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Carbohydrate binding site annotation

Identification of carbohydrate-bringing compounds

In its current state, PDB has three major problems in distinguishing carbohydrates from other ligand

types:

1. Ligands annotated as "saccharide” in PDB do not include some nucleotide sugars such as

UDP-glucose (PDB ligand code UPG, see Figure S1) which is classified as “non-polymer”.

2. There is no canonical way to annotate glycoconjugates containing several carbohydrate

residues. For example, modified acarbose hexasaccharide has five sugar cycles in its structure
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under the single PDB ligand code ABC. Such heterogeneity in ligand naming hinders analysis and

comparison of sugars and their binding sites.

3. A single polysaccharide is sometimes broken down into different chains and entities (e.g.

structure 5TPC)

We have used two approaches to address these problems. First, we have identified a “core” set of

saccharide residue names correctly annotated in the PDB and cross-references in various databases.

Then, we have semi-manually parsed all the chemical compounds of the PDB in order to identify

carbohydrate-containing ligands.

The first “core” set consists of 168 carbohydrate components, where both the

_pdbx_chem_comp_identifier and the _pdbx_chem_com_feature section provide detailed

carbohydrate-specific information. This includes common names, SNFG carbohydrate symbols assigned

by the GLYCAM Molecular Modelling Library (https://github.com/glycam-web/gmml), IUPAC

carbohydrate symbols attributed by pdb-care(1), as well as information about carbohydrate isomer, ring

structure (furanose or pyranose), anomeric configuration, and primary carbonyl group (aldose or ketose).

The second “exhaustive” dataset was obtained through the analysis of each chemical component

cataloged within the wwPDB Chemical Component Dictionary. A compound is considered as sugar-like

if: (i) molecular graph has cycles of four carbons and one oxygen (potentially furanose) or five carbons

and one oxygen (potentially pyranose) and (ii) at least one atom of the cycle brings one or more of the

following groups: -OH, -OR, -CH2OH or -CH2OR. Each carbohydrate cycle was then considered as a

separate moiety for the binding site analysis.

Our carbohydrate definition includes a broad range of compounds, notably all nucleosides and their

derivatives. Nevertheless, 67 components categorized as saccharides by the PDB do not align with our

criteria and were eliminated from consideration. These components fall into two categories: acyclic

saccharides (e.g., 2FP) and sulfur or nitrogen saccharide derivatives (e.g., 0YT). To maintain data

consistency, we deliberately choose to exclude these saccharides from our analysis and to focus on

cyclic saccharides containing an oxygen atom within their cycle. In our partial copy of ProCarbDB, we

discovered seven components that were not incorporated into our analysis. Six of these are acyclic

saccharides, while one, residue OPG, does not fit our criteria due to its heptose structure. Given its

unusual geometry, we opted to disregard it in our analysis. We have also explicitly excluded RNA and

DNA-forming polymer components from this study, since the formation of such interactions differs from

protein-carbohydrate recognition.

Carbohydrate chemical functions assignment

Many carbohydrates carry additional functional groups that can influence their chemical properties and

interactions with proteins. Therefore, we annotated carbohydrate moieties with respect to the presence

of specific atoms such as halogen (PDB ID 00A), sulfur (PDB ID 01A) or selenium (PDB ID 0U1); groups

within the carbohydrate structure (phosphate (PDB ID 00A), sulfate (PDB ID 3LJ), vanadate (PDB ID AD9),

amide (PDB ID 0AI), amino acid (PDB ID 0UM), lipid (PDB ID 03F)) or bond/charge annotations (such as

charged (PDB ID 104) or aromatic (PDB ID 07Y)).

https://github.com/glycam-web/gmml
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Finally, we classified nucleobase-containing residues using a simplified annotation. We annotated a

carbohydrate moiety as part of a nucleoside if one of its substituents is a pyrimidine ring. If, in addition,

the residue contains a phosphate moiety, we also annotate it as a nucleotide.

Difficult cases in annotation of glycosylation sites

Figure S1. Resolution error in protein structure 6TVF. Carbohydrate residue NAG1 (chain S) is covalently bound to residue N82 of

protein chain H forming a C-O bond instead of the expected C-N bond.

Figure S2. Example of a carbohydrate reaction intermediate for hen egg white lysozyme (PDB ID: 1H6M).



Figure S3. Example of S-glycosylation (PDB ID: 2KUY).

Finally, we use the same nomenclature for carbohydrates covalently linked to peptidic aglycons and

glycosylations. The only difference arises when assigning glycosylation types, since peptidic aglycons

generally comprise non-standard residues. Such cases are handled appropriately (see example 3VFK).

Carbohydrates covalently linked to non-peptidic aglycons are typically assigned a specific ligand ID in

the PDB. In these cases, if the aglycon is covalently attached to the protein, the entire ligand is

considered a “glycosylation head” and its glycosylation type is classified as “other.” Although we could

not retrieve an exact example of this phenomenon, Coenzyme A is successfully assigned to a

glycosylation head in structure 1CQI.

Additionally, we can identify rare cases where sugar-bringing molecules are covalently attached to

non-sugar-bringing molecules, which are then covalently attached to a protein. An example is protein

4IZ6, where residue S575 is linked to 4'-phosphopantetheine (ligand ID: PNS), which is then attached to

5'-deoxy-5'-({[2-(2,3-dihydroxyphenyl)ethyl]sulfonyl}amino)adenosine (ligand ID: 1HZ). In the current

version, this is annotated as a “glycosylation body” with the glycosylation type also classified as “other.”

Protein-carbohydrate interface quality in different specialized databases

Table S1. Number and proportion of protein-carbohydrate complexes from different specialized databases (as of January 2024)
containing protein-carbohydrate interfaces of high resolution quality belonging to “Refined dataset” as defined in Materials &
Methods.

High quality Total
% of high quality
structures

All structures 31437 46984 67

CAZy 3783 4932 77

Unilectin3D 1494 1763 85

SAbDab 259 1025 25



DIONYSUS carbohydrate content

Figure S4. Distribution of chemical functions in (A) the non-redundant main dataset (i.e. all components except polynucleotides) (B)

the non-redundant core dataset with only the highest quality sites. (C and D) Bar plot of the twenty most common carbohydrate

monomers in each dataset. Numbers correspond to January 2024.

In Fig. S4 we report distribution of various chemical functions found in sugar components after

redundancy elimination. Despite removing DNA and RNA from our dataset, the most common

carbohydrate functions correspond to nucleobases: 32% nucleotides and 4% nucleosides. This is easily

explained by the fact that nucleotides such as AMP/ADP/ATP or NADH/NADH are ubiquitous in

biological pathways and have been extensively studied. As a result, only 45% of the binding sites we

identified are formed by components labeled as saccharide by the PDB. Furthermore, the four most

common chemical functions are all related to nucleotides, aromatic (nucleobases, 43%), phosphate

(41%), amide (each nucleobase except adenine 39%) and acid (15%, which must be underestimated in

PDB annotations). Liposaccharides represent 13% and often correspond to crystallographic adjuvants



such as dodecyl-β-D-maltoside or digalactosyldiacylglycerol. Sugars containing sulfur represents 10% of

the dataset with the most common being nucleotides/nucleosides with a sulfur substituent such as

S-Adenosyl-L-homocysteine or Coenzyme A while sulfates represent only 1% of the dataset.

Among high-quality sugar binding sites formed by one of 168 carbohydrate residues from the “core” list,

we detect 19,816 different binding sites. The most common chemical function is amide (31%), which is

explained by the presence of N-acetylated sugars in the dataset. The second most common chemical

function is acid (5%) and is explained by the presence of sialic acid and sulfates. In the core dataset, by

contrast to the main dataset, most sulfur-containing sugars are sulfates, the most common being

6-O-sulfo-N-sulfo-α-D-glucosamine. Only two binding sites contain a charged sugar and correspond to
two deprotonated sulfate sites.

DIONYSUS binding site content

After redundancy elimination, we identify 6,723 different binding sites falling into one of the categories:

lectin, CAZy, CBM, antibody and others (Fig. S4).

Among all carbohydrate binding sites, 13.5% do not have full occupancy, 7.3% miss carbohydrate atoms

and 0.14% miss ring carbohydrate atoms, 9.0% contain close contacts and 0.11% clashes. 8.3% contains

potential artifacts and 5.0% contains potential artifacts in a structure with 10 or more of the same

compound.

Among all the resolved interfaces almost 70% have at least one identical binding site in the PDB in terms

of sequence identity, ligand name and structural similarity score. This holds true for 40.4% of antibody

sites, 60.4% of CBM sites, 63.5% of other sites, 65.3% of CAZys sites and for 77.7% of lectin carbohydrate

binding sites.

While the diversity of carbohydrate binding sites in lectins, CBMs and CAZys is quite similar (respectively

886, 810 and 784 different CBS), we detect only 31 different antibody-carbohydrate interfaces after

filtering. This is easily explained by three factors: i) antibodies are less studied than enzymes and lectins,

ii) antibody CBS typically involve a glycosylated portion of another protein; those sites are discarded in

the current analysis and iii) antibody often target carbohydrates in composition of more complex

molecules, which do not make part of our “core” dataset (e.g., 3-Deoxy-d-manno-oct-2-ulosonic acid

(KDO) on the surface of Gram-negative bacteria).



Figure S5. Site categorization according to external annotations.

Non-sequential binding site alignment and scoring method

First, for each CBS (as defined above), we assign atom types according to their physico-chemical

properties. Protein atom types are determined based on the residue and atom names and include , ,𝐶
α

𝐶
β

backbone oxygen, backbone nitrogen, aromatic side chain carbon, non-aromatic side chain carbon, side

chain oxygen, and side chain nitrogen. For the carbohydrate ring atoms we attribute three different

types: carbohydrate ring oxygen, C1 or other carbohydrate ring carbon. To ensure robustness of the

subsequent calculations, if a surface protein atom is located closer than 7 Å from the carbohydrate ring,

we take the atom of the corresponding residue into consideration. Then, we perform a comparison of𝐶
α

two binding sites and by computing an optimal mapping for the atoms of the same type (assigned𝑆
1
 𝑆

2

as described above) with minimal possible distortion of the interatomic distances. Let us denote by 𝑀
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The comparison algorithm searches for the largest mapping such that the mean distortion between

structures is below a given threshold noted . It solves the following optimization problem:∆
𝑚𝑎𝑥
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and the pairwise distortion is less than 1 Å. The details of the underlying algorithm are described in (28).

We set the precision of this algorithm to 1 Å and initiated the minimal clique using a minimum of four

carbohydrate atoms.

In the present study, we use two metrics to assess the similarity between two binding sites: the coverage

and the score. The alignment length is defined as the number of atoms in the maximum correspondence

graph. Coverage, which serves as a similarity measure, is calculated as the alignment length divided by

the size of the smaller binding site. The 'score' is then derived by weighting individual components of the

coverage with -∆
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Hierarchical spectral clustering of carbohydrate binding sites

For each similarity matrix, we calculate the leading n eigenvalues from the normalized Laplacian of the

graph at each clustering interval, where n=max(20,Nelements). The ideal number of clusters for this

partitioning is ascertained by optimizing the relative eigengap57. At each step, we use this optimal

number of clusters to perform spectral clustering. The final clustering phase in the spectral embedded

space uses k-means, conducted over 10 iterations. This method also enables the identification of each

cluster representative, by identifying the closest point to the centroids deduced from the k-means

algorithm. Should a representative fall outside the cluster or the cluster comprises only a single binding

site, it is designated as an outlier. For each cluster not considered an outlier, we compute the mean score;

clusters achieving a mean score above 0.55 are considered of sufficient quality, while others are

re-clustered iteratively. When a cluster is considered of sufficient quality, we control that each element

has at least an alignment score of 0.5 with respect to the representative binding site. If a site does not

match this criterion, we exclude it from the cluster and consider it an outlier. When all sites are either

clustered or outliers, all existing outliers are merged into a new group, and the hierarchical clustering is

repeated for this group. This process is performed again while new clusters of sufficient quality emerge.

This procedure is summarized in Figure S6.

Outlier CBS are then aligned against all representative CBS to show optimal alignments. Then we select

clusters considering the union of the top three clusters based on alignment scores with the

representative CBS, with any cluster that achieves an alignment score exceeding 0.65. Following this

selection, each binding site is compared to every site within these identified clusters.

https://www.zotero.org/google-docs/?broken=wrsHEr


Figure S6. Summary of the hierarchical spectral clustering procedure

Table S2. Number of clusters, clustered sites and outliers in each site class.

Category Degradation CBM Lectin

Polysacchar

ide Lyase Antibody Synthesis

Auxiliary

Activities

Carbohydrate

Esterase

Number of

Clusters 68 91 84 7 4 3 1 0

Clustered Sites 256 267 435 15 8 6 2 0

Outliers 304 502 429 27 23 8 2 7

Finally, we performed clustering quality assessment using ratio between two measures: the inside score
and the outside score as defined below:

● Inside score: Average score within the cluster
● Outside score: Average score between elements in the cluster and elements outside the cluster

Then, cluster quality is assessed based on the following thresholds:

● Above 2: High
● Between 1.5 and 2: Good
● Between 1.1 and 1.5: Medium
● Below 1.1: Low
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