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Abstract
We are interested in generalizedmatrix eigenvalue problems of the type AX+X A = λHXH
and AX + X A = λ(HX + XH) with A and H both symmetric and positive definite, and in
their tensor counterparts. We collect several structural properties, some of which are known,
together with some new spectral results. We also analyze in detail the case where the second
problem stems from the discretization of linear elliptic partial differential equations by finite
differences. In particular, we derive spectral properties that can be used in the numerical
solution of the resulting algebraic linear system.
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1 Introduction

We consider the following matrix eigenvalue problems

AX + X A = λHXH (1.1)

and

AX + X A = λ(HX + XH), (1.2)

with A, H ∈ R
n×n symmetric and positive definite. Both equations can be viewed as gener-

alized Lyapunov eigenvalue problems, where the right-hand side has one or two terms. With
some abuse of notation, we will refer to X as an “eigenvector matrix” or “eigenmatrix”.
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Problem (1.2) occurs in different applications, such as in the detection ofHopf bifurcations
[28, 29], and in the analysis of preconditioned solvers for discretized elliptic equations.
More generally and with A, H not necessarily symmetric, the two problems arise in different
numerical strategies to characterize the spectral distance from the imaginary axis [11, 29]
and classically studied in the context of multiparameter eigenproblems; see, e.g., [1, Ch. 7],
[19]. The two problems share some spectral properties, however the right-hand side term
provides a quite different setting in the two cases.

In the following we will collect some of the scarce results available in the literature, and
provide new ones, associated with some specific settings. In several occasions we will also
generalize our findings to the (three-dimensional, or order-3) tensor setting, namely to the
equations,

(A ⊗ In ⊗ In + In ⊗ A ⊗ In + In ⊗ In ⊗ A)x = λ(H ⊗ H ⊗ H)x, (1.3)

and

(A ⊗ In ⊗ In + In ⊗ A ⊗ In + In ⊗ In ⊗ A)x

= λ(H ⊗ In ⊗ In + In ⊗ H ⊗ In + In ⊗ In ⊗ H)x, (1.4)

where In is the identity matrix of size n, and ⊗ stands for the Kronecker product, which for
matrices A ∈ R

nA×mA , A = (ai j )i=1,...,nA, j=1,...,mA , and B ∈ R
nB×mB is defined as ([20])

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1mA B
a21B a22B · · · a2mA B

...
...

anA1B anA2B · · · anAmA B

⎤
⎥⎥⎥⎦ ∈ R

nAnB×mAmB . (1.5)

We refrain from further extending the analysis to d-dimensional tensors, as the three-
dimensional case already provides a quite good indication of the type of properties obtained
in the multiarray setting, and of the tools used for proving them.

The most exercised setting is probably the case corresponding to H = I in (1.1), that is
the following standard matrix Lyapunov eigenvalue problem

AX + X A = λX . (1.6)

Letting (θi , zi ), i = 1, . . . , n be the eigenpairs of A, then the eigenpairs of (1.6) are obtained
as λ = θi + θ j , X = zi zTj for all possible i, j = 1, . . . , n [20, Th. 4.4.5].

Analogously, the following tensor Lyapunov eigenvalue problem

(A ⊗ In ⊗ In + In ⊗ A ⊗ In + In ⊗ In ⊗ A)x = λx (1.7)

is equipped with eigenvalues λ = θi + θ j + θl , for all possible i, j, l = 1, . . . , n, and
corresponding eigenvectors x = zi ⊗ z j ⊗ zl ; see, e.g., [24].

These spectral constructions do not straightforwardly carry over to the generalized case
considered here, that it, the case where matrices arise on both sides of the equality. Nonethe-
less, in Sects. 3 and 4 we show that the eigenmatrices and eigentensors do maintain certain
structures such as symmetry or low rank characterizations. These properties would not be
captured in the vectorized formulation. In Sect. 5 we further specialize the setting (1.2) to the
case where A and H are related. This may occur when so-called operator preconditioning
strategies are used to solve the linear system obtained by the finite difference discretization
of linear elliptic selfadjoint differential problems in two or three space dimensions; see [12]
and the references in Sect. 5.
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On some structural properties of generalized Lyapunov... 627

1.1 Notation and preliminary definitions

Capital roman letters denote matrices, usually of size n, while bold capital roman letters
are used for matrices stemming from Kronecker products and sums, and bold small roman
letters refer to vectors of corresponding size. Bold face is also used for three-dimensional (or
three-modes) tensors X ∈ R

n1×n2×n3 . We let 1n be the vector of all ones with n components;
the subscript will be omitted when clear from the context. We define 0n similarly. The matrix
A = diag(a) is a diagonal matrix with the components of the vector a on its diagonal, and
A = blkdiag(B,C) is a block diagonal matrix having the square matrices B, C as diagonal
blocks. By extension, A = diag(a, b) is a 2 × 2 matrix with diagonal elements a and b.

We also recall that for x = vec(X)—where “vec” stacks all matrix columns one below
the other—and conforming dimensions, it holds that xT (I ⊗ H)x = trace(XT H X) and
xT (H ⊗ I )x = trace(XHXT ).

Whenworkingwith tensors we shall mainly workwith their Kronecker formulation, while
we refer, for instance, to [15, section 12.4] for the adopted notation.

Finally, we introduce the classical concept of spectral equivalence; see, e.g., [2, sec.7.2].
Consider two sets of symmetric and positive definite matrices {A(h)}, {B(h)} of the same
dimensions n × n, where h is a parameter that tends to zero. The sets {A(h)}, {B(h)} are
spectrally equivalent if there exist positive constants α, β, independent of h, such that

αxT B(h)x ≤ xT A(h)x ≤ βxT B(h)x, x ∈ R
n, ∀h.

In the following the explicit dependence on h will be omitted.

2 Spectral decomposition of linear tensor operators

By using the Kronecker operator, the problems (1.1) and (1.2) can be written as vector
generalized eigenproblems, namely

(A ⊗ I + I ⊗ A)x = λ(H ⊗ H)x,

(A ⊗ I + I ⊗ A)x = λ(H ⊗ I + I ⊗ H)x, (2.1)

with x = vec(X). Note that the tensor generalizations (1.3) and (1.4) have precisely this
structure. Within the vector framework, all these equations have the form Ax = λHx with
A, H ∈ R

nd×nd , d = 2, 3, symmetric and positive definite. Hence, a full set of eigenvectors
{x1, . . . , xnd } can be determined, satisfying xTi Hx j = 0 for i �= j , associated with cor-
responding real and positive eigenvalues, thus completely characterizing the eigenvectors,
from the vector space point of view. On the other hand, in the vector formulations (2.1) and
(2.1), for instance, structural properties such as symmetry or low rank of the eigenmatrices
X are lost. These properties may have important implications in applications, but also on the
obtainable accuracy of computational methods [11, 28]. Moreover, we will see in the follow-
ing that taking into account the structure allows one to naturally recover certain optimality
properties of acceleration procedures associated with the discretization of partial differential
equations (PDEs).

Finally, we observe that problem (2.1) may be viewed as the generalized eigenprob-
lem associated with (2.1), thus possibly representing the major similarity between the two

problems. Indeed, multiplying by (H
1
2 ⊗ H

1
2 )−1 from the left both equations, and letting
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Â = H− 1
2 AH− 1

2 we obtain

( Â ⊗ H−1 + H−1 ⊗ Â) y = λ y, (2.2)

( Â ⊗ H−1 + H−1 ⊗ Â) y = λ(I ⊗ H−1 + H−1 ⊗ I ) y, (2.3)

with y = (H
1
2 ⊗ H

1
2 )x. This connection and in particular the form in (2.3) will lead to new

developments in Sect. 5.

3 On the Kronecker pair (A ⊗ I + I ⊗ A,H ⊗ H)

With appropriate scaling, the generalized eigenvectors in (2.1) can be choosen in a way such
that they satisfy:

xTj (H ⊗ H)xi = δi, j , xTj (A ⊗ I + I ⊗ A)xi = λiδi, j , (3.1)

where δi, j is the Kronecker delta. Some of the results below are matrix rephrasings of
these vector relations that highlight structural properties. In the following, we use 〈X , Y 〉 =
trace(XT Y ) for matrices X , Y having the same dimensions.

Proposition 3.1 The eigenmatrices {Xi }i=1,...,n2 related to the problem (1.1) can be choosen
in a way such that they satisfy

(i) Symmetry: Thematrix indexes can be ordered so that Xi is symmetric for i = 1, . . . , (n2+
n)/2, while the remaining (n2 − n)/2 matrices are skew-symmetric;

(ii) Orthogonality: 〈(H 1
2 Xi H

1
2 ), (H

1
2 X j H

1
2 )〉 = δi j and λiδi j = 2 〈Xi , AX j 〉, i, j =

1, . . . , n2.

Proof We observe that if Xi satisfies (1.1) then also XT
i satisfies the equation for the same λ:

it suffices to transpose the whole equation and use the symmetry of A and M . If it holds that
XT
i = ±Xi , then Xi is either symmetric or skew-symmetric. Since a symmetric matrix has

(n2+n)/2 degrees of freedom, and skew-symmetric ones have (n2−n)/2 degrees of freedom,
the result in (i) follows. If XT

i �= ±Xi , then we let V1 = (Xi + XT
i ) symmetric and V2 =

(Xi − XT
i ) skew-symmetric. Then range([vec(V1), vec(V2)]) = range([vec(Xi ), vec(XT

i )],
that is vec(V1), vec(V2) are again eigenvectors and they span the same (vector) eigenspace
as vec(Xi ), vec(XT

i ). The result in (i) thus also follows.
The results in (ii) directly follow from the matricization of the orthogonality properties of

the eigenvectors xi ’s.

The proof of the previous result shows that if Xi is neither symmetric nor skew-symmetric,
then the corresponding eigenvalue must have multiplicity (at least) two, and that the symmet-
ric, skew-symmetric matrices (Xi +XT

i ), (Xi −XT
i ) span the same eigenspace. In particular,

simple eigenvalues only admit symmetric or skew-symmetric eigenmatrices.
As a side result highlighting the role of the eigenmatrix structure, we report a characteri-

zation for the solution of a related linear matrix equation.

Proposition 3.2 Let {λi }, {Xi }i=1,...,n2 be the eigenvalues and eigenmatrices from the Propo-
sition3.1associatedwith the pair (A⊗I+I⊗A, H⊗H). The solution to AY+Y A+HY H =
C with C symmetric can be written as

Y =
n2∑
i=1

Xi sym

αi Xi , with αi = trace(XT
i C)

1 + λi
.
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Proof Since {xi }with xi = vec(Xi ) are linearly independent, we can write Y = ∑n2
i=1 αi Xi .

Hence,

C =
n2∑
i=1

αi (AXi + Xi A + HXi H) =
n2∑
i=1

αi (1 + λi )HXi H .

Since trace(XT
j (HXi H)) = δi, j , it follows that trace(XT

i C) = αi (1 + λi ), from which

the result follows. Finally, for C symmetric, we can write C = ∑n
k=1 ckηkc

T
k , so that

trace(XT
i C) = ∑n

k=1 ηk trace(cTk X
T
i ck). For Xi skew-symmetric, each of these addends is

zero. Hence, only the terms corresponding to the symmetric matrices Xi need be considered
in the sum in i .

The general results of Proposition 3.1 do not indicate special rank properties, and in fact
eigenmatrices of full rank are expected.On the other hand, rank structured eigenmatrices arise
in special cases, when for instance the two symmetric matrices A, H have further structure.
As an example, consider the casewhen A, H commute, so that they share the same orthogonal
eigenbasis Q [21, Th.1.3.12], and they have eigenvalue matrices � = diag(θ1, . . . , θn) and
	 = diag(γ1, . . . , γn), respectively. Then the eigenpairs have the form (λk, QEkQT ) with
λk = (θi + θ j )/(γiγ j ) and Ek = ei eTj , for i, j = 1, . . . , n, k = (i − 1)n + j . This

characterization immediately follows from substituting A = Q�QT and H = Q	QT in
(1.1).

Remark 3.3 The related problem

AXH + HX A = 2λHXH , X ∈ R
n×n (3.2)

has been thoroughly analyzed in [1] and more recently, e.g., in [29]; see also [11] for a direct
application to stability analysis, where A = I is used. In [28, 29] it is shown that for each real
eigenpair (λ, q) of (A, H), there exists an eigenpair (λ, X) where vec(X) = q ⊗ q . More
specifically, under the assumption that H is nonsingular, (3.2) can be rewritten as

ÂX + X ÂT = 2λX , Â = H−1A.

Since both H and A are symmetric and positive definite, Â admits a full set of right eigen-
vectors {zi }i=1,...,n and left eigenvectors {yi }i=1,...,n (both sets real) associated with real
eigenvalues {θi }i=1,...,n . Simple eigenvalues have X = zi yTj as corresponding eigenmatrices

with eigenvalues λ = (θi + θ j )/2, for i, j = 1, . . . , n. Due to the structure of Â, the zi ’s
can be taken to be H -orthogonal, and yi = Hzi . For multiple eigenvalues we can proceed
as in the proof of Proposition 3.1, with symmetric and skew-symmetric eigenmatrices. We
also remark that in [29] the non-Hermitian case is addressed, and the occurrence of complex
eigenvalues is also discussed; this is not the case in our setting.

The structural symmetry and orthogonality properties of Proposition 3.1 can be somehow
generalized to the corresponding tensor eigenproblem (1.3). Clearly, orthogonality properties
as those in (3.1) still hold, though a different interpretation is required.

Proposition 3.4 Consider the eigenvectors {xi }i=1,...,n3 related to the problem (1.3), and their
tensor form {X i }i=1,...,n3 . Let the corresponding mode-m (with m ∈ {1, 2, 3}) matricization
be [X (i)

1 , X (i)
2 , . . . , X (i)

n ]. Then the matrices X (i)
k can be choosen in a way such that they

satisfy:
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(i) Symmetry: X (i)
k is either symmetric or skew-symmetric;

(ii) Orthogonality:

n∑
k=1

n∑
�=1

Hk,�trace(HX ( j)
k H X (i)

� ) = δi, j .

where trace(HX ( j)
k H X (i)

� ) = 〈(H 1
2 X ( j)

k H
1
2 ), (H

1
2 X (i)

� H
1
2 )〉.

Proof Symmetry could be inspected elementwise, but we prefer to proceed with a less tech-
nical matricization approach. We observe that the symmetric structure of both left and right
operators allows us to work on the matricization in any of the modes. For simplicity, we
consider the first mode.

(i) We write the tensor equation in matrix form as

AX + X(A ⊗ In + In ⊗ A) = λHX(H ⊗ H).

For each block of columns X j we can write

AX j + X j A +
n∑

k=1

A j,k Xk = λH
n∑

k=1

Hj,k Xk H .

By transposing both equation sides, we observe that both X� and XT
� , � = 1, . . . , n satisfy

the matrix equation. If X� is symmetric or skew-symmetric for all � = 1, . . . , n, then we are
done. If X� �= XT

� then the matrices V� := X� + XT
� andW� := X� − XT

� , � = 1, . . . , n also
satisfy the matrix equation and their vectorization spans the same space as the vectorization
of X�, XT

� .
(ii) We only have to unfold the first vector property in (3.1).
Let X̂i = [X (i)

1 , X (i)
2 , . . . , X (i)

n ] with X (i)
k = X i (:, :, k) and X̂ j = [X ( j)

1 , X ( j)
2 , . . . , X ( j)

n ]
with X ( j)

k = X j (:, :, k) be the matricizations of the eigenvectors xi , x j , respectively, such
that xTi (H ⊗ H ⊗ H)x j = δi, j . Unfolding the Kronecker product we obtain

δi, j = xTi (H ⊗ H ⊗ H)x j = trace(H X̂ j (H ⊗ H)X̂ T
i )

= trace

(
H

n∑
k=1

(
X ( j)
k

(
n∑

�=1

Hk,�HX (i)
�

)))

= trace

(
H

n∑
k=1

(
X ( j)
k H

(
n∑

�=1

Hk,�X
(i)
�

)))
.

Reordering terms yields the desired relation.

4 On the Kronecker pair (A ⊗ I + I ⊗ A,H ⊗ I + I ⊗ H)

Although (1.2) can be written as the more familiar generalized vector problem in (2.1), the
original matrix form is particularly convenient in certain PDE contexts, as we will see later,
in addition to the already cited Hopf bifurcation analysis [28]. In there, the problem

AXB + BX A = λ(BXN + N XB), X ∈ R
n×n (4.1)

was thoroughly investigated; this corresponds to (1.2) for B = I , N = H and A symmetric
and positive definite, and to (2.3) for B = H−1 and N = I ; hence certain results in [28] can
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On some structural properties of generalized Lyapunov... 631

be readily employed in our setting. Indeed, let us collect all terms in (1.2) on the left-hand
side as

(A − λH)X + X(A − λH) = 0, (4.2)

and let G(λ) := A − λH . The original eigenproblem can be related to the solvability of the
matrix equation G(λ)X + XG(λ) = 0. The following result is just a reformulation of [28,
Th.2.2] under our hypotheses.

Proposition 4.1 With the notation above, we have that (λk, Xk) is an eigenpair of (1.2) if
and only if one of the following holds

(i) There exist two nonzero eigenvalues ζi , ζ j of G(λk), with i �= j , with corresponding
eigenspace bases Zi , Z j such that ζi = −ζ j , and Xk = [Zi , Z j ]	[Z j , Zi ]T with 	 =
blkdiag(	1, 	2) nonzero with 	1, 	2 of conforming dimensions;

(ii) There exists a zero eigenvalue ζ = 0 of G(λk) with corresponding eigenspace basis Z
such that Xk = Z	ZT for any nonzero 	 of conforming dimensions.

Proof For a given λk , a solution to G(λk)X + XG(λk) = 0 is determined in the null space
of G(λk) = I ⊗ G(λk) + G(λk) ⊗ I , that is, λk should be such that G(λk) is singular. The
eigenvalues of G(λk) are given by ζi + ζ j , where ζ ’s are the eigenvalues of G(λk), for all
combinations of i, j ∈ {1, . . . , n}. Hence, G(λk) is singular if and only if there exist two
eigenvalues such that ζi + ζ j = 0. The rest of the result follows by substitution.

A remarkable consequence of Proposition 4.1 is that the eigenmatrix Xk has always rank
at most twice the multiplicity of the eigenvalue. Moreover, in case λk is simple, the matrix
Xk is either symmetric or skew-symmetric, with rank at most two. We also notice that in
the nonsymmetric case, the characterization of Proposition 4.1 motivated the authors of [28]
to use this matrix equation in the so-called bialternate product method for detecting Hopf
bifurcations [17].

We can naturally extend this result to the tensorial setting, with the generalized eigentensor
problem

(A ⊗ In ⊗ In + In ⊗ A ⊗ In + In ⊗ In ⊗ A)x

= λ(H ⊗ In ⊗ In + In ⊗ H ⊗ In + In ⊗ In ⊗ H)x, (4.3)

by exploiting the same matrix G(λ) defined above, so as to write

(G(λ) ⊗ In ⊗ In + In ⊗ G(λ) ⊗ In + In ⊗ In ⊗ G(λ))x = 0,

or G(λ)x = 0 in short. To the best of our knowledge, this result is new.

Proposition 4.2 With the notation above, we have that (λk, xk) is an eigenpair of (4.3) if
and only if one of the following holds

(i) There exist three eigenvalues, θi , θ j , θl not all equal, and corresponding eigenbases
Zi , Z j , Zl such that θi + θ j + θl = 0 and xk = Zi ⊗ Z j ⊗ Zlγ 1 + Zi ⊗ Zl ⊗ Z jγ 2 +
Z j ⊗ Zi ⊗ Zlγ 3 + Z j ⊗ Zl ⊗ Ziγ 4 + Zl ⊗ Zi ⊗ Z jγ 5 + Zl ⊗ Z j ⊗ Ziγ 6, for some
(not all zero) vectors γ 1, . . . , γ 6 of matching dimensions;

(ii) There exists a simple zero eigenvalue θi and corresponding eigenbasis Zi of G(λk) such
that xk = Zi ⊗ Zi ⊗ Ziγ for some nonzero vector γ .
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632 V. Simoncini, D. Toni

Proof For a given λk , a solution x to G(λk)x = 0 is determined in the null space of the
coefficient matrix G(λk). The eigenvalues of G(λk) are given by θi + θ j + θl , where θ ’s are
the eigenvalues of G(λk), for all combinations of i, j, l. Hence, G(λk) is singular if and only
if there exist three eigenvalues such that θi + θ j + θl = 0. The rest of the result follows by
substitution.

We remark that the non-nullity of the γ i s in Proposition 4.2 is related to the multiplicity
of the eigenvalues θ ’s in G(λk). In other words, each xk is composed by up to six summands,
with the maximum number of terms occurring when the θ ’s are such that the spaces spanned
by Zi , Z j , Zl do not intersect.

5 Operator preconditioning

In this section we consider in detail an application of the problem (1.2) to the spectral analysis
of preconditioned coefficient matrices in the solution of large linear systems stemming from
the discretization of linear PDEs. After a short description of the discretization procedure,
tailored to our setting, we report on several eigenvalue properties whose derivation takes
advantage of the structure analyzed so far.

5.1 The discretized problem

We consider the following equation

−∇ · (κ(x, y)∇u) = f , (x, y) ∈ � = (0, 1)2,

with either Dirichlet or mixed (Dirichlet plus Neumann) boundary conditions, and κ(x, y) =
diag(a(x), b(y)). We assume that a(x) ≥ amin > 0 and b(y) ≥ bmin > 0, which guarantee
existence and uniqueness of the solution to the problem.1 Consider, to simplify the expression
of the known term, the following (mixed) conditions:

ux (1, y) = 0, y ∈ [0, 1], uy(x, 1) = 0, x ∈ [0, 1], u(x, y) = 0 elsewhere on ∂�.

(5.1)

To determine the finite difference discretization of the PDE, let us consider the gridpoints
(xi , y j ), i = 1, . . . , n of a uniform discretization of �. Here we focus on mixed conditions,
so the boundary nodes associated with Neumann conditions are included; see Appendix A
for pure Dirichlet conditions. We define

D0 :=

⎡
⎢⎢⎢⎢⎣

1

−1
. . .

. . .
. . .

−1 1

⎤
⎥⎥⎥⎥⎦

∈ R
n×n,

Sa,0 := diag(ai ′)i=1,...n ∈ R
n×n,

Sb,0 := diag(bi ′)i=1,...n ∈ R
n×n .

(5.2)

where ai ′ = a(xi− 1
2
), are the collocation values of the coefficients, see, e.g., [32, formula

(2.16)]; the same indexing is used for b(y). The discretized equation is given by

AaU +U Ab = F, Ak = DT
0 Sk,0D0, k = a, b, (5.3)

1 We could also consider the separable coefficient case a(x, y) = a1(x)a2(y) and b(x, y) = b1(x)b2(y).
This would lead to a generalized linear matrix equation, which can then be transformed into our standard
Lyapunov equation framework by symmetric transformations; see [31].
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On some structural properties of generalized Lyapunov... 633

where F = f (xi , y j ) + b.c.[io non lo metterei siccome abbiamo imposto zero] and U ≈
u(xi , y j ). Note that the Poisson equation, corresponding to constant a(x) = 1, b(y) = 1 is
given by2

HU +UH = F, H = DT
0 D0. (5.4)

Classically, Eq. (5.3) is vectorized into the equation

Au = f , with u = vec(U ), and f = vec(F),

and A = I ⊗ Aa + Ab ⊗ I ; see, e.g., [34] for some early references. A largely studied
preconditioner for this linear system is the matrix obtained by discretization using, e.g.,
finite elements or finite differences, of the constant version of the operator, which often just
corresponds to the operatorP : U 
→ HU+UH on the left-hand side of (5.4), with the same
boundary conditions [26]. Hence, the system actually solved is P−1Ax = P−1 f , where P
is the vectorized version of P . These classical procedures have been well studied, see, e.g.,
[12, 30], and [25] for a spectral analysis of this strategy on convection-diffusion operators
and [35] for an example of combined discretization techniques. The whole discussion can be
generalized to more than two space variables; the multiarray derivation in Kronecker form
can be found, for instance, in [23, section 5.6.4].

Towards an accurate assessment of the preconditioning effectiveness, a spectral analysis
of the preconditioned coefficient matrix P−1A is crucial. In particular, not only the spectral
interval is of interest, but also the distribution of the eigenvalues themselves in that interval.
The problem has been analyzed in the literature by making fundamental connections with
the continuous problem and the employed discretization [3, 12, 18, 25]. In particular, in the
recent work [13] the authors have proved what they called a pairing between the values of
operator coefficient function κ and the eigenvalues of the discretized algebraic eigenvalue
problem.

For discretization by finite differences on a rectangular domain or a parallelepiped, this
problem now falls into our framework, with P playing the role of H , as the eigenvalue
problem of interest is given by (2.1), (1.4), respectively. In the following we will thus replace
P with H , for notational consistency with respect to the previous sections.

5.2 Spectral analysis of the preconditioned algebraic problem

In the following we present results on the discretized problem after the samemixed boundary
conditions have been imposed to both the coefficient matrix and the preconditioner [26]. The
slightly technically more involved case of Dirichlet boundary conditions is postponed to
Appendix A.

Remark 5.1 The vector form obtained in (2.3) after multiplication by H− 1
2 ⊗ H− 1

2 yields a
convenient form for our analysis. In matrix form, this multiplication transforms (2.3) into

ÂX H−1 + H−1X Â = λ(XH−1 + H−1X)

with Â = H− 1
2 AH− 1

2 . If H and A are spectrally equivalent, then Â is spectrally equivalent
to the identity matrix, which leads to conclude that the eigenvalues λs do not depend on the
problem size, but only on the constants yielding spectral equivalence of A and H .

2 The matrix H corresponds to minus the standard one-dimensional second order derivative matrix
tridiag(−1, 2, −1), except for the last diagonal element, equal to one, that takes into account the Neumann
boundary condition at the right end of the interval.
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The facts highlighted in the remark above are now very well known, and they have been
derived for different discretizations; see, e.g., the very thorough analyses in [12, 22, 25, 26].

In the following we will derive again this invariance property using the convenient matrix-
oriented form derived from finite differences. Although the result itself is not new, the
derivation is new.Moreover, our new tensorial formulation allows us to visually distinguish at
the linear algebra level between the operator coefficients (κ dependence) and the contribution
from the approximate derivatives (h dependence). Thiswaywe can parallel a standard strategy
in the discretization of weak formulations of elliptic problems, where preconditioners are first
represented in the continuous setting, and then appropriately discretized, typically by finite
element methods; see, e.g., [10, 18, 27]. Hence, in the one-dimensional case for instance,

∇ · κ∇ → DT
0 Sa,0D0.

To lighten the presentation, here we illustrate the result for b(y j ) = a(x j ); see Remark 5.3
for the case b �= a.

In the one-dimensional case with mixed boundary conditions, the spectrum of the pair
(DT

0 Sa,0D0, DT
0 D0) readily corresponds to the diagonal elements of Sa,0, that is the values

of a(x) at the staggered nodes. In the two-dimensional case the evaluation is less accurate,
though the general picture is preserved, as expected by the related literature.

Theorem 5.2 Let a be the coefficient function in each derivative and assume that α ≤ a(x) ≤
β for all x ∈ [0, 1]. Then A and H are spectrally equivalent, and it holds that

α ≤ xT Ax
xT Hx

≤ β, ∀0 �= x ∈ R
n2 .

Proof We first note that from a(x) ∈ [α, β] ∀x ∈ [0, 1], it follows that spec(S0) ⊆ [α, β].
Using the spectral properties of the Kronecker product, it holds that

H = [
DT
0 ⊗ In, In ⊗ DT

0

] [
D0 ⊗ In
In ⊗ D0

]
=: DT

0 D0 (5.5)

A = [
DT
0 ⊗ In, In ⊗ DT

0

] [
S0 ⊗ In

In ⊗ S0

] [
D0 ⊗ In
In ⊗ D0

]
=: DT

0 S0D0 (5.6)

with S0 ∈ R
n2×n2 a diagonal matrix. Using the spectral properties of the Kronecker sum, it

also follows that spec(S0) ⊆ [α, β]. For 0 �= x ∈ R
n2 we have

xT Ax
xT Hx

= xT DT
0 S0D0x

xT DT
0 D0x

=
0 �= y=D0x

yT S0 y
yT y

∈ [α, β]. �

We remark that completely analogous formulations can be obtained in the tensor case [23],
though the general multiarray case does not allow for a ready-to-use analysis of the remaining
parameter dependence. Indeed, the spectral properties of the preconditionedoperator, and thus
its effectiveness, still depend on the width of the interval [α, β], and on how the eigenvalues
distribute within this interval (see Sect. 5.4 for the three-dimensional case).

Remark 5.3 Theorem 5.2 can be generalized to different coefficient functions, that is a(x j ) �=
b(x j ), because the only information used is the decomposition together with the diagonal
form of S0, which remains true in this case. As a consequence, with the notation in (5.3), the
eigenvalues λ of AaX + X Ab = λ(HX + XH) satisfy

λ ∈
(
2 min
x∈(0,1)

{a(x), b(x)}, 2 max
x∈(0,1)

{a(x), b(x)}
)

.
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Piecewise constant coefficients.An interesting characterization can be derived for a(x) piece-
wise constant in [α, β], showing that the eigenvalues do not distribute uniformly in [α, β],
as, for instance, empty gaps arise. Though the problem with piecewise constant values could
be addressed with more powerful techniques (see, e.g., [33]), our approach would also allow
one to naturally predict the behavior of continuous coefficients with steep value jumps by
means of a perturbation analysis—we do not report such analysis here. Our results com-
plement several studies in the literature, and in particular a recent analysis for the matrices
stemming from finite element discretization presented in [13]. The use of a finite difference
grid provides us with a somewhat simpler setting. Any other discretization employing a
tensor space discretization, and thus leading to a Kronecker form of the discretized algebraic
problem could be considered under our framework, see, e.g., [7, sec.5.1.3], [14, sec.3.1.1].

The role of jumps in the PDE coefficients in the numerical solution of preconditioned
linear systems has been highly regarded, and preconditioners tailored to attack possible
misbehaviors have been proposed, see, e.g., [6, 8] and their references; in general, algebraic
multigrid and domain decomposition preconditioners seem to be robustwith respect to jumps,
see, e.g., [5, 9, 16], and [37] for further references and for additional numerical linear algebra
considerations. Here we are interested in characterizing in detail how these jumps influence
the eigenvalue distribution by means of a simple setting.

Let a(x) be piecewise constant, with a single jump at x = x0 ∈ (0, 1), that is a(x) = α

for x ≤ x0 and a(x) = β for x > x0, with α �= β, so that after discretization, S0 :=
blkdiag(α In1 , β In2), wheren1+n2 = n, and the actual values ofn1, n2 depend on the location
of x0 in the given interval. Thanks to Proposition 4.1, we can say that the pencil (A, H) has
n21 eigenpairs (α, X), k = 1, . . . , n21 such that (α, zi ) and (α, z j ) are an eigenpair of (A, H),
and X = [zi , z j ]	[z j , zi ]T for all possible combinations of i and j , and 	 symmetric, either
positive definite or indefinite. In particular, for afixed eigenvalueλk , there are two independent
eigenvectors, which are x1 = vec([z1, z2]	1[z2, z1]T ) and x2 = vec([z1, z2]	2[z2, z1]T )

with the two 	s having different signature. Analogously, the pencil has n22 eigenvalues equal
to β, with corresponding eigenvectors.

The following theorem shows that all other eigenvalues are a convex linear combination
of α and β. To this end, let n1, n2 ∈ N with n1 + n2 = n, and define

P(0)
1 = blkdiag(P1, 0n2) ∈ R

n×n, P1 = DT
0 D0 ∈ R

n1×n1

and P(0)
2 = blkdiag(0n1−1, P2) ∈ R

n×n ,

P2 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦

∈ R
(n2+1)×(n2+1).

We note that both matrices P(0)
1 , P(0)

2 are symmetric and positive semidefinite and that in the

sum P(0)
1 + P(0)

2 the two nonzero blocks overlap in the (n1, n1) element. Then we define

P1 = In ⊗ P(0)
1 + P(0)

1 ⊗ In, P2 = In ⊗ P(0)
2 + P(0)

2 ⊗ In .

We observe that (P2, P1) is a regular pair, since P2 + P1 = H is nonsingular, with non-
negative or infinite eigenvalues. Moreover, the distribution of its eigenvalues depends only
on the splitting of the domain given by the coefficient discontinuity, and not on the actual
values of the operator a(x). The following result, which to the best of our knowledge is new,
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636 V. Simoncini, D. Toni

provides a simple and insightful relation between the eigenvalues under examination and the
problem coefficients.

Theorem 5.4 Let θ j , j = 1, . . . , k be the non-negative real eigenvalues of the pencil
(P2, P1), that is θ j �= ∞. Then the eigenvalues λ of (A, H) satisfy

λ ∈
{
β,

βθ1 + α

θ1 + 1
, . . . ,

βθk + α

θk + 1

}
.

Proof We can write A = αP1 + β P2, H = DT
0 D0 = P1 + P2. The problem Ax = λHx

can be written as (α − λ)P1x + (β − λ)P2x = 0, that is, for λ �= β,

P2x = θ P1x, with θ = −α − λ

β − λ
.

Writing down λ in terms of θ yields λ = βθ+α
θ+1 .

The result also includes the case λ = α for θ = 0, and shows that the sought after linear
combination is λ = θ

θ+1β + 1
θ+1α. Subtracting (α + β)/2 on both sides and rearranging

terms, we obtain

λ − α+β
2

β−α
2

= θ − 1

θ + 1
.

The quantity on the left-hand side may be viewed as a standardized eigenvalue around the
interval mean, taking values in [−1, 1] for θ ≥ 0. The distribution of θ around the value 1
provides information on the distribution of λ around the middle value (α + β)/2.

To proceed further, it is thus useful to obtain a refined analysis on the location of the
eigenvalues θ of (P2, P1).

Proposition 5.5 Let λmax(Pi ) be the largest eigenvalue of Pi , i = 1, 2, and λmin(Pi ) be the
smallest nonzero eigenvalue of Pi , i = 1, 2. Then the finite nonzero eigenvalues θ of (P2, P1)

satisfy

1

2

λmin(P2)

λmax(P1)
≤ θ ≤ 2

λmax(P2)

λmin(P1)
.

Proof The proof mainly dwells with the singularity of both matrices in the pencil, and it
otherwise follows from standard results. It is postponed to Appendix B.

We notice that the extreme eigenvalues of P1, P2 are known analytically, so that in the
bounds of Proposition 5.5 we can write

λmin(P2)

λmax(P1)
= 1 − cos π

2n2+1

1 − cos (2(n−n2)−1)π
2(n−n2)+1

,
λmax(P2)

λmin(P1)
= 1 − cos (2n2−1)π

2n2+1

1 − cos π
2(n−n2)+1

, (5.7)

thus allowing a better localization of the eigenvalues λ distinct from α, β of the pair (A, H),
in the interval [α, β]. In particular, for n2 � n, a gap can be observed between λ = α

(corresponding to θ = 0) and the next distinct eigenvalue, as shown by the lower bound for
θ . For n2 ≈ n, a gap can be observed between λ = β (corresponding to an infinite θ ) and the
previous distinct eigenvalue, monitored by the upper bound for θ . Finally, our computational
experiments have shown that for n2 ≈ (n − n2) ≈ n/2 a cluster of eigenvalues λs can be
observed around the interval midpoint; see Sect. 5.3.
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The obtained gap is important in analyzing the convergence rate of the Preconditioned
Conjugate Gradient (PCG) method. Indeed, after the first iterations, the algorithm behaves as
if the spectral interval were reduced to the “effective” spectral interval [λmin, λmax] instead
of [α, β], where λmin, λmax are the eigenvalues of (A, H) closest to α, β, respectively, but
distinct from them.

5.3 Numerical experiments

The next examples help us illustrate our findings in the previous section.

Example 5.6 We consider the preconditioned algebraic problem as if it came from the PDE
−(a(x)ux )x − (a(y)uy)y = f with mixed boundary conditions. While discretizing using
n nodes in each direction, the coefficients are set to a(x j ) = β in the last n2 discretization
nodes and to α elsewhere. Varying n2 corresponds to a smaller or larger portion of the
domain where the value β is taken, that is, the ratio n2/n changes. Clearly, in general this
variable setting is not representative of a physical problem, however it serves well to our
argumentation purposes. We consider α = 4, β = 10 and n = 50 nodes in each direction.
Figure1 reports the eigendistribution for n2 = 2, 4, 6, . . . , 48. Each set of eigenvalues is
depicted as a monotonically increasing curve with values from α to β, with increasing values
of n2 from left to right. The eigenvalue gap near β for n2 � n is clearly visible among the
leftmost curves, while the rightmost curves display the gap near α. We also notice that for
values n2 ≈ 50 = n/2 more eigenvalues take values around 7 = (α + β)/2 (depicted by
the curve bending in the figure). This particular behavior will be analyzed in greater detail
elsewhere.

Table 1 shows the upper bound for the largest eigenvalue λ = θ
θ+1β + 1

θ+1α not equal to
β, as n2 varies. The bound is obtained by using the upper estimate of θ in (5.7) together with

Fig. 1 Example 5.6, for n = 50, n2 = 2 : 2 : 48, α = 4, β = 10
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Table 1 Example 5.6. Largest
eigenvalue distinct from β and its
upper bound, for n = 50

n2 λmax λbound n2 λmax λbound

2 9.9976 9.9988
.
.
.

.

.

.
.
.
.

6 9.9980 9.9990 34 9.9868 9.9932

10 9.9977 9.9988 38 9.9772 9.9882

14 9.9972 9.9986 42 9.9516 9.9745

18 9.9965 9.9982 46 9.8384 9.9108

.

.

.
.
.
.

.

.

. 48 9.5400 9.7263

Proposition 5.5. The bound appears to be quite sharp. Corresponding similar values can be
obtained for α.

Example 5.7 We consider again the data from Example 5.6, but with different values of α

and β, namely α = 1, β = 104. We set f to have random values (scaled to have unit norm).
In Fig. 2 we report the convergence of the preconditioned conjugate gradient method applied
to Ax = f with H as preconditioner for different values of n, so that the problem to be
solved has dimensions n2 × n2. The shown curves refer to the energy-norm of the error.
We also report (dashed line) the expected asymptotic convergence rate ρk as the iteration k
progresses, with

ρ =
√
conde f f − 1√
conde f f + 1

, conde f f := λmax

λmin
;

here conde f f denotes the “effective” condition number of the preconditioned matrix H−1A,
obtained by excluding the eigenvalues α, β. The eigenvalues of the preconditioned matrix
were computed with the finest grid, though the theory ensures that mesh independence is
preserved, as it is also clear from the actual PCG convergence curves. The plot illustrates
that the asymptotic ratio computed with the interior spectral interval is very descriptive of
most of the convergence history. The initial almost stagnating phase instead conforms with
the behavior expected by a condition number of the order of β/α, much larger than conde f f ,
associated with the whole spectral interval. We refer, e.g., to [3, 4, 13, 36] for an analysis
of superlinear convergence of the conjugate gradient method and its relevance in discretized
elliptic equations. The left plot of Fig. 2 refers to n2 = 4, whereas the right plot considers
n2 = 10.

It is also interesting to observe the different behavior for n2 ≈ n/2 in Fig. 3. According to
the plot in Fig. 1, the central part of the spectral interval is more populated, or, in other words,
the two interval ends contain fewer eigenvalues, though no gaps occur. We have observed
that these more isolated eigenvalues are gradually identified by the space generated by PCG,
accelerating convergence as the iterations proceed. This determines a progressive steeper
curve (sequentially increasing superlinear convergence), illustrated by the solid curve in the
plot.

Example 5.8 We consider the PDE −(a(x)ux )x − (a(y)uy)y = f with f (x, y) =
sin(xπ) cos(yπ), (x, y) ∈ [0, π ]2 and Dirichlet boundary conditions, with the coefficients
choice

a(x) =
{
104 x < 0.5
1 x ≥ 0.5.
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Fig. 2 Example 5.6. Convergence of PCG. Left: n2 = 4. Right: n2 = 10

Fig. 3 Example 5.6. Convergence of PCG for n2 � n (dotted line) and for n2 ≈ n/2 (solid line)

Figure4(left) displays the approximate solution obtained for n = 60 nodes in each direction,
showing how the coefficients’ jumps affect the obtained approximate solution. We then
compare the eigenvalue distribution for the pair (A, H)with that obtainedwith the continuous
coefficients
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Fig. 4 Example 5.8. Left: solution U from u = A−1 f , u = vec(U ). Center: graphs of a(x) and â(x). Right:
eigenvalues of the pair (A, H) for A defined using a(x) or â(x)

â(x) =
⎧⎨
⎩
104 x < 0.5
104 exp(25(0.5 − x)) + 1.1 x ∈ [0.5, 1.1)
1 x > 1.1.

Figure4(center) displays the graphs in [0, π ]2 for a and â as defined above. The dashed
curve in Fig. 4(right) shows the distribution of the eigenvalues of the pair (A, H) for the
piecewise constant coefficients a(x), together with that obtained with â(x), x ∈ [0, π].
The spectral behavior for the settings with piecewise and continuous functions is extremely
similar, including the clustering around the interval center.

5.4 The three-dimensional case

Consider the elliptic problem −(aux )x − (buy)y − (cuz)z = f in � = (0, 1)3, equipped
with properly choosen Neumann-Dirichlet boundary conditions. Though our reasoning can
be extended to purely Dirichlet boundary conditions, we focus here on the former case.
We show that the two-dimensional study can be extended to the three-dimensional setting.
Once again, to simplify the presentation, we consider all equal coefficients. The general
case will then follow the path of Remark 5.3. To the best of our knowledge the presented
tensor-oriented formulation and the derived results are new.

Let A = DT
0 S0D0 ∈ R

n×n and

A = A ⊗ In ⊗ In + In ⊗ A ⊗ In + In ⊗ In ⊗ A ∈ R
n3×n3

H = H ⊗ In ⊗ In + In ⊗ H ⊗ In + In ⊗ In ⊗ H ∈ R
n3×n3

Theorem 5.9 Let a = a(x) be the coefficient function and suppose a(x) ∈ [α, β] for x ∈
(0, 1). Then A and H are spectrally equivalent, and it holds

α ≤ xT Ax
xT Hx

≤ β, ∀x ∈ R
n3 , x �= 0.

Proof We define

D0 :=
⎡
⎣
D0 ⊗ In ⊗ In
In ⊗ D0 ⊗ In
In ⊗ In ⊗ D0

⎤
⎦ , S :=

⎡
⎣
S0 ⊗ In ⊗ In

In ⊗ S0 ⊗ In
In ⊗ In ⊗ S0

⎤
⎦ ,

with D0 ∈ R
3n3×n3 and C ∈ R

3n3×3n3 . Observe that A = D
T
0 SD0 and H = D

T
0 D0. Hence

the proof follows the same lines as that of Theorem 5.2, since spec(S) is contained in the
interval including all values of the coefficient function.
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Once again, the extension of Theorem 5.4 is immediate, after having defined

P i = In ⊗ I ⊗ P(0)
i + In ⊗ P(0)

i ⊗ In + P(0)
i ⊗ In ⊗ In, i = 1, 2.

Theorem 5.10 Let θ j , j = 1, . . . , k be the nonnegative real eigenvalues of the pencil
(P2, P1), that is θ j �= ∞. Then the eigenvalues λ of (A, H) satisfy

λ ∈
{
β,

βθ1 + α

θ1 + 1
, . . . ,

βθk + α

θk + 1

}
.

These results can be formulated in any dimension d , with d ≥ 2, whenever the discretiza-
tion leads to the same Kronecker structure.

6 Conclusions

Generalizedmatrix eigenvalue problems provide a rich source for structural properties, which
would be hardly uncovered by the apparently more accessible vectorized form. We have
described several of these properties, and illustrated in detail the occurrence of this type of
problems in the well established spectral analysis associated with operator preconditioning
of elliptic problems on rectangular and parallelepipedal domains, when finite differences
are used. In fact, other discretization strategies relying on tensorial approximation spaces
such as IGA or spectral methods may lead to similar frameworks. Possible generalizations
of our applied analysis include exploring these methodologies, together with the adaptation
to non-self adjoint elliptic operators.
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Appendix A

In this sectionwe derivemesh independence of the pair (A, H)when the problem is equipped
with all Dirichlet boundary conditions.

In the one-dimensional problem, finite differences applied to the Laplace operator yield
the tridiagonal matrix H = tridiag(−1, 2,−1). The algebraic linear system associated to the
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differential problem (5.3) is 1
h2

Au = f or more precisely,

1

h2

⎡
⎢⎢⎢⎢⎣

a1′ + a2′ −a2′

−a2′
. . .

. . .

. . .
. . . −an′

−an′ an′ + a(n+1)′

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
...
...

un

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f1 + a1′ uα

h2

f2
...

fn−1

fn + a(n+1)′
uβ

h2

⎤
⎥⎥⎥⎥⎥⎦

, (6.1)

where we recall that ai ′ = a(xi− 1
2
). We next prove spectral equivalence in the one-

dimensional case. To this end, recalling the definition of D0 in (5.2), we first define

D :=

⎡
⎢⎢⎢⎢⎣

1

−1
. . .

. . . 1
−1

⎤
⎥⎥⎥⎥⎦

∈ R
(n+1)×n, with D =

[
D0

−eTn

]
=

[
In

−1T

]
D0.

Proposition 6.1 Let a(x) ∈ [α, β], x ∈ [0, 1] and S := diag(a1′ , . . . , a(n+1)′) ∈
R

(n+1)×(n+1). Let H, A be the matrices defined above. Then H = DT D and A = DT SD,
moreover, A and H are spectrally equivalent, that is

α ≤ xT Ax

xT Mx
≤ β, ∀x ∈ R

n, x �= 0.

Proof The first equalities for H and A can be proved by examining the matrices elementwise.
For the Rayleigh quotient we have

xT Ax

xT Hx
= xT DT SDx

xT DT Dx
=

y=Dx

yT Sy

yT y
, y ∈ R

n+1.

The two bounds follow from recalling that αyT y ≤ yT Sy ≤ β yT y for all y ∈ R
n+1, as

a(x) ∈ [α, β] for x ∈ [0, 1].
Setting S = blkdiag(S0, a(n+1)′), we also notice that the eigenproblem DT SDx =

λDT Dx can be written in the following simplified form

DT
0 [In, −1]

[
S0

a(n+1)′

] [
In

−1T

]
D0x︸︷︷︸
z

= λDT
0

[
In −1

] [
In

−1T

]
D0x︸︷︷︸
z

,

that is

(S0 + a(n+1)′11
T )z = λ(I + 11T )z. (6.2)

This form allows us to get more insight into the spectral distribution of the pair (A, H)

when the function a(x) is, e.g., constant or piecewise constant in most of the interval interior.

Proposition 6.2 i) If S0 := α In, then spec(A, H) = {α, (α + na(n+1)′)/(1 + n)};
ii) If S0 := blkdiag(α In1 , β In2) ∈ R

n×n, then spec(A, H) = {α, λ1, λ2, β}, with λ1,2 =
−η1±

√
η21−4η2
2 , where

η1 = −na(n+1)′ + (1 + n1)β + (1 + n2)α

n + 1
, η2 = αβ + a(n+1)′βn1 + a(n+1)′αn2

n + 1
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Proof (i) Using the Eq. (6.2) we obtain
(
α I + a(n+1)′11T

)
z = λ

(
I + 11T

)
z. There exist

n − 1 linearly independent vectors zi ⊥ 1, so that (α, zi )i=1,...,n−1 are eigenpairs of
(A, H).
Moreover, z = 1 is an eigenvector with eigenvalue λ = (α + na(n+1)′)/(1 + n).

(ii) Let z = [z(1); z(2)]. Using (6.2) we obtain
[
α In1 + a(n+1)′1n11

T
n1 a(n+1)′1n11

T
n2

a(n+1)′1n21
T
n1 β In2 + a(n+1)′1n21

T
n2

][
z(1)

z(2)

]

= λ

[
In1 + 1n11

T
n1 1n11

T
n2

1n21
T
n1 In2 + 1n21

T
n2

][
z(1)

z(2)

]
.

For z(1) ⊥ 1n1 , and z(2) = 0n2 , we are back to case (i) and (α, zi )i=1,...,n1−1 are n1 − 1
eigenpairs. The same can be done for β, taking z(2) ⊥ 1n2 , z

(1) = 0n1 , yielding n2 − 1 more
eigenpairs (β, zi )i=1,...,n1−1. The two missing eigenpairs can be obtained as z(1) = γ11n1
and z(2) = γ21n2 as follows. Explicit rewriting allows one to express the eigenproblem in
2 × 2 form as follows

[
α + n1a(n+1)′ n2a(n+1)′
n1a(n+1)′ β + n2a(n+1)′

] [
γ1
γ2

]
= λ

[
1 + n1 n2
n1 1 + n2

] [
γ1
γ2

]
.

Computing the roots of the associated characteristic polynomial of degree two, yields λ1,2 =
1
2 (−η1 ±

√
η21 − 4η2).

For a(n+1)′ = β, the quantities η1, η2 nicely simplify, showing linear combinations of α and
β, that is λ1 = β, λ2 = βn1/(n + 1) + α(n2 + 1)/(n + 1).

In the two-dimensional case, we have the two matrices A = I ⊗ A + A ⊗ I and H =
I ⊗H +H ⊗ I with A and H as defined above. The problem Ax = λHx can then be written
as

(DT
0 S0D0 + a(n+1)′ene

T
n )X + X(DT

0 S0D0 + a(n+1)′ene
T
n )

= λ((DT
0 D0 + ene

T
n )X + X(DT

0 D0 + ene
T
n )). (6.3)

We notice that vectors u ⊥ en generate eigenvectors in the form X = uuT that are also
eigenvectors of the problem with mixed boundary conditions. Hence, in case of piecewise
constant coefficients the same properties of the eigenpairs of this latter problem can be
established. We can extend Theorem 5.4 to the problem (6.3). We first define

P(0)
3 = blkdiag(0n1−1, P3) ∈ R

n×n, P3 = D0D
T
0 ∈ R

(n2+1)×(n2+1)

(as opposed to P2, the matrix P3 takes the value one in the (1, 1) position, and the value two
in the (n, n) position); we note that P(0)

3 is symmetric and positive semidefinite. Then we
define

P3 = In ⊗ P(0)
3 + P(0)

3 ⊗ In,

Theorem 6.3 Let θ j , j = 1, . . . , k be the nonnegative real eigenvalues of the pencil (P3, P1),
that is θ j �= ∞. Then the eigenvalues λ of (A, H) satisfy

λ ∈
{
β,

βθ1 + α

θ1 + 1
, . . . ,

βθk + α

θk + 1

}
.

The proof follows the same steps as that for Theorem 5.4, hence it is omitted.
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Appendix B

We report the proof of Proposition 5.5.

Proof Let (θ, x) with ‖x‖ = 1 and 0 < θ ∈ R, be an eigenpair of (P2, P1), so that
P2x = θ P1x. We write x = x1 + x0 with x0 in the null space of P2 and x1 ⊥ x0. Note
that ‖x1‖ �= 0 otherwise P2x = 0. If x0 = 0 then the lower bound follows. Assume then
that x0 �= 0.

Multiplying the eigenequation from the left by x0 we obtain 0 = θ(xT0 P1x0 + xT0 P1x1),
from which

xT0 P1x1 = −xT0 P1x0 ≤ 0. (6.4)

Multiplying the eigenequation from the left by x1 we obtain

xT1 P2x1 = xT1 P1x0 + xT1 P1x1,

and using (6.4),

xT1 P2x1 ≤ xT1 P1x1.

Since xT1 P2x1 ≥ λmin(P2)‖x1‖2 and xT1 P1x1 ≤ 2λmax(P1)‖x1‖2, the lower bound for θ

follows. The upper bound can be found by reversing the role of P1 and P2. ��
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