑ 28.7 ± 3.0* 24.1 ± 3.0 29.0 ± 1.0 29.1 ± 1.0
SSIM ↑ 0.987 ± 0.002* 0.980 ± 0.003 0.978± 0.002* 0.969± 0.002
HFEN ↓ 0.138 ± 0.033* 0.237 ± 0.044 0.173± 0.023* 0.227± 0.001

Coronal XZ RMSE ↓ 38.2 ± 31.5* 97.8 ± 66.9 30.3 ± 8.2 33.7 ± 7.8
pSNR ↑ 27.7 ± 2.4* 23.8 ± 2.9 30.9 ± 1.2 30.3 ± 1.0
SSIM ↑ 0.985 ± 0.002* 0.976 ± 0.003 0.981± 0.002* 0.972± 0.002
HFEN ↓ 0.157 ± 0.042* 0.253 ± 0.053 0.151± 0.024* 0.230± 0.006

Measurements are reported for sagittal, axial, and coronal planes for T1w and T2w maps. The outperforming up-sampling method between EDSR and BC is
highlighted (*) when there was a significant difference according to the considered parameters (p values from Kruskal–Wallis and Kolmogorov–Smirnov tests and
Cohen’s d effect size). The reference parameters were measured over the entire brain. MAD, median absolute deviation; RMSE, root mean square error; pSNR, peak
signal-to-noise ratio; SSIM, structural similarity index; HEFN, high frequency error norm; EDSR, enhanced deep super-resolution; BC, BiCubic.

Table 5. Median (±MAD) of RMSE, pSNR, SSIM, and HFEN distributions among the 70-subject samples

3D—Brain

T1w T2w

EDSR BC EDSR BC

GM RMSE ↓ 11.8 ± 9.1* 14.5 ± 14.1 17.7 ± 4.7* 30.8 ± 7.2
pSNR ↑ 37.4 ± 2.6* 36.5 ± 2.6 35.6 ± 1.0* 33.3 ± 1.0
SSIM ↑ 0.998± 0.001* 0.998 ± 0.002 0.994± 0.002* 0.990 ± 0.002
HFEN ↓ 0.097± 0.043* 0.117 ± 0.053 0.211± 0.036* 0.280 ± 0.043

WM RMSE ↓ 12.4 ± 6.4 10.6 ± 7.6 6.7 ± 2.0* 10.4 ± 3.8
pSNR ↑ 37.2 ± 1.8 37.9 ± 1.9 39.9 ± 1.2* 38.0 ± 1.6
SSIM ↑ 0.998± 0.001 0.998 ± 0.001 0.995± 0.001* 0.993 ± 0.002
HFEN ↓ 0.090± 0.026 0.086 ± 0.028 0.195± 0.032* 0.240 ± 0.048

CSF RMSE ↓ 0.39 ± 0.22* 1.03 ± 0.45 1.43 ± 1.14 1.41 ± 1.05
pSNR ↑ 52.2 ± 1.7* 48.0 ± 1.6 46.6 ± 2.4 46.6 ± 2.1
SSIM ↑ 0.9998±0.0002* 0.9995 ±0.0002 0.9998±0.0001 0.9998 ±0.0001
HFEN ↓ 0.145± 0.029* 0.257 ± 0.040 0.172± 0.028 0.169 ± 0.025

Measurements are from3D reconstructions for T1w and T2wmaps. The outperforming up-samplingmethod between EDSR and BC is highlighted (*) when there was a
significant difference according to the considered parameters (p values from Kruskal–Wallis and Kolmogorov–Smirnov tests and Cohen’s d effect size). The reference
parameters were measured over GM, WM, and CSF separately. MAD, median absolute deviation; RMSE, root mean square error; pSNR, peak signal-to-noise ratio;
SSIM, structural similarity index; HEFN, high frequency error norm; GM, gray matter; WM, white matter; CSF, cerebrospinal fluid; EDSR, enhanced deep
super-resolution; BC, BiCubic.

Research Article: New Research 8 of 12

May 2024, 11(5). DOI: https://doi.org/10.1523/ENEURO.0458-22.2023. 8 of 12

https://doi.org/10.1523/ENEURO.0458-22.2023


Entire brain: histogram inversion
Histograms of original T1w and T2w images were inverted, and the new images were processed. Results are summa-

rized in Table 6. There were significant differences in favor of the EDSR method on all the criteria for T2w images, and
on the SSIM and HFEN metrics for T1 images.

Discussion
SR techniques have the potential to improve the trade-off between diagnostic accuracy and limited total scan time,

supporting faster screening and follow-up exams. Lower resolution images can be acquired rapidly and then have their
spatial resolution enhanced at the postprocessing stage. The 2D CNN EDSR model was introduced in Lim et al.
(2017), and it is still one of the state-of-the-art SR DL algorithms: in a recent review of single-image SR methods
(Bashir et al., 2021), EDSR was among the top 5 best performing out of a total of 19 models. It has recently been used
in biomedical applications (Huang et al., 2021), and we decided to adopt it for the current study. We tested the model,
pretrained on natural images, on MR scans, aiming to test its generalization ability. To validate the model, we needed a
pixel-wise reference map; in an ideal situation, pairs of perfectly registered LR and HR images would be acquired during
the same exam, but actually further interpolation operations would be needed to register the two images within each other,
and also the required scan time would increase. Thus, following the literature (Zhang et al., 2021), we used BC interpola-
tion, together with the application of a Gaussian filter, to simulate LR image acquisition. The results, from 2D and 3D recon-
structions, were compared with BC up-sampling, chosen as comparison since it is commonly used and implemented in
most image visualization software packages.
In Figure 2, an example of EDSR and BC T1w and T2w up-sampled images is shown: a qualitative assessment highlights

that the model better reproduces the original HR images in both sequences, restoring high spatial frequency structures,
such as the cortical gyri or ventricle edges, in more detail. To quantify aspects of reconstructions relevant to human per-
ception, a robust analysis was carried out. The discussion follows the order of presentation of the results.

1. The model was tested over 2D images, and it outperforms BC interpolation in all the slices; there is a significant
difference in favor of the EDSR model for both MR modalities considering the two perception-based metrics
(SSIM and HFEN), while for the other two criteria (RMSE and pSNR) there is significant difference for T1w but
not for T2w images (Table 3). Several studies have shown that SSIM and HFEN aremore reliable indicators of image
quality degradation and that they better match the human visual system than RMSE and pSNR (Wang et al., 2004).
In fact, they measure complex image features such as luminance, contrast, and high spatial frequencies, while
RMSE and pSNR are based only on the absolute difference in pixel gray levels. Thus, the results from 2D super-
resolved images demonstrate that the EDSR reconstructions are better overall than those based on BC interpola-
tion in T1w and T2w images.
The comparison between the three orthogonal directions in both EDSR and BC methods shows that no orienta-

tion is superior to the others over all the measurements. Considering that T1w and T2w images were acquired with
readout along sagittal direction, the EDSR model shows effectiveness in enhancing both in-plane (sagittal slices)
and through-plane (axial and coronal slices) spatial resolution.

2. The MR images analyzed are 3D data; thus an overall assessment of the entire volume is preferred. Thus, we
exploited the 2D CNN model to reproduce 3D images, combining reconstructions from the three principal orthog-
onal planes (Fig. 1). The analysis (Table 4) confirms the superior performance of EDSR over BC; age, sex, and TIV
were inserted as covariates and did not show any influence on EDSR outcomes.

3. The reconstruction of the EDSR model showed some intensity differences compared with the original gold stan-
dard, evaluated using the RMSE and pSNR criteria. To go beyond using the algorithm as a “black box” and to
attempt to explain its functioning, we proceeded to investigate the influence of the underlying tissue gray levels
on model performance. The GM, WM, and CSF were considered separately since tissue contrast and intensities

Table 6. Median (±MAD) of RMSE, pSNR, SSIM, and HFEN distributions among the 70-subject samples

3D—Brain

T1w - INV T2w - INV

EDSR BC EDSR BC

RMSE ↓ 17.1 ± 8.2 17.1 ± 9.3 44.6 ± 10.3* 67.0 ± 13.2
pSNR ↑ 35.8 ± 2.0 35.8 ± 2.2 31.6 ± 0.9* 29.9 ± 0.8
SSIM ↑ 0.994 ± 0.001* 0.991 ± 0.001 0.990± 0.001* 0.981± 0.001
HFEN ↓ 0.048 ± 0.011* 0.052 ± 0.009 0.105± 0.017* 0.123± 0.012

Measurements are from 3D reconstructions for histogram-inverted T1w and T2wmaps. The outperforming up-sampling method between EDSR and BC is highlighted
(*) when there was a significant difference according to the considered parameters (p values fromKruskal–Wallis andKolmogorov–Smirnov tests andCohen’s d effect
size). The reference parameters were measured over the entire brain. MAD, median absolute deviation; RMSE, root mean square error; pSNR, peak signal-to-noise
ratio; SSIM, structural similarity index; HEFN, high frequency error norm; EDSR, enhanced deep super-resolution; BC, BiCubic.
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vary in the different MR sequences analyzed. The appearance of each tissue type in T1w and T2w images is shown
in Figure 3, and from Table 5 it can be understood that:
1. GM: EDSR outperforms bicubic interpolation on all criteria both in T1w and in T2w images.
2. WM: EDSR outperforms bicubic interpolation on all criteria in T2w images, where the tissue appears hypoin-

tense, while in T1w images, where WM appears brighter, there is no significant difference.
3. CSF: EDSR outperforms bicubic interpolation on all criteria in T1w images, where the tissue appears hypoin-

tense, while in T2w images, where CSF appears particularly hyperintense, there is no significant difference.
4. The outcomes of the previous point suggest that lack of outperformance of EDSR occurs in hyperintense areas. To

test this hypothesis, histograms of the original images were reversed, and the analyses were repeated, yielding the
opposite results (Table 6): the EDSR significantly outperformed BC interpolation as an up-sampling method on all
the criteria in T2w images and in two (SSIM and HFEN) out of four in T1w images.

It is well established that DL algorithms, including EDSR, work better than traditional BC up-sampling over data from the
training dataset (Dong et al., 2014). Wewanted to test the response of EDSR to datawith characteristics unlike those of the
training set: the network weights, derived in the NTIRE Challenge 2017 with a training using variety of photographic
images, were left untouched and the model was directly applied to MR brain images. The poor generalizability over dif-
ferent data is an issue in SR model applications: commonly train and test data are of the same thematic type, whichever
is themodel used (e.g., Generative Adversarial Networks). Some examples of brainMRI images are as follows: Zhang et al.
(2021) used 3 T structural T1w images divided into train and test datasets; Sui et al. (2021) trained their model using 3 T T1w
and T2w images from an online dataset and tested it on T2w images acquired on their 3T scanner. EDSR performed excel-
lent reconstructions ofMR brain images, superior to the BC standardmethod, leading to the consideration that a retraining
stage was not necessary, although the kind of data used for the training were very different from the ones that we wanted
to super-resolve. In fact, the high quality of EDSR reconstructions achieved in this work is not trivial, considering the tran-
sition from general-purpose images to brain MR scans. The capacity to generalize over new data is probably due to the
large number of model parameters: referring to the review of Bashir et al. (2021), EDSR was the model with the highest
number of parameters among those analyzed, more than one-third higher than the second ranked model. This fact
does not affect though the computational cost, which remains low. Furthermore, EDSR is a 2DCNN, which positively influ-
ences computational effort and memory allocation. Such models can be used to reconstruct three-dimensional data,
including brain images from MR exams: Zhang et al. (2021) obtained 3D reconstructions from two multislice super-
resolution images, achieving better results than three-dimensional super-resolution technology. We decided to use an
analogous method as a viable alternative to 3D CNNs.
Our SR pipeline showed good technical outcomes that, aswementioned above, enable the acquisition of low-resolution

images whose spatial resolution can be enhanced in postprocessing, yielding the clinical benefit of reducing the total scan
time. Scan time is not linearly proportional to the voxel size, depending on several factors including parallel imaging; how-
ever, it is possible to make an approximate evaluation: for example, on a Siemens MAGNETOM Skyra 3 T scanner, the
scan time for 1 mm-isotropic T1w (sagittal 3D, MPRAGE, TR/TE= 2,300/2.98 ms) is ∼ 5’ 21’; setting the spatial resolution
to 2 mm isotropic and changing the other parameters as little as possible, it would be ∼ 2’ 30’’. Therefore, the proposed
postprocessing operation could speed up the acquisition time by more than half, while yielding the same nominal spatial
resolution and simultaneously reducing the probability of motion artifacts and other noise sources.
There are a few limiting factors to consider and further analysis to perform for the optimal usage of EDSR.
At first, data used in this work are high-quality MR images of healthy subjects, without sizeable movement artifacts, and

their spatial resolution was improved from 2×2 to 1× 1 mm2. At a millimeter–centimeter scale, image intensity in these
images is dominated by the presence of myelinated axons (WM) neuronal and glial cell bodies (GM) and CSF. Within a
1 mm isotropic voxel, one tissue type typically predominates, and this pattern recurs in neighboring pixels over a centi-
meter scale, producing patches of fairly uniform pixel intensity, separated by fairly sharp boundaries. It is possible to spec-
ulate that these image characteristics are closed to those found in the photographs of natural scenes used to train the
EDSR. Additionally, changes in signal intensity or morphology due to neurological diseases introduce additional tissue
types in a variable manner at the voxel scale. Thus, the achievement of good performance with different scales and
with pathological tissue is not obvious and will have to be tested.
At second, we expect that themodel could be used on data based onMR sequences that yield contrasts other than T1w

and T2w, but in this case its performance is likely to vary, especially in images with large hyperintense areas. We noticed
that a deterioration in EDSR performance occurs with T2w images, as in Sui et al. (2021), in which CSF appears very bright.
This may be related to the fact that in natural images like landscapes and animals, used to train themodel, bright and shiny
elements, such as light reflected in a mirror, are less common than the darker ones, such as shadows of objects and
people. Moreover, images including larger glares or shadows components are commonly excluded by training datasets
like the DIV2K, since they are interpreted as undesired components in a picture. To better understand and potentially
explain the limits of generalizability shown by the model, we investigated its behavior with respect to the pixel intensity
of the different tissue types finding that it was more difficult to accurately reproduce high-intensity pixels.
Finally, we tested EDSR over LR images generated fromHR ones, which is a standard procedure in SR studies to have a

pixel-wise reference maps to which compare the model reconstructions, avoiding registration operations. Nevertheless,
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since they are simulated LR images, the superior performance of the model needs to be confirmed on LR images from real
MR acquisitions.
The aim of this work was to validate our proposed SR pipeline: the EDSRmodel, previously trained with natural images,

was directly applied to MR brain images, without retraining or fine-tuning, to test its inherent generalization ability over a
new kind of data. For this stage, we decided to use a dataset of healthy controls evaluating the performance of the model
with reference metrics parameters. In future work, radiomic and textural features will be used to assess the reliability of our
method, including images from patients’ exams. To assess the diagnostic relevance of the HR images obtained with the
pipeline, quantitative analysis will need to be augmented with clinical evaluation.

Conclusion
The application of the EDSR-2x on MR biomedical images in this work leads to promising results: without needing a

tailored retraining, the model shows its ability to generalize from general-purpose images to different MR sequences of
healthy subjects, achieving better performance than traditional up-sampling methods. Although the model works with
two-dimensional data, the outperformance remains when three-dimensional reconstructions are considered. The data
analyzed in this study include images from different MR sequences of subjects with different characteristics in terms of
age, sex, and TIVs; several metrics and statistical tests were selected to assess the quality of the up-sampled images,
thus the application of this model on MR brain images was satisfactorily validated. An analysis of the grayscale histogram
identified a different reconstruction performance as function of pixel hyperintense areas, posing limits on the possible
applications, especially in cases in which the MR techniques is prone to generate images with regions of high intensity.
The T1w and T2w images analyzed in this work were previously unseen by the model, and we can reasonably expect

similar outcomes on images from the same sequences, which would appear with similar intensities and contrasts,
acquired with different scanners.
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