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A B S T R A C T   

Groundwater discharge or recharge in aquifers can be obtained from the analysis of temperature profiles, a cost- 
efficient method widely applied in hydrogeology. In this study we proposed a set of type curves that can be used 
for estimating the vertical velocity flow, and have the potential to allow, in certain cases, the assessment of the 
thermal diffusivity of the soil matrix. The solutions, represented graphically, establish the dependencies of the 
basic parameters involved in the process: groundwater velocity, thermal conductivity, specific heat, aquifer 
depth and harmonic temperature period. Using the non-dimensionalization technique, the mentioned parameters 
were organized in dimensionless groups which are verified by numerical simulations. For the estimates of the 
groundwater velocity, transient temperature-depth measurements or steady state amplitudes of the harmonic 
oscillation were used as input data. In this last case, a particular type curve solution allows us to assess the depth 
from which temperature oscillations have a negligible amplitude compared to the amplitude at the ground 
surface. The resulting dependencies have been applied to estimate the groundwater velocity in real aquifers and 
laboratory experiences.   

1. Introduction and background 

The use of temperature to estimate water velocity in aquifers as a cost 
efficient method has been studied for several decades (Cartwright, 1979; 
Anderson, 2005; Keery et al., 2007). In saturated aquifers, groundwater 
flow with vertical upward or downward velocity components, the 
problem of heat transfer caused by temperature boundary conditions has 
been a topic of great interest in hydrogeology because of the possibility 
of determining recharge or discharge flows between shallow and deep 
bodies of water using temperature-depth profiles, as well as other me-
chanical or thermal soil properties (Silliman et al., 1995; Hatch et al., 
2002; Ferguson and Woodbury, 2005). 

In this section and in order to highlight the contribution of present 
work, we run through the main references in this field to summarize the 
key ideas and applicability. After that, we present the methodology 
carried out and the results. Finally, and aimed to put into practice and 
better understand the main contribution, the results have been applied 
to two real scenarios previously studied by other authors. 

Especially in the context of study groundwater-surface water inter-
action, the use of temperature profiles has been applied in recent years 

to estimate groundwater discharge (Sebok et al., 2013; Duque et al., 
2016). The use of analytical solutions to determine groundwater 
discharge provides rapid estimation of flows that would otherwise 
require extensive field campaigns, or modeling efforts for which addi-
tional field data are also needed. However, several important un-
certainties concerning assumptions such as steady water flow with a 
vertical-only component or aquifers with homogeneous thermal prop-
erties could deviate the measured temperature profiles from those sup-
posedly expected. 

Suzuki (1960) was the first who proposed a 1D solution in semi-
confined aquifers, under harmonic boundary conditions for the tem-
perature and constant vertical flow of water. His solution, which 
considers a sinusoidal temperature boundary condition at the aquifer 
surface, introduces two empirical parameters. Subsequently, Stallman 
(1965) worked with Suzuki’s solution providing a precise expression for 
such parameters, to which he attributes the dimension m− 1. 

Bredehoeft and Papadopulos (1965) simplified the solution proposed 
by Suzuki (1960) for the case of constant temperature at the surface. 
They introduced an analytical solution showing the temperature 
dependence with two dimensionless groups, the relative depth and the 
equilibrium between advective and diffusive effects. This solution 
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generates lines with curvatures proportional to vertical flow when the 
above equilibrium is less than 0.5, the limit for detecting groundwater 
velocities. The main limitation of this solution is that it is only valid for 
steady state conditions. For 1D flows, Turcotte and Schubert (1982) 
provided a solution similar to that of Bredehoeft and Papadopulos 
(1965) that does not explicitly contain the aquifer depth (H). However, 
both solutions are the same because they use the same boundary con-
ditions. The parameter H does not appear in Turcotte and Schubert’s 
solution but, instead, there is the temperature atz = Hwhich is an 
alternative information. 

Ziagos and Blackwell (1986) presented an aquifer trapped between 
two impermeable bedrock beds where the advection term is not taken 
into account. Lapham (1989), based on finite-difference method, pro-
vided steady state and transient solution of the governing equation of 
Stallman (1963), which assumes a variable boundary condition at the 
surface, applying it to real scenarios in different locations of the USA 
(Hardwick and New Braintree, Massachusetts, and Dover, New Jersey). 
Taniguchi (1993), based on the work of Stallman (1965), provided a 
new set of curves that allows the direct determination of the 1D water 
velocity from temperature profiles. He studied in Nagaoka Plain (Japan) 
aquifers generally dedicated to water supply affected by seasonal surface 
temperature changes, determining vertical flow and hydraulic conduc-
tivity by fitting experimental measurements with the set of curves. 

Lu and Ge (1996) proposed a 1D heat transfer model to describe the 
vertical heat flux. A source term is embedded in the governing heat flow 
equation to account for the horizontal thermal gradient. The application 
of Bredehoeft and Papadopulos (1965) solution has been directly used in 
numerous and recent studies that required the assumption of steady 
state conditions (Jensen and Engesgaard, 2011; Sebok et al., 2013; 
Duque et al., 2016). In all these studies, temperature profiles were taken 
at the bed of the surface water body (lake, stream, lagoon) and tem-
perature of the groundwater and of the surface water in that moment 
were considered constant. Kurylyk et al. (2019) extend the analytical 
solutions of Bredehoeft and Papadopulos (1965) and Turcotte and 
Schubert (1982) to problems with a more detailed boundary condition 
on the soil surface and a more realistic soil temperature profile initial 

condition. In addition, these authors provide an up-to-date and 
comprehensive literature review in this field regarding the inverse 
problem of determining water flux from temperature profiles. On the 
other hand, they use as bottom boundary condition a Neumann type 
(constant heat flux), which results in variable bottom temperature so-
lutions for non-zero water flows. 

The use of numerical solutions has been also an alternative when it 
was not possible to simplify the functioning of the system. A specific 
software for this purpose frequently used has been VS2DHI (Healy and 
Ronan, 1996; Healy, 2008). Schmidt et al. (2007) considered a harmonic 
surface temperature of a stream and established as constant the bottom 
of the aquifer. For the transient solution, they used VS2DHI, while for 
the solution in the steady state, they applied the solution of Turcotte and 
Schubert (1982). The use of analytical solutions is often useful in stan-
dard and simplified scenarios, but they can be evolved to more 
complicated scenarios or with more complex boundary conditions (Lin 
et al., 2022). Numerical solutions are necessary when it is not possible to 
assume hypotheses such as constant phreatic level, horizontal strata, 
homogeneous thermal properties, etc. Schmidt et al. (2007), for 
example, combine the use of analytical and numerical solutions to study 
an aquifer with harmonic surface temperature and constant temperature 
at the bottom. For the transient solution, they used VS2DHI (Healy, 
2008), while for the solution in the steady state, they applied the solu-
tion of Turcotte & Schubert (1982). 

Hatch et al. (2006) presented a method for determining streambed 
seepage rates using thermal data (phase changes and amplitude of 
temperature variations between pairs of subsurface sensors) from time 
series. They presented solutions for both phase changes and thermal 
amplitude changes. To work with the amplitudes, the authors collected 
series of streambed data, applied frequency bandpass filter to extract 
signal and calculated amplitude ratio and phase shift time series. Lautz 
(2012) performed controlled laboratory experiments to explore the ac-
curacy of analytical solutions of the one-dimensional heat transport 
model to capture the temporal variability of flow through porous media 
from the propagation of a periodic temperature signal at depth. She used 
the one-dimensional model of heat transport presented by Hatch et al. 

Nomenclature 

a, b, K, V constants used by Stallman (1965) (cm− 1) 
C1 constant 
ce volumetric heat capacity of the rock-fluid matrix (Jm− 3◦C 

− 1) 
ce,s volumetric heat capacity of sediment (Jm− 3◦C − 1) 
ce,w volumetric heat capacity of water (Jm− 3◦C − 1) 
H vertical depth of the aquifer 
km heat conductivity of the rock-fluid matrix (Js− 1m− 1◦C− 1) 
l*diff − conv vertical length for which diffusion and drag effects have 

the same order of magnitude in a given time (m) 
lz,o* caracteristic lenght (m) from which the oscillations have a 

negligible amplitude compared to the amplitude of the 
wave on the soil surface 

T temperature (◦C) 
Tav mean surface soil temperature (◦C) 
Tmax maximum temperature envelope due to sinusoidal 

temperature fluctuation 
Tmin minimum temperature envelope due to sinusoidal 

temperature fluctuation 
Tini initial soil temperature (◦C) 
To temperature at the bottom of the domain (◦C) 
(T′ − z′)profile vertical dimensionless temperature profiles 
t time (s) 

vo,z vertical water flow velocity (m/s) 
z vertical spatial coordinate (m) 
α thermal diffusivity (m2/s) 
αc corrected thermal diffusivity coefficient (m2/s) 
ΔT amplitude due to sinusoidal boundary condition at the soil 

surface 
(ΔT)z amplitude at vertical z coordinate 
(ΔT)z=0 amplitude of the temperature variation at z = 0 
Ψ refers to an arbitrary function of its arguments (contained 

in parentheses or square brackets) 
λo baseline thermal Conductivity (Js− 1m− 1◦C− 1) 
πi dimensionless group (i = 1,2 …) 
πlz,o* characteristic length monomial 
πτ* characteristic time monomial 
ρe wet bulk density of the rock-fluid matrix (kgm− 3) 
ρe,s sediment density (kgm− 3) 
ρe,w water density (kgm− 3) 
τo sinusoidal wave period (s) 
τ* characteristic time (s) 
τ*

diff − conv time for which the length traveled by advection is equal to 
the length traveled by diffusion 

[] delimits a range or interval 
~ denotes order of magnitude 
’ denotes dimensionless parameter  
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(2006) to quantify the velocity of the water through the sand column for 
comparison and validation. The 1D heat transport model was imple-
mented with the Vertical Fluid Heat Transfer Solver VFLUX (Gordon 
et al., 2012). This code estimates fluid flow using analytical solutions, 
Signal processing techniques and Monte Carlo error analysis modules 
(Irvine et al., 2015). 

As for universal (or type-curves) solutions, the one provided by 
Bredehoeft and Papadopulos is often used due to its simplicity. How-
ever, its application assumes that the boundary condition at the top is of 
Dirichlet type (first type) and that steady state thermal conditions have 
been reached. The solution provided by Turcotte and Schubert (1982) is 
very similar to that of Bredehoeft and Papadopulos (1965), while 
maintaining the same drawbacks. In contrast to these analytical solu-
tions, in this manuscript we propose a set of new universal solutions for 
both steady state and transient (assuming constant-temperature condi-
tion at the surface) and another set to use the amplitudes of the sine 
wave at different depths (harmonic boundary condition at the surface). 

As for Hatch et al. (2006), one of the drawbacks of their scheme is 
that, a priori, they do not know the vertical locations at which to locate 
the temperature gauges, since they do not know the depth from which 
the temperature amplitude is negligible compared to the amplitude in 
the streambed surface. With the new equations presented in this work, it 
is possible to simultaneously obtain the thermal properties and even the 
depth of the aquifer by means of universal curves. Also, a criterion is 
provided to determine the depth at which the temperature wave 
amplitude is negligible compared to that of the ground surface, allowing 
aquifers to be thermally classified as shallow or deep. 

2. Methodology 

In this work, a new set of universal solutions for simultaneous fluid 
flow and heat transport was derived for the problem of vertical flow 
(upward or downward) of groundwater in aquifers. Such solutions can 
be divided into two types: those that use mean temperature profiles and 
those related to sinusoidal wave amplitudes in the aquifer. 

The approach used to obtain these curves is based on the search for 
dimensionless groups, an essential objective of Dimensional Analysis, 
which govern the solutions to the problem and which allow the un-
knowns sought to be expressed based on such groups by application of 
the Pi theorem. This task is accomplished through the non- 
dimensionalization of the governing equations (Appendix A). The 
main advantage of using the dimensionless technique is that the 
resulting groups, in addition to being dimensionless, have a clear 
physical meaning since they are the direct result of the balance of pairs 
of terms of the governing equation in the same physical domain. This 
procedure has been applied in coupled flow and transport problems of 
similar complexity (Cánovas et al., 2015; Seco-Nicolás et al., 2018; 
Jiménez-Valera and Alhama, 2022). 

The first step is the definition of the governing equation and the 
boundary conditions. For this, it is necessary to define the physical 
model of the problem (Fig. 1) where there is a surface water body with a 
temperature changing along the day and the seasons, an aquifer of 
determined thickness where there will be a gradual change of temper-
ature from the bottom to the discharge point and the thermal properties 
of the aquifer that will be associated to the different characteristics that 
have different materials. Here we assume that even if flow is coming 
laterally from the aquifer, in the discharge areas verticalizes favoring the 
use of 1D temperature-depth profiles. 

The mathematical model is formed based on the heat transport 
equation (simultaneous flow of fluid and heat (Stallman, 1963) plus the 
new boundary conditions. Initial temperature is also required for the 
numerical solution. 

km

(
∂2T
∂z2

)

− ρe,wce,w

(

vz,o
∂T
∂z

)

− ρece
∂T
∂t

= 0 (1)  

Tz=0 = Tav (2a)  

T(z=0,t) = Tav +ΔTz=0sin
(

2π
τo

t
)

(2b)  

Tz=H = To (3)  

T(z,t=0) = Tini (4) 

Eq. (1) represents the local balance of heat fluxes: diffusion 
(

km

(
∂2T
∂z2

))

, advection 
(

ρe,wce,w

(

vz,o
∂T
∂z

))

and storage 
(

ρece
∂T
∂t

)

, where 

km is the thermal conductivity of the soil-fluid matrix, T is the temper-
ature at any point of the aquifer, z is the vertical coordinate, ρe,w is the 
density of water, ce,w is the volumetric heat capacity of water, vz,o is the 
vertical water flow velocity, ρe is the wet bulk density of the rock-fluid 
matrix, ce is the volumetric heat capacity of the rock-fluid matrix and t 
is time. 

Boundary conditions for temperature were applied both at the sur-
face and at the bottom. Surface temperature can be considered as con-
stant (Eq. (2a) or seasonally dependent on time (Eq. (2b) while the 
bottom of the aquifer is under constant temperature (To). Tini is the 
temperature initial condition (4). 

From the mathematical model the relevant parameters and un-
knowns, such as characteristic lengths and times, are selected. All of 
them will be part of the lumped parameters (or dimensionless groups) 
after the non-dimensionalization process. In addition, the normalization 
of the variables limits their range of values to the interval [0, 1]. 

Once the dimensionless variables are defined, they are introduced in 
the governing equation, thus obtaining the dimensionless governing 
equation, from which the final dimensionless groups can be deduced. To 
do this, simple mathematical operations are performed with the 
dimensional coefficients of the equations. 

The dimensionless temperature and the dimensionless z position for 
the case of working with mean temperatures are: z′ = z

H and T′ = T− Tav
To − Tav

. 
Therefore, the appropriate references that have been taken are H for the 
dimensionless position and temperatures at the ground surface (Tav) and 
at the bottom of the aquifer (To) for the dimensionless temperature. 
Dimensionless time has been defined in the form t′ = t

τ*, where τ* is the 
time required to reach steady state conditions. The criterion for choosing 
τ* is that temperature at y = 0.9 H (a position far enough from the soil 
surface) reaches 95 % of its range of variation. 

If instead of recording mean temperatures in the aquifer, continuous 
temperature data are taken at different depths in such a way that the 
value of the amplitude of the thermal wave can be known, the dimen-
sionless variables are: z

lz,o* , t′ = t
τo 

and T′ = ΔT
ΔTz=0

, where lz,o* is the depth at 

which the wave amplitude is negligible (for example, 5 %) compared to 
the amplitude at the ground surface, τo is the period of the sinusoidal 
wave (daily or seasonally), and ΔTz=0 is the amplitude at the ground 
surface (see Fig. 1). 

Based on the temperature distribution, we have differentiated ther-
mally between shallow and deep aquifers. In a thermally deep aquifer, 
the total depth H is greater than the characteristic length (lz,o*). There-
fore, there will be a stretch of aquifer in which the amplitude of the 
harmonic wave will be negligible. This stretch starts at z = lz,o* and ends 
at z = H. In contrast, in a thermally shallow aquifer, the total depth H is 
less than the characteristic length (lz,o*) as long as the temperature at the 
bottom of the aquifer is a constant temperature boundary condition. 
Therefore, since at any point in the aquifer the wave amplitude is not 
negligible, the dimensionless z position is z′ = z

H. It is important to 
highlight that in this work we only differentiate between thermally 
shallow and thermally deep aquifers if we work with temperature am-
plitudes measured at different depths instead of with mean tempera-
tures. The advantage is that, for both daily and seasonal periods, the 
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number of temperature gauges required is less working with amplitudes 
than with mean temperature profiles. 

Once the physical–mathematical model and the dimensionless 
groups are defined, the last step is the application of the pi theorem: the 
dimensionless expressions of the unknowns written in their dimen-
sionless form are functions of the dimensionless groups without un-
knowns (Buckingham, 1914) and, eventually, of the dimensionless 
position within the domain and dimensionless time (if the problem is 
transient). In this way, the curves of universal dependencies (solutions) 
are obtained from numerical simulations carried out from a network 
(numerical) model using the software Pspice (1994). The main advan-
tage of creating a network model is that we can easily manipulate the 
mathematical model, simulations are much faster than those of com-
mercial programs and it is easier to work with the results of the simu-
lations. The network model has been created according to the network 
simulation method (Horno, 2002), a tool applied in engineering coupled 
problems of similar complexity (Meca et al., 2007; Alhama et al., 2012; 
Cánovas et al., 2015). 

3. Results 

The steps to apply the non-dimensionalization process that leads to 
the dimensionless groups and solutions are included in detail in Ap-
pendix A. The set of new solutions for different boundary conditions, 
both for constant and sinusoidal temperature changes at the aquifer 
surface, have several applied purposes. Solutions A, B and C are related 
to a constant temperature boundary condition at the surface, D and E to 
the harmonic temperature condition and null water flow and, finally, F, 
G and H to harmonic temperature condition and non-zero water flow 
(Table 1). 

3.1. Constant temperature boundary condition 

The graphical solutions for this scenario (Figs. 2 and 3) included 
curves deduced, point to point, by a large number of numerical simu-
lations. During the transient period, the equation that collects the 

characteristic time dependence with the monomial α
vz,oH

(
ρece

ρe,wce,w

)

(Fig. 2) 

is the same for upward and downward flows. High values of α versus 

Fig. 1. Physical scheme of the problem.  

Table 1 
Universal solutions summary.  

Universal solutions Figure 

Scenario I Constant 
temperature 
boundary 
condition 

τ* =
H2

α Ψ
{

α
vz,oH

(
ρece

ρe,wce,w

)} Universal 
solution B, eq. 
(A.9, Appendix 
A) 

Fig. 2 

T′(z, t) =
T(z) − Tav

To − Tav
= Ψ

{ z
H
,

t
τ*

} Universal 
solution C, eq.  
(A.10), Appendix 
A)) 

Fig. 3 
Scenario II 

Harmonic 
boundary 
condition with 
vz,o=0 

Deep aquifers (H > lz,o
*): (ΔT′)z =

(ΔT)z
(ΔT)z=0

= Ψ
(

z
lz,o*

)

Universal 
solution D, eq.  
(A.14), Appendix 
A)) 

Fig. 4 

Shallow aquifers (H < lz,o*): (ΔT′)z =

(ΔT)z
(ΔT)z=0

= Ψ
(

H2

ατo
,

z
H

)

Universal 
solution E, eq.  
(A.15), Appendix 
A)) 

Fig. 5 
Scenario III 

Harmonic 
boundary 
condition with 
vz,o ∕= 0 

deep aquifers (H > lz,o
*) lz,o

* =

̅̅̅̅̅̅̅ατo
√

Ψ

{
α

τovz,o2

(
ρece

ρe,wce,w

)2
}

Universal 
solution F, eq. 
(A.20, Appendix 
A)) 

Fig. 6 

deep aquifers (H > lz,o
*) 

(ΔT)z
(ΔT)z=0

=

Ψ
(

z
lz,o*

)

Universal 
solution G, eq.  
(A.22), Appendix 
A)) 

Fig. 7 

shallow aquifers (H < lz,o
*)

(ΔT)z
(ΔT)z=0

=

Ψ

(
z
H
,

H2

ατo
,

α
τovz,o2

(
ρece

ρe,wce,w

)2
)

Universal 
solution H, eq.  
(A.23), Appendix 
A)) 

Fig. 8  
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vz,oH do not alter the dimensionless characteristic time ατ*

H2 , so τ* H2

α . 
For the dimensionless temperature during the transient period, 

T′(z, t) =
T(z)− Tav
To − Tav

= Ψ
{

z
H,

t
τ*

}
, there are differences in the curves when 

flow is upwards or downwards so two graphical sets of curves are needed 
(Fig. 3). Also the changes associated with tẤ are not gradual, and the 
curves present an uneven distribution with increases of 0.2 for tẤ. 

3.2. Harmonic boundary condition 

For the static condition cases (zero water flow), in thermal deep 
aquifers, the amplitude of the thermal oscillation (Fig. 4) only depends 
on the relative position z

lz,o* (solution D). In thermal shallow aquifers, 

however, H is a relevant magnitude. The curves converge to the condi-
tion of constant temperature (without oscillation) imposed on the bot-
tom, but they have a more constant slope as H decreases until they 
become a straight line inferred from solution E (Fig. 5). 

Solution F for both upward and downward flow is shown in Fig. 6. On 
the other hand, solution G (Fig. 7) represents the dimensionless ampli-
tude (ΔT)z

ΔTz=0 
versus relative position referred to characteristic length for 

scenarios in which there is vertical flow. 
When diffusion is greater than advection and groundwater flow is 

downward, the graphs of dimensionless temperature as a function of z/H 
(Fig. 8(a) and 8 (b)) are less curved and more sensitive to the parameter 
H2

ατo 
in solution H. Something similar happens for upward flows, Fig. 8 (c) 

and 8 (d), but in this case the graphs are more sensitive to H2

ατo 
when 

advection is greater than diffusion. Taking the values 0.65 and 0.75 for 
the ratio ρece

ρe,wce,w
, which approximate to real values, and 0.1 and 10 for α

τovz,o2 

due to the wide range of vz,o, the lumped parameter α
τovz,o2

(
ρece

ρe,wce,w

)2 
has 

the following values: 4.225⋅10− 2 for downward flow a), 4.225 for 
downward flow b), 5.625⋅10− 2 for upward flow c) and 5.625 for upward 
flow d). 

4. Velocity and parameter estimations 

This section first describes the inverse problem approaches that are 
applicable to Scenarios I, II and III in Table 1. Such approaches are 
illustrated by their corresponding flow diagrams that explain the suc-
cessive steps required for the estimations. Second, four applications to 
real aquifers with field data are presented, one application for each of 
Scenarios I and II and two applications, one with field data and one with 
laboratory data, for Scenario III. 

4.1. Inverse problem approach 

For the case of constant temperature at the ground surface (Scenario 
I of Table 1), the resulting dependence (see Appendix A, Eq. (A.4) has 
been tested against the solution of Bredehoeft and Papadopulos (1965) 
obtaining the same result, verifying that the method proposed address 
correctly the transport of heat in saturated media. Additionally, it has 
been generated graphically a set of typed-curves that allows to use it in 
transient conditions, Figs. 2 and 3. 

The steps of this estimation approach are shown in the block diagram 
in Fig. 9. To estimate the groundwater velocity under these conditions, 
the depth of the aquifer, its thermal properties as well as boundary 
conditions are needed, also two vertical temperature profiles at two 
different real times t1 and t2 must be recorded. These two real times are 
associated with dimensionless times, t1′ and t2′, obtained graphically 
from Fig. 3. 

Each dimensionless time allows to know what percentage of the 
transient period has been reached. So, for example, a dimensionless time 
of 0.2 means that 20 % of the time necessary to reach steady state 

Fig. 2. Constant temperature at the soil surface condition, downward and 
upward flows. Universal solution B. 

Fig. 3. Constant temperature at the soil surface condition, Universal solution C. 
a) upward and b) downward flows. 
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conditions has passed (or, what is the same, 20 % of the characteristic 
time τ*). Knowing the time interval between t1 and t2 (t2 − t1) and the 
dimensionless times t1′ and t2′, the characteristic time is calculated using 
the following expression: 

τ* =
t2 − t1

(t2
′ − t1

′)
(5)  

Once the value of the characteristic time (τ*) is known, Fig. 3 provides 

the balance between advective and diffusive flows, α
vz,oH

(
ρece

ρe,wce,w

)

, an 

expression from which vz,o is deduced. In order to use this method, it is 
necessary to know or assume an order of magnitude of the thermal 
properties of the aquifer and its depth (H). 

The scenarios II and III refer to cases in which the temperature at the 
surface varies continuously based on diurnal and seasonal conditions. 
This is often a challenge that is solved by assuming measurements of the 
amplitude of the thermal oscillations. To do this, a characteristic length 
can be identified as the depth at which the amplitude of the thermal 
wave is negligible compared to the amplitude of the temperature 
oscillation at the ground surface. We have named it lz,o*. It also allows to 
divide the aquifers from the thermal point of view in two types. Firstly, 

the thermally shallow aquifers, which are those in which the amplitude 
of the thermal wave is not negligible throughout its whole thickness. In 
these aquifers there is no characteristic length and their depth H be-
comes a relevant parameter for the solution of the problem. Secondly, 

Fig. 4. Harmonic temperature condition at the soil surface andvz,o = 0. Universal solution D.  

Fig. 5. Harmonic temperature condition at the ground surface andvz,o = 0. 
Universal solution E. 

Fig. 6. Harmonic temperature condition at the soil surface andvz,o ∕= 0. Uni-
versal solution F. a) upward and b) downward flows. 
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the most frequent scenario we will call thermally deep aquifers. In this, 
the total depth H is an irrelevant parameter and instead a characteristic 
length can be introduced to define the subregion in which temperature 

oscillations are appreciable. 
Fig. 10 shows the flow diagram for the case of zero groundwater 

velocity, vz,o = 0, Scenario II. From the input data, (ΔT)z=0, (ΔT)z1
, 

(ΔT)z2
, z1, z2 and H, the dimensionless temperature deviations, (ΔT)z1

(ΔT)z=0 

and (ΔT)2
(ΔT)z=0 

are obtained. From them, Fig. 4 allows to read two charac-

teristic lengths, lz,o*
1 and lz,o*

2. If lz,o*
1 ≈ lz,o*

2, this is the characteristic 
length of the problem while the termal diffusivity is deduced from the 
expression (A.13),lz,o*

= 1.668 ̅̅̅̅̅̅̅ατo
√

.

If lz,o*
1 ∕= lz,o*

2, Fig. 5 allows to read the value of the lumped 
parameter H2

ατo 
of the curve most close to the field temperature profile and 

to estimate the thermal diffusivity from it. 
Finally, the approach that estimates the groundwater velocity from 

thermal wave deviations at different depths is shown in Fig. 11. As in 
scenario II, from the input data (ΔT)z=0, (ΔT)z1

, (ΔT)z2
, z1 and z2, the 

ratios (ΔT)z1
(ΔT)z=0 

and (ΔT)2
(ΔT)z=0 

allow to read the values of z1
lz,o* and z2

lz,o* in Fig. 7. If 

these two values provides the same lz,o*, we can affirm that this is a 
thermally deep aquifer. Entering in Fig. 6 a) or 6b), depending on up-

ward or downward flow, with lz,o*
̅̅̅̅̅ατo

√ , the group α
τovz,o2

(
ρece

ρe,wce,w

)2 
is read and 

Fig. 7. Harmonic temperature at the soil surface andvz,o ∕= 0. Universal solu-
tion G. 

Fig. 8. Harmonic temperature at the soil surface andvz,o ∕= 0. Universal set of solutions. H.  
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from this the velocity vz,o estimated. In the case of thermal shallow 

aquifers with H a known data, entering with the pairs 
(

(ΔT)z1
(ΔT)z=0

, z1
H1

)

and 
(

(ΔT)z2
(ΔT)z=0

, z2
H1

)

, and the parameter of the curve H2

ατo 
within the same abacus, 

the curve that best fits to the pairs allow to obtain the parameter of the 

abacus α
τovz,o2

(
ρece

ρe,wce,w

)2 
from which the velocity is estimated. 

4.2. Applications to real scenarios 

To verify the dependencies of Table 1, four applications to real sce-
narios are presented. For scenarios I and II, the field data come from the 
historical series of groundwater temperature in the piezometric network 
of ‘Agua Amarga’ salt marsh, in Alicante, SE of Spain. During the period 
2008–2023, the coastal aquifer was submitted to an aquifer recharge 
program with seawater to restore piezometric depletion and to promote 
vegetation on the surface (Alhama et al., 2022). As regards scenario III, 
the input data came from the experimental measurements obtained by 
Hatch et al. (2006) in Pajaro River (California, USA) and by Lautz (2012) 
in two laboratory experiments denominated ’Step Change experiment’ 
and ’Gradual Change experiment’. 

In relation to the errors associated with the reading of data in the 
universal curves of Section 3, it must be said that these are refined 
readings, with negligible errors, since such curves have been obtained 
point by point by means of very precise numerical solutions. Due to their 
length, these tabulated data are not presented in this work. 

4.2.1. Scenario I 
For this scenario, the data correspond to temperature-depth profiles 

for each meter depth at P-8, which were already used to deduce upward 

flow velocity (between 2⋅10− 9 and 7.5⋅10− 7 m/s) following a standard 
scheme of inverse problem, Jiménez-Valera et al. (2023). Once the 
artificial recharge of the aquifer stops (July 19, 2022) and the transient 
period starts, temperature profiles are taken at times t1 (September, 16) 
and t2 (October, 21), t2 – t1 = 34 days. 

Fig. 12 a) incorporates to the universal transient curves (Fig. 3, 

T′(z, t) = T(z)− Tav
To − Tav

= ψ 
{

z
H,

t
τ*

}
) the P-8 profiles, measured meter by meter 

depth. Since these are instantaneous measurements that reflect the 
sensitive influence of the boundary (ambient) temperature condition, 
such profiles modify their trajectory appreciably as they approach the 
surface, and thus move away from the universal profiles unaffected by 
this condition. To avoid the errors introduced by this effect, the upper 
part of the profile (the subregion 0<z′ < 0.3, approximately) is removed 
leaving us with the temperature data at depths below z’ = 0.3, Fig. 12 b). 

The curves that best fit these data correspond to dimensionless times 
of value t1′ = 0.25 andt2′ = 0.30. The expression τ* = t2 − t1

(t2′− t1′)
allows to 

deduce the value of the characteristic time (approximate duration of the 
transient), τ* = 58752000 s or 680 days, to which corresponds a 
dimensionless time of τ*α

H2 = 58752000Â⋅3.6Â⋅10− 6

502 = 0.085. From this data 

Fig. 2 estimates for the lumped parameter α
vz,oH

(
ρece

ρe,wce,w

)

a value of 0.20, 

which, in turn allows to obtain the velocity, vz,o = 3.25Â⋅10− 7 m/s. A 
value slightly below the upper limit deduced by classical inverse prob-
lem approaches. 

4.2.2. Scenario II 
This application estimates the thermal diffusivity of the aquifer, 

without experimental equipment, from the temperature oscillations at 
different depths in P-4 piezometer. The analysis of piezometric time 
series in the surrounding of P-4, drilled in Pliocene- Pliocene-Pleistocene 

Fig. 9. Flow diagram for the solution of the inverse problem, Scenario I.  
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continental sand-silt of K (m/d) of the order of 0.008 (Alhama, 2013), 
has allowed to assess the mean hydraulic gradient in the area around 
0.4. These data provides a groundwater flow velocity in this region of 
value 3.7⋅10− 8 m/s which we will assume negligible for advection heat 
transport process. 

Temperature measurements were taken at the ground surface and at 
depths of 10 and 13 m between December 2020 and December 2021. 
The results are shown in Table 2. 

Entering Fig. 5 which represents the universal solution (ΔT)z
(ΔT)z=0

= ψ 
(

z
lz,o*

)

, we obtain the relative positions z1
lz,o*

1 
and z2

lz,o*
2 

which allow us to 

verify that the characteristic lengths are identical and thus confirm that 
this is a deep aquifer. According to Figure, for ΔTz=− 10

ΔTz=0
= 0.175 results 

z1
lz,o*

1
= 0.56, while for ΔTz=− 13

ΔTz=0
= 0.11 results z2

lz,o*
2
= 0.73. These values, 

lz,o*
1= 17.85 and lz,o*

2 = 17.8, very close to each other, confirm that this 
is a deep aquifer. Finally, from the expression lz,o*

= 1.668Â⋅ ̅̅̅̅̅̅̅ατo
√ , a 

thermal diffusivity of value α = 3.6Â⋅10− 6 m2/s is estimated, relatively 
high but within the expected range for this type of aquifers (Lapham, 
1989). 

4.2.3. Scenario III. Application with field data from Hatch et al. (2006) 
Field data for this aquifer are thermal amplitudes at two different 

depths in the riverbed: ΔTz1= 2.00 ◦C, ΔTz2= 1.20 ◦C, z1 = 0.1 m and z2 
= 0.4 m. These values have been recorded beneath the Pajaro River 
streambed on the central California coast. Since the oscillation at the 
streambed surface is an unknown, an iterative approach is needed for 
estimation. The parameters of the problem are shown in Table 3. 

To follow the flow diagram of Fig. 11 we will propose to perform 

iterations assuming successively increasing or decreasing values of 
(ΔT)z=0 until, for both depths (z1 and z2), the universal curve of Fig. 7 
provides values of z1

lz,o*
1 

and z2
lz,o*

2 
leading to very approximate values of 

lz,o*
1 and lz,o*

2. Starting from the initial value (ΔT)z=0 = 2.5, Table 3 
shows some of the partial results of lz,o*

1 and lz,o*
2 that clearly converge 

to a characteristic length for their aquifer of value lz,o*
≈ 1.7486 and a 

temperature oscillation of ΔTsurface. ≈ 2.35. 

Entering lz,o*
≈ 1.7486, lz,o*

̅̅̅̅̅ατo
√ = 5.9489 in Fig. 6 (downstream flow), 

α
τovz,o2

(
ρece

ρe,wce,w

)2
= 0.07574 is obtained, resulting in an estimated velocity 

of 1.236⋅10− 5 m/s (1.068 m/d). The velocity quantified by Hatch et al. 
(2006) using time-series analysis of stream bed thermal records is 
approximately 1.20 m/d. The difference between the two estimated 
velocities is about 10 %. Considering that ΔTsurface and lz,o* have been 
estimated graphically from the universal curves and that ΔTz1 , ΔTz2 and 
the value of the Hatch vertical velocity has also been estimated likewise 
from their graphical solutions, it can be concluded that the comparison 
is satisfactory. See Table 4. 

4.2.4. Scenario III. Application with laboratory data from Lautz (2012) 
In the first Lautz laboratory experiment, the flow rate changed 

instantaneously (step change experiment) in a sand column while, in the 
second it decreased gradually over an 8-hour interval (gradual change 
experiment). The scenario parameters are reflected in Table 5: 

Using the approach proposed for Scenario III, the inverse problem for 
estimating vz,o assumes as input data the amplitude of the thermal wave 
oscillations at different depths. For the first experiment these data, read 

Fig. 10. Flow diagram for the solution of the inverse problem, Scenario II.  
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Fig. 11. Flow diagram for the solution of the inverse problem, Scenario III.  

Fig. 12. a) Dimensionless profiles of piezometer P-8 within the abacus of universal profiles. b) Detail of the figure for depths below z’ = 0.3.  

Table 2 
Temperature oscillations in P-4.  

z(m) 0.00 − 10.0 − 13.00 

ΔT  2.85  0.50  0.30  

Table 3 
Parameters of scenario in Hatch et al. (2006).  

Parameter Value 

λo(Js− 1m− 1oC− 1)  1.00 
ρe,wce,w(J oC− 1m− 3)  4.18 
ρece(J oC− 1m− 3)  4.18 
τo (h)  24.00  
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from cycles 15–19 of a Lautz plot, are: ΔTz1 = 1.905 ◦C, ΔTz2 = 1.570 ◦C, 
z1 = 0.05 m and z2 = 0.1 m. As in subsection 4.2.3, Table 6 shows the 
partial results of lz,o*

1 and lz,o*
2, obtained with Fig. 7. The first value of 

ΔTsurface is 2 ◦C. The difference lz,o*
z2

-lz,o*
z1 

becomes negligible for 

ΔTsurface = 2.27 ◦C, providinglz,o*
z2 

= 0.8 m andlz,o*
z1 

= 0.807 m. The 

dimensionless characteristic length is then lz,o*
̅̅̅̅̅ατo

√ = 5.904. Entering this 

value in Fig. 6 (downward flow) α
τovz,o2

(
ρece

ρe,wce,w

)2
= 0.0746 andvz,o =

2.187⋅10− 5 m/s, a value very close to that provided by Lautz, vz,o,Lautz=

2⋅10− 5 m/s using the numerical software VFLUX (Gordon et. al, 2012). 
For the gradual change experiment, the input data read from cycles 

4–5 are: ΔTz1 = 2 ◦C, ΔTz2 = 1.862 ◦C, z1 = 0.05 m an dz2 = 0.1 m. The 
first value used for ΔTsurface is 2.5 ◦C. The partial results, shown in 
Table 7, lead to the solution ΔTsurface = 2.135 ◦C, lz,o*

z2
= 2.033 m 

andlz,o*
z1 

= 2.041 m. Entering Fig. 6 with lz,o*
̅̅̅̅̅ατo

√ = 15, α
τovz,o2

(
ρece

ρe,wce,w

)2
=

0.0325 results and the estimated velocity isvz,o = 3.31⋅10− 5 m/s, again, a 
value close to the estimated velocity by Lautz with VFLUX, vz,o= 3⋅10− 5 

m/s. 

5. Conclusions 

A new set of solutions (type curves) is proposed to estimate, using 
heat as a tracer, the vertical groundwater flow and other thermal pa-
rameters in aquifers with different boundary conditions. The applied 
methodology is based on the non-dimensionalization of the governing 
equation and boundary conditions, whose result, after certain mathe-
matical manipulations, provides the lumped parameter or dimensionless 
groups that govern the solution of these problems. These groups arise 
from the balance between the terms of the dimensionless governing 
equations. The independent variables of the problem, position and time, 
are defined dimensionless using well-chosen references. For the posi-
tion, the depth from which the oscillations have a negligible amplitude 
compared to the amplitude of the wave at the ground surface is adopted 

as a reference, while for the time, the duration of the transient period is 
taken as a reference. The Pi theorem establishes the functional de-
pendencies between deduced lumped parameters and a large number of 
numerical simulations make it possible to represent such dependencies 
by means of universal type curves or abacuses. 

The scenarios studied cover most of the real cases of aquifers with 
vertical groundwater flow (downward and upward), including the use as 
input data of the mean temperature or the amplitude of the wave 
oscillation, in addition to the cases of transient temperature profiles. 
These scenarios are: i) Step temperature change at the surface (a tran-
sient case) for groundwater velocity estimation, ii) Harmonic tempera-
ture oscillation at the surface without groundwater flow for estimation 
of thermal diffusivity of the soil–water matrix, and iii) Harmonic tem-
perature oscillation at the surface for estimation of vertical groundwater 
velocity. The methodology for these estimations is based on specific 
inverse problem approaches using the universal curves for each scenario 
and simple mathematical expressions derived from non- 
dimensionalization. The proposed schemes have been illustrated by 
flow diagrams to facilitate their use by hydrogeologists. 

For the case of constant soil surface temperature scenario, the 
derived stationary solutions agree with those of Bredehoeft and Papa-
dopulos (1965). For the transient case (Scenario I of Table I), the uni-
versal curves obtained represent the solution of the dimensionless 
characteristic time and the dimensionless transient temperature profiles, 
graphs that allow the estimation of the vertical flow of groundwater. 

Sinusoidal temperature changes at the surface require establishing a 
distinction, from a thermal point of view, between deep and shallow 
thermal aquifers, which is achieved by introducing a characteristic 
length whose expression is deduced for Scenarios II and III. 

For scenario II, universal curves are presented that show the 
dimensionless temperature amplitude for both deep and shallow aqui-
fers. Such curves allow the estimation of the thermal diffusivity of the 
water-soil matrix. Finally, for scenario III, universal curves of the 
dimensionless characteristic length and thermal amplitude for deep 
aquifers and a set of universal abacuses of the dimensionless amplitude 
for shallow aquifers are deduced. These curves allow us to estimate the 
groundwater velocity in this last scenario. 

Three applications of real aquifers are presented, and a fourth with 
laboratory data, which cover all the scenarios studied in this work. In all 
of them, the value of the parameters estimated following the proposed 
approaches is successfully compared with analytical results from other 
authors or those derived from indirect field measurements. 
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Table 4 
Partial results of characteristic lengths lz,o*

1 and lz,o*
2 for different values of 

ΔTsurface.  

ΔTsurface(oC) lz,o*
z1

(m) lz,o*
z2

(m) |lz,o*
z2

-lz,o*
z1
| (m)  

2.335  1.812  1.765  0.047  
2.340  1.792  1.760  0.032  
2.350  1.748  1.749  0.001  
2.360  1.704  1.739  0.035  

Table 5 
Parameters of Lautz (2012).  

Parameter Value 

λo(Js− 1m− 1oC− 1)  3.4 
ρe,sce,s(J oC− 1m− 3)  3.6 
ρe,wce,w(J oC− 1m− 3)  4.2 
ρece(J oC− 1m− 3)  4.0 
τo (h)  6.0  

Table 6 
Partial results of lz,o*

1 and lz,o*
2 for increasing values of ΔTsurface.  

ΔTsurface(oC) lz,o*
z1

(m) lz,o*
z2

(m) |lz,o*
z2

-lz,o*
z1
| (m)  

2.15  1.136  0.935  0.201  
2.20  0.977  0.873  0.104  
2.25  0.848  0.820  0.028  
2.27  0.807  0.800  0.007  

Table 7 
Partial results of lz,o*

1 and lz,o*
2 for decreasing values of ΔTsurface.  

ΔTsurface(oC) lz,o*
z1

(m) lz,o*
z2

(m) |lz,o*
z2

-lz,o*
z1
| (m)  

2.200  1.429  1.695  0.266  
2.150  1.852  1.946  0.094  
2.140  1.969  2.000  0.031  
2.135  2.041  2.033  0.008  
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Appendix A. . Non-dimensionalization and universal dependences 

Constant temperature at the ground surface. 
The steady-state solution reduces Eq. (1) to 

km

(
∂2T
∂z2

)

− ce,wρe,w

(

vz,o
∂T
∂z

)

= 0 (A.1) 

The dimensionless normalized variables z′ and T′ are defined in the form 

z′ =
z
H
;T′ =

T − Tav

To − Tav  

whose values are confined to the interval [0,1]. Introducing these variables in Eq. (A.1) 

km(To − Tav)

H2

∂2T′

∂z′2
−

vz,oce,wρe,w(To − Tav)

H
∂T′

∂z′ = 0 (A.2) 

Re-grouping coefficients, simplifying and introducing α = km
ce,ρe

, eq. (A.2) yields 

α
H

(
ceρe

ce,wρe,w

)
∂2T′

∂z′2
− vz,o

∂T′

∂z′ = 0 (A.3) 

Approximating the derivatives of the dimensionless variables to unity thanks to the normalization (Bejan, 2013), and operating, the previous 
equation provides the dimensional group π1: 

π1 =
αc

vz,oH
=

α
vz,oH

(
ceρe

ce,wρe,w

)

This group is the ratio between the simplified addends of the equation. By applying pi theorem (Buckingham, 1914), the steady state solution of the 
dimensionless form of T′ defined as T′(z) = T(z)− Tav

To − Tav 
is a function of π1 as well as of the dimensionless depth z′ = z/H: 

T′(z) =
T(z) − Tav

To − Tav
= Ψ

{
α

vz,oH

(
ceρe

ce,wρe,w

)

,
z
H

}

(Universal solution A) (A.4) 

This solution (A.4) is the same as Bredehoeft and Papadopulos (1965), who obtained it by numerically solving the equation. 
For the transient solution, τ* is defined as the time required for steady state temperature profiles to be reached. Defining the dimensionless time in 

the form t′ = t
τ* (to be closely normalized to the interval [0,1]), and introducing it in eq. (1), the dimensionless governing equation for the transient 

period is 

α
H2

∂2T′

∂z′2
−

vz,o

H

(ce,wρe,w

ceρe

)
∂T′

∂z′ =
1
τ*

∂T′

∂t′
(A.5) 

Again, approximating the derivatives of the dimensionless variables to unity and operating, the independent dimensionless groups that rule the 
solution are obtained. These groups are named π1 (ratio between the first and second addends) and πτ* (ratio between the second and third addends): 

π1 =
α

vz,oH

(
ceρe

ce,wρe,w

)

(A.6)  

πτ* =
vz,o

H

(ce,wρe,w

ceρe

)

τ* (A.7) 

By applying pi theorem (Buckingham, 1914], he solution for τ* is πτ* = f(π1), or 

τ* =
H
vz,o

ceρe

ce,wρe,w
Ψ
{

α
vz,oH

(
ceρe

ce,wρe,w

)}

(A.8) 

Since the quotient ceρe
ce,wρe,w 

is very close to 1 in most aquifers, f(π1) may be considered as an only function of α
vz,oH. Choosing the pair of independent 
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groups, π1 = α
vz,oH

(
ceρe

ce,wρe,w

)

and πτ* = H2

ατ*, the solution for τ* can alternatively be expressed in the form. 

τ* = H2

α Ψ
{

α
vz,oH

(
ceρe

ce,wρe,w

)}

(Universal solution B) (A.9). 

These last expressions, (A.8) and (A.9), can be particularized by adopting a criterion for the definition of τ*, for example the time required to reach 
95 (or 99) % of the steady state temperature expressed in dimensionless form (T′(z) =

T(z)− Tav
To − Tav

). The transient temperature at each relative depth 

depends on the dimensionless time t′ = t/τ*, (0 < t′ < 1) and the dimensionless depth z′ = z/H 

T′(z, t) =
T(z) − Tav

To − Tav
= Ψ

{ z
H
,

t
τ*

}
(Universal solution C) (A.10) 

π1 in the solution is collected in τ*. 
Sinusoidal temperature at the surface. 
For sinusoidal temperature variations on the ground surface, boundary conditions remained the same as well as the mathematical model (Eqs. (1), 

(2b) and (3)). The characteristic depth or length (lz,o*), Fig. 1, have been defined as the depth that is not appreciably affected by the changes of 
temperature in the surface (for example, 5 or 1 %). The boundary condition at the surface can be split in two parts based on superposition: constant 
temperature at the surface of value Tav - To and a harmonic variation of value ΔTz=0. To find the dimensionless groups influence in ΔT for the case of no 

groundwater flow, we introduce in the governing equation, km

(
∂2T
∂z2

)

− ce,wρe,w

(

vz,o
∂T
∂z

)

= 0, the dimensionless variables defined below: 

z′ =
z

lz,o
*; t′ =

t
τo
; T′ =

T
ΔTz=0  

where references to make dimensionless such normalized variables are lz,o*, τo and ΔTz=0. The resulting dimensionless governing equation is 

ρece
ΔTz=0∂T′

τo∂t′
= km

ΔTz=0∂2T′
(
lz,o

*)2
(∂z′)2 (A.11)  

while the only dimensionless group resulting is written as 

π2 =
ρece

(
lz,o

*)2

kmτo
=

(
lz,o

*)2

ατo
(A.12)  

This group provides the order of magnitude of lz,o*: 

lz,o
* ̅̅̅̅̅̅̅

ατo
√

The proportionality constant, obtained by an only numerical simulation, is 1.67, so that 

lz,o
* = 1.668

̅̅̅̅̅̅̅̅̅
ατo

√
(A.13) 

In shallow aquifers in which the total depth is less than lz,o*(that is, the wave amplitude is not negligible at any depth), the depth of the aquifer itself 
becomes a relevant magnitude and can be used as a reference to make dimensionless , z′ = z/H. This leads to the dimensionless governing equation 
ρece

ΔTz=0∂T′

τo∂t′ = km
ΔTz=0∂2T′

(H)2(∂z′)2 and to an only group π2 =
ρeceH2

kmτo
= H2

ατo 
on which all harmonic type solutions depend. 

The amplitude ΔTz at each depth is given by: 
Thermal deep aquifers: (H > lz,o*): 

(ΔT′)z =
(ΔT)z

(ΔT)z=0
= Ψ

(
z

lz,o
*

)

= Ψ
(

z
̅̅̅̅̅̅̅̅̅ατo

√

)

(Universal solution D) (A.14) 

Thermal shallow aquifers (H < lz,o*): 

(ΔT′)z =
(ΔT)z

(ΔT)z=0
= Ψ

(
H2

ατo
,

z
H

)(

Universal solution E) (A.15) 

In aquifers with vertical groundwater flow, assuming sinusoidal variations at the ground surface, the dimensionless variables of depth, time and 
temperature are defined as 

z′ =
z

lz,o
*; t′ =

t
τo
; T′ =

T − Tav

ΔT  

Introducing them in Eq. (1), yields 

km
(To − Tav)∂2T′
(
lz,o

*)2
(∂z′)2 − vz,oρe,wce,w

(To − Tav)∂T′

lz,o
*∂z′ = ρece

(To − Tav)∂T′

τo∂t′
(A.16)  
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The coefficients or addends of this equation, once simplified, ρece
τo

, km

(lz,o*)
2, and vz,oρe,wce,w

lz,o* give rise to two monomials 

π3 =
ρece(lz,o*)

2

kmτo
=

(lz,o*)
2

ατo 
and π4 = km

(lz,o*)
2

lz,o*

vz,oρe,wce,w
= km

lz,o*vz,oρe,wce,w
= αc

lz,o*vz,o 
(A.17). 

The physical meaning of these monomials are: π3 the balance between storage and diffusion and π4 the balance between diffusion and advection. 
Removing the characteristic length (lz,o*) from one of them, they are reduced to two other equivalent groups (one of them without the unknown lz,o*) of 
the form 

π5 =
ρece

(
lz,o

*)2

kmτo
=

(
lz,o

*)2

ατo
(A.18)  

π6 = πlz,o* =

(
lz,o

*)2

ατo

(
km

lz,o
*vz,oρe,wce,w

)2

=
km

2

ατo
(
vz,oρe,wce,w

)2 =
α

τovz,o
2

(
ρece

ρe,wce,w

)2

(A.19)  

So, for thermal deep aquifers (H > lz,o*): 

lz,o*
=

̅̅̅̅̅̅̅ατo
√ Ψ

{

α
τovz,o2

(
ρece

ρe,wce,w

)2
}

(Universal solution F) (A.20). 

with f an undetermined function that modulates the solution lz,o*
=

̅̅̅̅̅̅̅ατo
√ (vz,o = 0) due to the existence of vertical flow. This dependence is valid 

both for upward and downward flow. In the non-restrictive case that ρe,wce,w = ρece, the previous expression reduces to 

lz,o
* =

̅̅̅̅̅̅̅
ατo

√
Ψ
{

α
τovz,o

2

}

(A.21) 

Applying the pi theorem, the solutions of the unknown ΔT′ = (ΔT)z
(ΔT)z=0

, both for upward and downward flow are: 

Thermal deep aquifers (H > lz,o*): 

(ΔT)z

(ΔT)z=0
= Ψ

(
z

lz,o
*

)

(Universal solution G) (A.22) 

As regards thermal shallow aquifers, there is no characteristic length within the domain, so that H is introduced instead of lz,o* to non- 
dimensionalize the independent variable z. In this case the solution for ΔT′, besides their dependence on π5, depends on the relative position z/H. 

Thermal shallow aquifers, H <lz,o*: 

(ΔT)z

(ΔT)z=0
= Ψ

(
z
H
,

H2

ατo
,

α
τovz,o

2

(
ρece

ρe,wce,w

)2
)

(Universal solution H) (A.23)  
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