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Appendix A Estimation and forecasting

A.1 Bayesian estimation of MSAR with multiple views

Let us define here y = (y1, . . . , yT ) and S = (S1, . . . , ST ). Also, let ϑ = (β1, . . . , βK , σ1, . . . , σK , α1, . . . , αp, ξ)
and θ = (β1, . . . , βK , σ1, . . . , σK , α1, . . . , αp, ). The posterior distribution p(ϑ|y) for model (1) in the paper
is obtained using Bayes’ theorem:

p(ϑ|y) ∝ p(y|ϑ)p(ϑ) (1)

where p(ϑ) is the prior on the parameters and p(y|ϑ) is the likelihood function, which in this case is a
Markov mixture of normals (Frühwirth-Schnatter 2006). Treating the state vector S as data, the Markov
mixture likelihood can be expressed as the sum of the complete-data likelihood p(y,S|ϑ) over all possible
values of S:

p(y|ϑ) =
∑
S∈SK

p(y,S|ϑ)

=
∑
S∈SK

p(y|S,θ1 . . . ,θK)p(S|ξ) (2)

As shown in Frühwirth-Schnatter (2006), expression (2) factors in a convenient way that makes estimation
easier. In particular, if the prior assumes (i) the independence of the parameter vector θ across regimes
and (ii) the independence between parameters θ and the transition matrix ξ, i.e.,

p(ϑ) =
K∏
k=1

p(θk)p(ξ) (3)

then the complete-data posterior, i.e.,

p(ϑ|y,S) ∝
K∏
k=1

p(θk|y,S)p(ξ|S) (4)
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factors in the same way as the complete-data likelihood p(y,S|ϑ). This facilitates the application of
conventional Markov Chain Monte Carlo (MCMC) methods used for Bayesian estimation, in a context
where, due to the Markov-switching behavior, the prior p(ϑ) and the posterior p(ϑ|y) are not conjugate,
and the posterior does not assume any convenient analytical form.

The posterior p(ϑ|y) can be expressed as the sum of the posterior for the augmented parameter vector
(S,ϑ) over all possible realizations of S:

p(ϑ|y) =
∑
S∈SK

p(S,ϑ|y) (5)

In practice, Bayesian estimation samples from the joint posterior p(S,ϑ|y), using:

p(S,ϑ|y) ∝ p(y|S,ϑ)p(S|ϑ)p(ϑ) (6)

We estimate the model using MCMC methods and assuming independence priors of the following form:

p(α1, . . . , αp, , β1, . . . , βK , σ2
1, . . . , σ

2
K) =

p∏
j=1

p(αj)
K∏
k=1

p(βk)
K∏
k=1

p(σ2
k) (7)

If a gamma hyper-prior is used for C0, as is the case in our empirical application, the MSAR independence
prior becomes:

p(α1, . . . , αp, β1, . . . , βK , σ2
1, . . . , σ

2
K , C0) =

p∏
j=1

p(αj)

K∏
k=1

p(βk)

K∏
k=1

p(σ2
k)p(C0)

When several views are considered, Bayesian averaging across different views can performed in the
following way. Let ϑ0

K,i denote the generic i-th view assuming K states. First, the number of regimes is
treated as uncertain. Accordingly, a discrete prior is defined for K, fixing a maximum number K:

π0
K = Pr (K) (8)

for K = 1, . . . ,K, with
∑K

K=1 π
0
K = 1. Second, assuming that a number PK of alternative priors (views)

are available for any given number of states K, a prior probability π(ϑ0
K,i|K) is assigned to ϑ0

K,i, such
that

∑PK
i=1 π(ϑ

0
K,i |K) = 1. In other words, a discrete hierarchical prior is defined with respect to ϑ. The

unconditional prior probability of ϑ0
K,i is equal to the joint prior probability of ϑ0

K,i and the number K

of regimes, i.e., π(ϑ0
K,i) = π(ϑ0

K,i,K). Using π0
K,i to denote this unconditional probability, we have that:

π0
K,i ≡ π(ϑ0

K,i) = π(ϑ0
K,i |K)π0

K (9)

Also, let π0 denote the vector of length
∑K

K=1 PK containing the unconditional prior probabilities
of all views, i.e., π0 = (π0

1,1, . . . , π
0
K,PK

). Finally, the posterior probabilities of the views depend on the
prior vector π0, collecting the probabilities defined in (9), and on the marginal likelihood of the MSAR
model under the different views. In particular, the posterior probability for view ϑ0

K,i is equal to the joint
posterior probability of ϑ0

K,i and the number K of regimes, i.e., π(ϑ0
K,i|y) = π(ϑ0

K,i,K|y), and is given
by:

πK,i ≡ π(ϑ0
K,i|y) =

p(y|ϑ0
K,i)π

0
K,i∑K

K=1

∑PK
j=1 p(y|ϑ

0
K,j)π

0
K,j

(10)
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where p(y|ϑ0
K,i) = p(y|ϑ0

K,i,K) =
∫
p(y|ϑK ,ϑ0

K,i,K)p(ϑK |ϑ0
K,i,K)dϑK , with ϑK denoting the parame-

ter vector in the MSAR model with K regimes. From (10), we have that
∑K

K=1

∑PK
i=1 πK,i = 1.

A.2 Computing density forecasts

Computing density forecasts from the MSAR model requires three steps. Let yt = (y0, y1, . . . , yt). Also, let
us assume that the current time period is T and the forecast horizon is one period. The first step consists in
using the MCMC algorithm to sample both the current unobserved regime ST and the MSAR parameters
ϑ from the posterior distribution p(S,ϑ|yT ). Let (ϑ(d), S

(d)
T ) denote a generic MCMC draw. Next, each

draw is used to forecast the future state of the economy. Taking S
(d)
T as the starting value, a stochastic

forecast S
(d)
T+1 is computed using the matrix of transition probabilities ξ(d), i.e., based on equation (2)

in the paper. Third, y
(d)
T+1 is sampled from the normal predictive density p(yT+1, |yT ,ϑ

(d), S
(d)
T+1). In

particular,

yT+1|yT ,ϑ
(d), S

(d)
T+1 = k ∼ N

 p∑
j=1

α
(d)
j yT+1−j + β

(d)
k , σ

(d)2
k

 (11)

Conditional on knowing the state of the economy in the future period T+1, the predictive distribution
of yT+1 is a Normal for any given parameter vector. However, since the future state of the economy is
unknown, the density forecast of yT+1 produced by the MSAR will be a mixture of the different regime-
specific normals, where the mixture weights are given by the probabilities of the economy ending up in
the different possible regimes at T + 1. As a result, the MSAR generally produces non-normal forecast
distributions. Also, the predictive densities are non-linear in yT and heteroskedastic (Frühwirth-Schnatter
2006). More specifically, assuming a known number of regimes K and a known parameter vector ϑ, the
one-step-ahead density forecast at time T is the following finite mixture of K normal components:

p (yT+1|yT ,ϑ) =

K∑
k=1

p (yT+1|yT ,θk)Pr (ST+1 = k|yT ,ϑ) (12)

Next, as a result of Bayesian estimation, the density forecast for any given view integrates out parameter
uncertainty:

p
(
yT+1|yT ,ϑ

0
K,i

)
=

∫
p
(
yT+1|yT ,ϑK ,ϑ0

K,i

)
p(ϑK |yT ,ϑ

0
K,i)dϑK (13)

where ϑK , as before, denotes the parameter vector when K regimes are assumed.
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A.3 Prior on the regime-switching variance in the empirical application

Based on the properties of the gamma and inverse gamma distributions (see, e.g., Frühwirth-Schnatter
2006), it holds that:

E(σ2
k|C0) =

C0

c0 − 1
(14)

Var(σ2
k|C0) =

C2
0

(c0 − 1)2(c0 − 2)
(15)

E(C0) =
g0
G0

(16)

Var(C0) =
g0
G2

0

(17)

E(C2
0 ) =

(
g0
G0

)2

+
g0
G2

0

(18)

(19)

Given the hyperparameter values c0 = 3, g0 = 0.5 and G0 = 0.5, it follows that:

E(σ2
k) =

E(C0)

c0 − 1
= 0.5 (20)

Var(σ2
k) = E(Var(σ2

k|C0)) + Var(E(σ2
k|C0)) = (21)

=
E(C2

0 )

(c0 − 1)2(c0 − 2)
+

Var(C2
0 )

(c0 − 1)2
= (22)

=
3

4
+

1

2
= 1.25 (23)
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Appendix B Fed supervisory scenarios

Table A1: Fed stress tests 2015-2018: scenarios of GDP growth

2015 2016 2017 2018
time base adv. sev. base adv. sev. base adv. sev. base adv. sev.
2014Q4 3 -0.6 -3.9
2015Q1 2.9 -1.3 -6.1
2015Q2 2.9 -0.2 -3.9
2015Q3 2.9 0.2 -3.2
2015Q4 2.9 0.3 -1.5
2016Q1 2.9 0.8 1.2 2.5 -1.5 -5.1
2016Q2 2.9 1.2 1.2 2.6 -2.8 -7.5
2016Q3 2.9 1.7 3 2.6 -2 -5.9
2016Q4 2.9 1.8 3 2.5 -1.1 -4.2
2017Q1 2.7 1.8 3.9 2.4 0 -2.2 2.2 -1.5 -5.1
2019Q4 2.7 1.9 3.9 2.5 1.3 0.4 2.3 -2.8 -7.5
2017Q3 2.6 2 3.9 2.3 1.7 1.3 2.4 -2 -5.9
2017Q4 2.6 2.2 3.9 2.3 2.6 3 2.3 -1.5 -5.1
2018Q1 2.6 2.6 3 2.4 -0.5 -3 2.5 -1.3 -4.7
2018Q2 2.4 3 3.9 2.4 1 0 2.8 -3.5 -8.9
2018Q3 2.3 3 3.9 2.4 1.4 0.7 2.6 -2.4 -6.8
2018Q4 2.3 3 3.9 2.3 2.6 3 2.5 -1.3 -4.7
2019Q1 2.1 3 3.9 2 2.6 3 2.3 -0.7 -3.6
2019Q2 2.1 3 3.9 2.3 0.4 -1.3
2019Q3 2.1 3 3.9 2.1 1 -0.2
2019Q4 2 3 3.9 2 2.5 2.8
2020Q1 2 3 3.9 2.1 2.8 3.5
2020Q2 2.1 3 4
2020Q3 2.1 3.2 4.2
2020Q4 2.1 3.3 4.5
2021Q1 2.1 3.3 4.5

Notes: For each year between 2015 and 2018 the table reports the baseline, adverse and severely adverse supervisory
scenarios for U.S. GDP growth (annualized quarter-on-quarter, in percentage) included in the annual stress test
conducted by the Federal Reserve (see Federal Reserve Board 2014, 2016, 2017, 2018).
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Appendix C Additional Figures

Figure A1: Optimal log-score-based posterior probabilities (prior π0∗
1 ) over time

(a) All views (b) Fed-based views (cumulative)

Notes: The area chart in the left panel shows the time-varying Bayesian posterior probabilities for all the 13 views
used to estimate the Markov-switching AR model. The chart goes from 1978Q1 to 2019Q4. The underlying prior
probabilities π0∗

1 are obtained using the log-score-based optimization procedure described in the paper. The right
panel plots the cumulative weight assigned to the views derived from Fed supervisory scenarios (views 6-13). See
Table 1 in the paper for the list of views.

Figure A2: Optimal PIT-based posterior probabilities (prior π0∗
2 ) over time

(a) All views (b) Fed-based views (cumulative)

Notes: The area chart in the left panel shows the time-varying Bayesian posterior probabilities for all the 13 views
used to estimate the Markov-switching AR model. The chart goes from 1978Q1 to 2019Q4. The underlying prior
probabilities π0∗

2 are obtained using the PIT-based optimization procedure described in the paper, where PIT
stands for probability integral transform. The right panel plots the cumulative weight assigned to the views derived
from Fed supervisory scenarios (views 6-13). See Table 1 in the paper for the list of views.
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