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Abstract
In the modal approach to clustering, clusters are defined as the local maxima
of the underlying probability density function, where the latter can be esti-
mated either nonparametrically or using finite mixture models. Thus, clusters
are closely related to certain regions around the density modes, and every clus-
ter corresponds to a bump of the density. The Modal Expectation-Maximization
(MEM) algorithm is an iterative procedure that can identify the local maxima of
any density function. In this contribution, we propose a fast and efficient MEM
algorithm to be used when the density function is estimated through a finite mix-
ture of Gaussian distributions with parsimonious component-covariance struc-
tures. After describing the procedure, we apply the proposed MEM algorithm
on both simulated and real data examples, showing its high flexibility in several
contexts.
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1 INTRODUCTION

The term cluster analysis encompasses a large set of meth-
ods and algorithms that aim at partitioning a set of data
into some meaningful groups of homogeneous data points
called clusters. The presence of such clusters is neither
known a priori, sometimes even their number is unknown,
nor is case labeling available. For this reason, cluster anal-
ysis is considered an instance of so-called unsupervised
learning.

Several approaches and methods are available in the
literature to explore the clustering structure of a data
set [1]. Among these, density-based approaches have been
proposed to exploit the relationship between the underly-
ing density of a data set and the presence of clusters. In
the parametric or model-based clustering approach, each

component of a mixture distribution is associated to a
cluster [2, 3]. Thus, observations are allocated to the cluster
with maximal weighted component density.

However, there may be situations where more than a
single component is required to represent the shape of
a cluster. Merging of mixture components is a possible
answer to this problem. Baudry et al. [4] proposed a merg-
ing method based on an entropy criterion, while Hennig
[5] discussed several methods based on unimodality and
misclassification probabilities. All these methods are hier-
archical in nature, so clusters can only be obtained by
merging two or more mixture components. This indeed
may constitute a limitation because data points assigned to
a single Gaussian component cannot be subsequently allo-
cated to different clusters. A different approach to tackle
this problem was proposed by Scrucca [6] based on the
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identification of connected components from high-density
regions of the underlying density function.

Modal clustering is another density-based approach
to clustering where clusters are taken as the “domains
of attraction” of the density modes [7]. This follows the
definition proposed by Hartigan [8, p. 205], according to
which “clusters may be thought of as regions of high
density separated from other such regions by regions of
low density.” This definition of cluster is the one adopted
in the paper.

Modal EM (MEM) is an iterative algorithm aimed at
identifying the local maxima of a density function [9]. Let
f (x) =

∑G
k=1𝜋kfk(x) be a finite mixture density for x ∈Rd,

where 𝜋k is the mixing probability of component k with
density function f k(x), under the constraints 𝜋k > 0 for all
k = 1, … , G, and

∑G
k=1𝜋k = 1. Given an initial starting

point x(0), the following steps are iteratively executed until
a stopping criterion is met:

E-step∶ p(t)
k =

𝜋kfk(x(t−1))
f (x(t−1))

, for k = 1, … ,G,

M-step∶ x(t) = arg max
x

G∑
k=1

p(t)
k log fk(x(t−1)).

Li et al. [9] showed that the objective function in the
M-step has a unique maximum if the f k(x) are Gaussian
densities. They also reported a closed-form solution in case
of Gaussian mixtures with common covariance matrix.
This is a fairly strong assumption that rarely occurs in prac-
tice, so it would be interesting to address the general case,
which is not only more complex to deal with, but also
much more interesting from a practical point of view.

Regarding the question of how many modes a Gaus-
sian mixture can have, we note that Carreira-Perpiñá and
Williams [10, 11] conjectured that the number of modes
cannot exceed the number of components when the com-
ponents of the mixture have the same covariance matrix
(homoscedastic mixture), whereas if the components are
allowed to have arbitrary and different covariance matri-
ces (isotropic and full heteroscedastic mixtures) then the
number of modes can be larger than the number of compo-
nents. However, the first conjecture turns out to be wrong,
so in general it is not possible to know a priori the num-
ber of modes of a multivariate Gaussian mixture. For a
recent contribution on this issue see Améndola et al. [12],
where lower and upper bounds on the maximum num-
ber of modes of a Gaussian mixture are derived under the
assumption they are finite.

Modal clustering plays a central role in the nonpara-
metric approach to cluster analysis. Several mode-seeking
algorithms have been proposed in the literature, such

as the mean-shift algorithm of Fukunaga and Hostetler
[13] and its many extensions [14]. However, regardless of
the algorithm adopted, detection of high-density regions
requires the choice of a density estimator, typically a
kernel density estimator. The latter requires the selec-
tion of an appropriate kernel bandwidth, and extension
to high dimensions is known to be somewhat problem-
atic [15, ch. 9]. Interestingly, connections exist between
the MEM algorithm and the mean shift algorithm. In
fact, Carreira-Perpiñán [16] showed that the mean-shift
algorithm is a generalized EM algorithm when the ker-
nel of a nonparametric kernel density estimate is Gaus-
sian. More recently, Chacón [17] extended the use of the
mean shift algorithm to nonisotropic Gaussian compo-
nents. For a review on nonparametric modal clustering,
see Menardi [18].

1.1 A motivating example

Consider the data shown in Figure 1(A). They represent a
sample of n = 500 observations drawn from the following
bivariate two-component mixture:

f (x) = 𝜋 N(𝝁1,Σ1) + (1 − 𝜋) Skew N(𝝁2,Σ2, 𝜆2),

where 𝜋 = 1/3 is the mixing weight of the first Gaus-
sian component with mean 𝝁1 = [5 − 2]⊤ and covariance

matrix Σ1 =
[

1 0
0 1

]
, whereas the second component is a

skew-normal distribution [19] with location 𝝁2 = [0 0]⊤,

scale matrix Σ2 =
[

1 0.5
0.5 1

]
, and skew parameter 𝝀2 = [5

1]⊤. Figure 1(B) shows the density estimate correspond-
ing to the “best” Gaussian finite mixture model according
to the Bayesian Information Criterion (BIC). The selected
model is a mixture of three components with ellipsoidal
covariance matrices having common orientation (VVE in
mclust nomenclature [20]). Figure 1(C) shows the corre-
sponding clustering partition. Clearly, observations com-
ing from the skewed component are not correctly iden-
tified by the estimated clustering partition. Indeed, two
Gaussian components are needed to adequately represent
this group of observations. However, note that the cor-
responding density estimate seems to correctly suggest a
bimodal distribution. By exploiting this fact a better parti-
tion could be obtained, and the method discussed in this
paper aims to deal with similar situations.

In this contribution, we propose a fast and efficient
MEM algorithm for identifying the modes of a density esti-
mated by finite mixture of multivariate Gaussians having
any of the parsimonious covariance structures available in
the mclust R package [20]. The outline of this article is
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(A) (B) (C)

F I G U R E 1 Plots of a two-component simulated data: (A) data points marked according to the true component memberships; (B)
density contours obtained from the estimated Gaussian mixture model; (C) clustering and ellipses corresponding to the estimated Gaussian
components of the mixture

as follows. Section 2 provides a brief review of the MEM
approach for Gaussian mixtures available in the litera-
ture. Section 3 contains the proposal for extending the
Modal clustering approach to any density estimated by
fitting a finite mixture of Gaussian distributions with par-
simonious component-covariance structures, and details
on how to improve the computational efficiency of this
approach. Section 4 describes the empirical results deriv-
ing from the application of the proposed MEM algorithm
to examples using both synthetic and real data sets. The
final section provides some concluding remarks.

2 MEM ALGORITHM FOR
GAUSSIAN MIXTURES

Gaussian mixture models (GMMs) assume that the mix-
ture components are all multivariate Gaussians with mean
𝝁k and covariance Σk, that is, fk(x) ≡ 𝜙(x;𝝁k,Σk). There-
fore, the mixture density for any data point xi can be
written as

f (xi) =
G∑

k=1
𝜋k𝜙(xi;𝝁k,Σk).

Clusters described by a GMM are centered at the means
𝝁k, and with other geometric characteristics (such as vol-
ume, shape, and orientation) determined by the covari-
ance matrices Σk. These can be controlled by introducing
some constraints on the covariance matrices through the
following eigen-decomposition [21, 22]:

Σk = 𝜆kUkΔkU⊤
k , (1)

where 𝜆k = |Σk|1∕d is a scalar which controls the volume,
Δk is a diagonal matrix, such that |Δk| = 1 and with
the normalized eigenvalues of Σk in decreasing order,
which controls the shape, Uk is an orthogonal matrix of

eigenvectors of Σk which controls the orientation. In this
way, a total of 14 GMMs are obtained [20].

It is important to note that in this paper we shall con-
sider the mixing proportions 𝜋k, the mean vectors 𝝁k, and
the covariance matrices Σk as fixed (either estimated or
known a priori) for all k = 1, … , G.

The MEM algorithm starts with t = 0 and initial data
point x(0)

i = xi. At iteration t, MEM performs the following
steps:

• Set t = t + 1.
• E-step—Update the posterior conditional probability of

the current data point xi to belong to the kth mixture
component:

z(t)ik =
𝜋k𝜙(x(t−1)

i ;𝝁k,Σk)∑G
g=1𝜋g𝜙(x(t−1)

i ;𝝁g,Σg)
,

for all k = 1, … , G.

• M-step—Update the current value of xi by solving the
optimization problem:

x(t)
i = arg max

xi

G∑
k=1

z(t)ik log𝜙(x(t−1)
i ;𝝁k,Σk).

• Iterate the above steps until a stopping criterion is sat-
isfied, for instance, max{|x(t)

i − x(t−1)
i |∕(1 + |x(t−1)

i |)} <

𝜀, where 𝜀 is a tolerance value, say 𝜀 = 1e− 5, or a
pre-specified maximum number of iterations is reached.

By the ascending property of the MEM algorithm [9,
appendix A], at convergence the value x(t)

i is the mode
associated with data point xi. Li et al. [9] presented a
closed-form solution only in the specific case of Gaussian
mixtures with common covariance matrix, and reported
that numerical procedures are required for the M-step if
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the covariance matrices are different across components.
By replicating the above algorithm for all data points, it
is possible to identify the modes associated with any xi
(i = 1, … , n), but this process is time-consuming even for
moderately large data sets. In the next section, we present
an approach aimed at accelerating the MEM algorithm
by iterating simultaneously for all data points and for any
parsimonious covariance matrix decomposition.

3 PROPOSAL

In this section, we detail our proposal to speed up
the MEM algorithm for Gaussian mixtures having any
of the parsimonious component-covariance matrix
eigen-decomposition proposed by Banfield and Raftery
[21], Celeux and Govaert [22], and implemented in the
mclust package [20] for R [23].

To this end, we start by noting that, the objective func-
tion in the M-step presented in Section 2 can be written
as

Q(xi) =
G∑

k=1
zik log𝜙(xi;𝝁k,Σk).

The gradient and Hessian of this function with respect
to the observed vector xi (again, assuming the mixture
parameters {𝜋k,𝝁k,Σk}G

k=1 as known and fixed) are, respec-
tively,

∇Q(xi) = −
G∑

k=1
zikΣ−1

k (xi − 𝝁k),

and

∇2Q(xi) = −
G∑

k=1
zikΣ−1

k .

Because all covariance matrices Σk are positive definite by
definition, and zik > 0 for all k and i, the Hessian is nega-
tive definite. Thus, maximization of the Q-function can be
pursued by equating the gradient to zero, and then solving
for xi we obtain

x∗
i =

( G∑
k=1

zikΣ−1
k

)−1 G∑
k=1

zikΣ−1
k 𝝁k. (2)

Note that the last equation also arises in other mode-
seeking procedures, such as in the gradient-quadratic
algorithm and fixed-point iterative algorithm proposed by
Carreira-Perpiñán [24], and the mean shift algorithm pro-
posed by Chacón [17].

A straightforward application of Equation (2) requires
to replicate the procedure for all data points. This can be
time-consuming because it repeatedly involves calculating

matrix products and inversion of matrices. However, these
objects can be efficiently computed in a single pass for all
data points through the use of the Kronecker product.

Let zk be the vector of length n containing the poste-
rior probabilities of all data points {xi}n

i=1 to belong to the
kth mixture component, and 𝝁k be the vector of length d
of component means (k = 1, … , G). Define the (nd× d)
matrix

A =
G∑

k=1
zk ⊗ Σ−1

k ,

and the (nd× 1) vector

b =
G∑

k=1
zk ⊗ Σ−1

k 𝝁k.

Solutions for each {xi}n
i=1 can be obtained by solving the

linear systems
Ax∗

i = b ,

where  ≡ {(i− 1)d+ 1, … , id} is the set containing the
indices used to select the rows of matrix A and the ele-
ments of vector b. Equivalently, solutions of the linear
systems can be written as x∗

i = A−1


b .
Compared to the approach based on the calculation

of the solution for each data point as in Equation (2),
the main advantage of our proposal is that computing the
matrix A and vector b is performed in a single step for all
the observations. Then, the use of the indices I allows us to
select the relevant parts of A and b for computing the solu-
tions. Although algebraically equivalent, this approach
turns out to be three times faster in our experiments under
different settings.

The above algorithm is fast and efficient, but in practice
MEM can suffer from some drawbacks which can be easily
addressed as discussed below.

3.1 Setting the step size

Large jumps can occur during the initial iterations of the
algorithm for those data points xi’s located in low-density
regions. In these cases, since most zik’s are very small, the
inverse of

∑G
i=1zikΣ−1

k in Equation (2) will contain large
values (in magnitude). As a consequence, an initial data
point would shift from the region of the attracting mode to
the domain of attraction of a different mode, and therefore
to converge to a mode different from the attractor of the
data point. As an example, consider the data point at the
bottom-right of Figure 2(A), and the corresponding path
of MEM iterations (see the red arrows). In this case, after
an initial large jump, the algorithm converges to a mode
further from the domain of attraction of the data point.
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(A) (B)

F I G U R E 2 Synthetic example with paths of Modal EM (MEM) iterations for a low-density data point with (blue arrows) and without
(red arrows) the proposed step size applied (A). Plot of step size as a function of the number of MEM iterations (B)

To avoid these situations, we may compute the update
at iteration t as the convex linear combination of the
solution at previous step and the proposed value as follows:

x(t)
i = (1 − 𝜔i)x(t−1)

i + 𝜔i x∗
i ,

where 𝜔i is a tuning parameter that controls the step size.
The definition of 𝜔i should consider whether or not a data
point lies in a low-density region, and update this value
at each iteration. For instance, we could define a func-
tion that depends on 𝛿i =

|||∑G
k=1zikΣ−1

k
||| for i = 1, … , n, so

when the determinant 𝛿i is small, that is, the correspond-
ing data point lies in a low-density region, the value of 𝜔i
should be close to zero and the value x(t)

i should be updated
by small steps, whereas for relatively large values of 𝛿i
the associated weights 𝜔i converge to one, so essentially
setting x(t)

i = x∗
i . However, implementing such strategy

would require the computation of 𝛿i at each iteration for all
the data points, and this may result in a significant increase
of the execution time.

For this reason, in practice, we suggest to compute the
step size as 𝜔i = 1− exp{−0.1t} (see the function drawn in
Figure 2(B)). The idea is that at earlier iterations, the step
size is small and x(t)

i must be updated by small steps, but as
the number of iterations increase the step size converges to
one, so the updated value becomes almost equivalent to x∗

i .
Returning to the example given in Figure 2(A), smaller ini-
tial steps (shown as blue arrows) allow to converge to the
correct density mode. Finally, we note that such a strategy
inevitably increases the number of steps performed by the
MEM algorithm. However, since each step is quite fast to
perform, overall the algorithm is not significantly affected.
For instance, in the previous example, the MEM iterations
for all data points increase from 7 to 18, while the execution
time from 0.04 to 0.08 s.

3.2 Connected-components algorithm
for “tight clusters”

After the final iteration of the MEM algorithm a set of
points {x∗

i }
n
i=1 are obtained. These represent the modes to

which each of the data points converge. However, in the
limit, points that would converge to the same mode may be
numerically different from each other by a small amount,
whose magnitude depends on the tolerance value used for
checking the convergence of the algorithm. Thus, solu-
tions {x∗

i }
n
i=1 form tight clusters around the corresponding

modes, widely separated from other tight clusters corre-
sponding to different modes. The connected-components
algorithm described in Carreira-Perpiñá [14] allows for the
merging of those points that ideally would be identical.
This can be applied as a postprocessing step to obtain the
final estimated modes {x̂m}M

m=1.

3.3 Denoising low-density modes

Certain regions of the features space may lack of suf-
ficient data points to obtain reliable density estimates,
particularly in high-dimensional features space. As a con-
sequence, modes located in such regions might be spurious
and, in these cases, it may be convenient to filter out these
modes [24]. We consider a simple rule to drop modes asso-
ciated with regions of relatively low probability. Following
the approach of Banfield and Raftery [21], we postulate
the presence of a noise component uniformly distributed
over the data region. Let V be the hypervolume of the data
region, so each log-density value of a mode not exceeding
−log(V) can be considered as a noisy artifact of the density
estimation process. Here, the logarithmic scale is used to
improve stability and numerical accuracy.
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(A) (B) (C)

(D) (E) (F)

F I G U R E 3 Plots for the simulated data: (A,B) density contours obtained from the select Gaussian mixture model (GMM), with some
data points highlighted; (C) paths of Modal EM (MEM) algorithm for the selected data points; (D) modes found by the MEM algorithm; (E)
modal clustering solution; (F) modal clustering partition of the feature space

In practice, we need to compute log(V), and a sim-
ple approximation could be obtained by taking the min-
imum among: (i) the volume of hyperbox containing the
observed data; (ii) the volume of the hyperbox obtained
from principal component scores; (iii) the volume of ellip-
soid hull, that is, the ellipsoid of minimal volume such
that all data points lie inside or on the boundary of the
ellipsoid. Alternatively, the central (1− 𝛼)100% region of
a multivariate Gaussian distribution, that is, the small-
est region such that an observation falls in this region
with probability (1− 𝛼), can be computed. This region
is an ellipsoid in d dimensions, with log-hypervolume
equal to

log(V) = log(2) + d
2

log(𝜋) − log(d) − logΓ
(

d
2

)
+ d

2
log(𝜒2

𝛼 (d)) +
1
2

log |Σ|,
where 𝜒2

1−𝛼(d) is the (1− 𝛼)100% quantile of a chi-squared
distribution with d degrees of freedom, and Γ() the gamma
function. The covariance matrix Σ can be estimated as the
marginal covariance matrix using the well-known rela-
tionship between the parameters of a multivariate mix-
ture distribution and the marginal parameters [25, section

6.1.1], that is,

Σ =
G∑

k=1
𝜋kΣk +

G∑
k=1

𝜋k(𝝁k − 𝝁)(𝝁k − 𝝁)⊤

where 𝝁 =
∑G

k=1𝜋k𝝁k is the vector of marginal means.
Thus, modes whose log-density is smaller than

−log(V) or, equivalently, with density smaller than
exp(−log(V)) = 1/V , can be dropped, and points associ-
ated with them are reassigned to the remaining modes
with additional few steps of the MEM algorithm. This is
coherent with Hartigan’s definition of cluster adopted in
the paper, because the groups associated with low-density
modes lack the main requirement of being a high-density
cluster. The data example in Section 4.3 illustrates this
approach.

4 DATA ANALYSIS EXAMPLES

4.1 Simulated data example

Recalling the bivariate Gaussian–skew-normal mixture
distribution described in Section 1, Figure 3(A) shows the
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estimated density obtained by the selected GMM, namely,
model VVE with three mixture components selected by
BIC. To illustrate the procedure, some points are marked
as blue filled points, and they are also reported in isolation
in Figure 3(B). For the selected points, the paths produced
by the MEM algorithm described in Section 2 are shown as
arrows in Figure 3(C). At each step of the algorithm, points
move up-hill toward the density modes. The estimated
modes are shown in Figure 3(D). Figure 3(E) shows the
modal clustering for all the data points obtained according
to the mode to which they converge. The MEM algorithm
required 21 iterations and 0.23 s to run on an iMac with
four-core i5 Intel CPU running at 2.8 GHz and with 16 GB
of RAM. Finally, Figure 3(F) illustrates the partition of the
feature space that defines the “domains of attraction” of
the estimated density modes.

4.2 Mass cytometry data

Mass cytometry is a recent technology that couples flow
cytometry with mass spectrometry. It allows to simulta-
neously measure several features of a cell. The biologi-
cal question of interest is the identification of subpopu-
lations of cells. We consider two protein markers, CD4
and CD3all, from a mass cytometry experiment [26] to
find latent classes in single-cell measurements. Data are
preprocessed using the hyperbolic arcsin transformation
[27], that is, asinh(x) = log(x +

√
x2 + 1). A random sam-

ple of 10,000 cells (out of 91,392) is shown in Figure 4(A).
The clustering obtained with the “best” GMM selected
by BIC—namely, VVV in the mclust nomenclature [20,
table 3] with nine components—is shown in Figure 4(B).
The corresponding density estimate and the modes esti-
mated via the MEM algorithm are reported in Figure 4(C),
while Figure 4(D) shows the corresponding modal cluster-
ing partition. There appears to be five clusters, one for each
combination of high/low values of the CD4 and CD3all
markers, and an additional cluster formed by the highest
values of both the CD4 and CD3all markers. This result
can be contrasted with those obtained using approaches
based on merging mixture components. Figure 4(E) shows
the partition derived from the entropy-based approach
of Baudry et al. [4], while Figure 4(F) shows the clus-
ters obtained using the unimodal ridgeline approach of
Hennig [5]. Both partitions are clearly different from
the one obtained using the MEM algorithm, with the
latter producing more compact and easily interpretable
clusters.

Finally, note that with 10,000 observations the MEM
algorithm required 24 iterations and 5.4 seconds to run on
an iMac with four-core i5 Intel CPU running at 2.8 GHz
and with 16 GB of RAM.

4.3 Bankruptcy data set

Altman [28] presented a study on financial ratios to pre-
dict corporate bankruptcy. The data set provides the ratio
of retained earnings (RE) to total assets, and the ratio of
earnings before interests and taxes (EBIT) to total assets,
for a sample of 66 manufacturing US firms, of which 33
had filed for bankruptcy in the following 2 years. Data are
shown in Figure 5(A).

The best GMM selected by BIC is the model VEI (diag-
onal, varying volume and equal shape) with three com-
ponents. The contour plot of the corresponding density
estimate is shown in Figure 5(B), with points marked
according to the implied maximum a posteriori classifi-
cation. There appears to be two prominent clusters, con-
sisting mainly of solvent and bankrupt companies, but
also a spread out group of firms with very low values for
either financial ratios. Figure 5(C) shows the density esti-
mate via a 3D perspective plot. Following the approach
described in Section 3.3, a plane is included at the uniform
density level corresponding to exp(−11.17492) = 1/71,
319.39 = 1.402× 10−5, where V = 71, 319.39 is the hyper-
volume of the 99% central region. As it can be seen, only
two bumps of densities emerge, namely, those correspond-
ing to the main groups in the data. A very low-density
mode is also present in the region corresponding to
small financial ratios; specifically, the density is equal to
4.661× 10−6, a value approximately equal to one third the
density threshold computed above. For this reason, the
low-density mode is filtered out by the denoising proce-
dure.

The modes estimated by the MEM algorithm are
shown in Figure 5(D), with data points marked according
to the clusters assigned by the modal clustering proce-
dure. Only four companies are misclassified, as indicated
by the circled data points. This result can be compared
with those reported by Lo and Gottardo [29, table 1], where
the best model (a mixture of t distributions on Box–Cox
transformed data) misclassified 10 observations.

5 CONCLUSIONS

This paper addresses the problem of computing the modes
of a density estimated by fitting a GMM. The proposed
approach is based on the MEM algorithm, an iterative
procedure aimed at identifying the local maxima of a
density function. By exploiting specific characteristics of
the underlying GMM, we extend the MEM algorithm to
deal with any parsimonious component-covariance matrix
decomposition. Furthermore, we discuss a fast implemen-
tation of the algorithm that allows to perform the M-step
simultaneously for all data points. Once the modes of the
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 4 Mass cytometry experiment data: (A) plot of CD4 and CD3all markers; (B) clustering from the unrestricted Gaussian
mixture model (GMM) with nine components; (C) contour plot of density estimate and modes (+) estimated by the Modal EM (MEM)
algorithm; (D) modal clustering classification of cells; (E) clustering obtained by merging mixture components using the Baudry et al. [4]
approach; (F) clustering obtained by merging mixture components using the unimodal ridgeline approach of Hennig [5]

underlying density are estimated, a modal clustering par-
tition can be obtained by associating each observation to
the pertaining mode.

The MEM algorithm discussed, as any other
mode-seeking procedure, relies on the quality of the
underlying density estimate. Clearly, if the parameters of

the mixture model are not well estimated, some issues
could arise. However, provided that the general form of
the density estimate is not overly biased, the proposed
method should not be significantly affected.

The proposed approach seems to be very promising
and, in principle, it could be extended to mixtures of
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(A) (B)

(C) (D)

F I G U R E 5 Altman’s bankruptcy data set: (A) financial ratios of companies with points marked as solvent or bankruptcy; (B) contour
plot of density estimate and classification obtained by the best fitting Gaussian mixture model (GMM) as selected by BIC; (C) perspective plot
of density estimate and a plane drawn at the uniform density level for denoising; (D) modes and classification obtained from applying the
Modal EM (MEM) algorithm, with circled points corresponding to misclassified observations

non-Gaussian distributions (e.g. t, skew-normal, skew-t,
shifted asymmetric Laplace, … ). However, it is necessary
to investigate the potential benefits obtained by adopting
more complex probability models. Recently, an adaptation
of the proposed algorithm has been used for clustering
from an ensemble of Gaussian mixtures [30].

Another area of future research involves the use of
the MEM algorithm in high-dimensional data settings.
In this regard, we plan to study the effectiveness of the
MEM algorithm applied to the subspace estimated by
the GMM-based projection pursuit method proposed by
Scrucca and Serafini [31].
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