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ABSTRACT
We propose an approach for generating macroeconomic density forecasts that incorporate information on multiple scenarios 
defined by experts. We adopt a regime- switching framework in which sets of scenarios (“views”) are used as Bayesian priors on 
economic regimes. Predictive densities coming from different views are then combined by optimizing objective functions of den-
sity forecasting. We illustrate the approach with an empirical application to quarterly real- time forecasts of the US GDP growth 
rate, in which we exploit the Fed's macroeconomic scenarios used for bank stress tests. We show that the approach achieves good 
accuracy in terms of average predictive scores and good calibration of forecast distributions. Moreover, it can be used to evaluate 
the contribution of economists' scenarios to density forecast performance.
Jel Classification: C11, C13, C22, C53

1   |   Introduction

In recent years, it has become increasingly important for eco-
nomic agents and policymakers to take account of the un-
certainty around macroeconomic outlooks. In particular, 
two distinct approaches to this issue have emerged. The first 
one consists in generating economic forecasts in the form of 
(continuous) probability distributions, or density forecasts. 
This is now common practice among forecasters (Elliott and 
Timmermann  2016), and many economic agents, such as fi-
nancial institutions, routinely evaluate their potential losses 
as random draws from predictive density functions (e.g., for 
the computation of value at risk and expected shortfall, see 
Jorion 2006). The second approach is to define a small number 
of (discrete) macroeconomic scenarios (e.g., see  Moody's 2018). 
This approach facilitates communication to the public regard-
ing economic uncertainty and finds important applications in 
financial supervision and risk management, most notably in the 
design of bank stress tests, which are now integral part of the 
financial regulatory framework in advanced economies (e.g., 
Federal Reserve Board 2018).

This paper develops a novel forecasting approach that combines 
these two perspectives. Using a regime- switching model, we 
construct macroeconomic density forecasts that explicitly in-
corporate information on discrete scenarios defined by econo-
mists. We consider alternative sets of scenarios, which we label 
as views, and use them to define Bayesian priors on economic 
regimes in the model. Next, as different views result in different 
density forecasts, we combine these forecasts in a way that op-
timizes standard evaluation criteria of density forecasting. The 
approach is illustrated through an empirical application to US 
GDP growth forecasts, in which we exploit the information con-
tained in the macroeconomic scenarios defined by the Federal 
Reserve for its bank stress tests. We show that the approach 
achieves good forecast accuracy and good calibration of forecast 
distributions. Moreover, we find that its forecast performance 
is further improved when we combine it with the beta transfor-
mation of linear opinion pools proposed by Gneiting and Ranjan 
(2010, 2013). This nonlinear transformation allows to further re-
calibrate the optimally weighted linear combinations of density 
forecasts. Thus, we can use it to provide a nonlinear extension of 
our forecast aggregation approach.
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On the one hand, the proposed approach is able to produce 
highly flexible predictive distributions. Such flexibility results 
both from the regime- switching framework and from the fore-
cast combination procedure. Density forecasts from regime- 
switching models are mixture distributions, by construction: 
they are weighted averages of regime- specific densities, where 
the weights consist in the probabilities of the economy ending up 
in the various regimes. Likewise, density forecast combinations 
also produce mixture distributions. Thus, the approach can 
easily accommodate a wide range of departures from normal-
ity, as mixture distributions are in general nonnormal even if 
their individual components are. This is an important property 
when it comes to forecasting macroeconomic variables, whose 
empirical distributions often deviate from Gaussianity. In par-
ticular, a number of studies, including Fagiolo, Napoletano, and 
Roventini  (2008), Cúrdia, Del Negro, and Greenwald  (2014), 
and Ascari, Fagiolo, and Roventini (2015), have documented a 
nonnormal distribution of the GDP growth rate in the United 
States and other advanced economies, mainly as a result of large 
downturns. Acemoglu, Ozdaglar, and Tahbaz- Salehi  (2017) 
find similar results and propose a theoretical model in which 
systematic departures of output from the normal distribution 
are explained by the interaction of idiosyncratic microeconomic 
shocks and sectoral heterogeneity. Compared to econometric 
approaches that impose nonnormal distributions of errors (e.g., 
Hansen 1994), regime- switching models allow for a more trans-
parent economic explanation of nonnormality, based on the 
transition between different regimes.

On the other hand, regime- switching models appear as a nat-
ural framework for dealing with discrete scenarios such as 
those used in bank stress tests. First of all, these scenarios are 
typically constructed in a way that directly relates to economic 
regimes. For instance, the Fed defines its scenarios as “sets of 
economic and financial conditions”, with baseline scenarios 
reflecting the most likely conditions and adverse/severely ad-
verse scenarios reflecting conditions that prevail in recessions 
(Federal Reserve  2013, Appendix A of Part 252).1 Also, many 
contributions in the literature on stress testing call for an im-
portant role of regime- switching models in the design of macro 
scenarios, arguing that realistic scenarios should reflect the 
nonlinearities that derive from the state dependency of macro- 
financial conditions (Adrian, Morsink, and Schumacher 2020; 
Han and Leika 2019; Borio, Drehmann, and Tsatsaronis 2014; 
Gross, Henry, and Rancoita 2022; Bidder and McKenna 2015). 
As highlighted by Hamilton  (2016), Markov- switching models 
provide a sufficiently parsimonious and yet robust characteriza-
tion of the transition into and out of recession regimes, at least 
for the US economy.

This paper contributes to several strands of the forecasting liter-
ature. First, it relates to other papers that incorporate external—
possibly judgmental—forecasts into econometric model- based 
forecasts. Krüger, Clark, and Ravazzolo (2017) combine forecasts 
from Bayesian VARs (BVARs) with forecasts from other sources 
using entropic tilting, a method for modifying a distribution 
in a way that satisfies specific moment conditions (Robertson, 
Tallman, and Whiteman 2005). Faust and Wright (2009) use the 
Federal Reserve Board's Greenbook forecasts as data in autore-
gressive and factor- augmented autoregressive models, in order 
to produce forecasts of GDP growth and inflation. Schorfheide 

and Song  (2015) and Wolters  (2015) also use nowcasts from 
Fed's Greenbook as data to generate forecasts from a BVAR and 
DSGE models, respectively. The main difference between our 
approach and these approaches is that we exploit information 
on multiple economic scenarios from external sources, mapping 
them into different regimes, while these approaches only target 
point forecasts or forecast variance.

Second, the paper relates to other contributions on forecast-
ing using regime- switching models. The most closely related 
approaches are Bayesian ones, such as those by Pesaran, 
Pettenuzzo, and Timmermann  (2006), who use a break point 
model (a generalization of regime- switching models) with hy-
perparameter uncertainty, and by Bauwens, Carpantier, and 
Dufays  (2017), who estimate a Markov- switching model with 
an unknown and potentially infinite number of regimes. Unlike 
these studies, our paper exploits experts' views to define priors on 
economic regimes. A broad literature has investigated the fore-
cast performance of regime- switching models. While the avail-
able evidence on the accuracy of point forecasts is mixed (Elliott 
and Timmermann 2016), these models have proved very useful 
for density forecasting and forecasts of tail events. Chauvet and 
Potter  (2013) show that Markov- switching models can achieve 
high accuracy in forecasting GDP, especially with respect to the 
timing and depth of recessions. Geweke and Amisano  (2011) 
show the usefulness of Markov mixtures for density forecasts 
of the stock market. Bauwens, Carpantier, and Dufays  (2017) 
use an infinite Markov- switching autoregressive moving aver-
age model to produce density forecasts of GDP. Alessandri and 
Mumtaz (2017) find that a threshold VAR in which regime shifts 
depend on financial conditions produces good density forecasts 
of US GDP during the Great Recession.

Third, the paper relates to the large literature on forecast com-
binations. In particular, it has been shown that gains in density 
forecast performance are often achieved by combining different 
predictive distributions. Contributions in the field of macroeco-
nomic forecasting include Hall and Mitchell (2007), Geweke and 
Amisano (2011), and Ganics (2017), among others. A vast body 
of literature in other fields, such as management science, risk 
analysis, and meteorology, also deals with the combination of 
probabilistic forecasts from experts into “consensus” distribu-
tions (e.g., Genest and Zidek 1986; Clemen and Winkler 1999). 
For comprehensive reviews, see Aastveit et al. (2018) and Wang 
et al. (2023). Several ways to further enhance density forecasts 
of nonnormal variables have been proposed in the literature on 
forecast combinations, such as beta opinion pools (Gneiting and 
Ranjan 2010, 2013) and empirically transformed opinion pools 
(Garratt, Henckel, and Vahey 2023), which will be explored in 
the empirical part of the paper.

We combine forecasts from different experts' views using two 
main criteria of density forecast evaluation. The first one is the 
sum of log scores, which measures the ability to assign high 
probabilities to outcomes that are truly likely to be observed. The 
second is a uniformity test on the probability integral transforms 
(PITs) of the forecasts, which measures the degree of calibration 
of the forecast distribution (Diebold, Gunther, and Tay 1998).2 
Both measures have been used in the literature to compute “op-
timal” forecast combinations (Hall and Mitchell 2007; Geweke 
and Amisano 2011; Ganics 2017).
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The remainder of the paper is organized as follows: Section  2 
explains the methodology, Section 3 presents the empirical ap-
plication, and Section 4 concludes.

2   |   Methodology

2.1   |   The Regime- Switching Model

Our reference model is a Markov- switching autoregressive 
(MSAR) model in which the intercept and the error variance 
depend on the unobserved state of the economy. Let yt denote a 
macroeconomic variable of interest at time t . The MSAR can be 
written as follows: 

where St denotes the unobserved state variable at time t, �St is the 
intercept in regime St , �j for j = 1, … , p is a state- independent 
autoregressive coefficient, p is the maximum lag, �t is the error 
term, �2

St
 is the regime- dependent variance of the error, and   

denotes the normal distribution.3 In particular, St is a Markov 
chain characterized by a transition matrix �, where the element 
�kj in row k and column j represents the probability of transition 
from state k to state j: 

with k, j = 1, … ,K, where K is the number of regimes in the 
economy. Accordingly, the MSAR captures the typical autocor-
relation of macro variables in two ways: by means of the autore-
gressive coefficients in  (1) and through the persistence in the 
state variable St, as expressed by the transition matrix. Finally, 
let � denote the vector of parameters of the MSAR model, that is, 
� = (�1, … , �K , �1, … , �K , �1, … , �p, �).

2.2   |   Incorporating Information on Discrete 
Scenarios

The MSAR model (1) is estimated using Bayesian methods (see 
the Supporting Information Appendix for details). The priors on 
the parameters follow conventional distributions (Frühwirth- 
Schnatter 2006), which are the following: 

for j = 1, … , p, where −1 denotes the inverse gamma distribu-
tion and aj,0,Aj,0, b0,k ,B0,k , c0,C0 are hyperparameters to be se-
lected by the researcher. In addition, for the transition matrix 
� , it is assumed that the rows are independent and each row fol-
lows a Dirichlet distribution, denoted by , that is, 

where ek1, … , ekK are hyperparameters, for k = 1, … ,K.

We define a view as a set of assumptions concerning the number 
of regimes K and the model parameters, that is, a specific set of 
values for K and for the hyperparameters of the model's prior.

Views can incorporate information on discrete economic scenar-
ios defined by experts. In particular, we consider priors in which 
each regime is “centered” on a corresponding scenario using the 
following rule. Consider an AR(p) model where the coefficients 
are given by the k- state- specific prior hyperparameters, that is, 

In this model, the unconditional expectation of yt, which we de-
note by Ek

(
yt
)
, is as follows: 

Then, given an assumption on the state- independent autore-
gressive coefficients aj, each regime- specific hyperparameter 
b0,k is chosen in such a way that expectation (8) matches a spe-
cific value derived from a scenario provided by external sources. 
The hyperparameter B0,k determines the tightness of the prior 
around these expectations or, in other words, the strength of 
economists' views. In principle, all the other hyperparameters 
can also be set to values suggested by economists, if available. 
Otherwise, uninformative or diffuse priors can be used for the 
remaining parameters of the MSAR.

When several alternative views are considered, Bayesian aver-
aging across views can be performed. Let �0K ,i denote the generic 
i- th view assuming K states and let �0 be a vector containing 
discrete prior probabilities assigned to all views considered. The 
posterior probability of view �0K ,i, which we denote as �K ,i, will 
depend on the prior probability vector �0 and on the values of 
the marginal likelihood of the MSAR model associated with the 
different views. Note that the letter � is used throughout the text 
to denote discrete probability distributions.

Further details are provided in the Supporting Information 
Appendix.

2.3   |   Optimizing Density Forecasts

Let us define the vector containing all observations up to time t  
as yt, i.e., yt = (y1, … , yt), and let us consider a forecast horizon 
of one period. Then, let us denote the density forecast produced 
by any given view at time t  as p

(
yt+1|yt ,�

0
K ,i

)
 (see Supporting 

Information Appendix A.2 for details on how density forecasts 
are calculated). Fixing a maximum number of regimes K , for 
any K = 1, … ,K  we consider a number PK of alternative views 
assuming K regimes in the economy. We consider two methods 
for pooling forecasts across different views:

(1)yt =

p∑

j=1

�jyt−j + �St + �t

�t ∼
(
0 ,�2St

)

(2)�kj = Pr(St = j|St−1 = k)

(3)�j ∼ 
(
aj,0,Aj,0

)

(4)�k ∼
(
b0,k ,B0,k

)

(5)�2
k
∼ −1

(
c0,C0

)

(6)�k ∼ 
(
ek1, … , ekK

)

(7)yt =

p∑

j=1

aj,0yt−j + b0,k + �t

(8)Ek
�
yt
�
=

b0,k

1 −
∑p

j=1
aj,0
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• Forecast combinations. We can express a forecast combina-
tion across MSAR views, where the vector of combination 
weights is denoted by w, as follows: 

where wK ,i ≥ 0 is the weight assigned to view �0K ,i, with 
∑K

K=1

∑PK
i=1

wK ,i = 1.

• Bayesian averaging over different views, that is, 

Forecast (10) is a weighted average in which the weight assigned 
to the view- specific forecast p

(
yt+1|yt ,�

0
K ,i

)
 is given by the pos-

terior probability of view �0K ,i, that is, �K ,i, which depends on the 
prior probability vector �0, with 

∑K
K=1

∑PK
i=1

�K ,i = 1 (see the 

Supporting Information Appendix for more details).

We find the “optimal” weights w and priors �0 by maximizing 
two alternative objective functions, based on statistics that are 
commonly used to evaluate density forecast performance:

1. Log scores. The log score is the log of the predictive density 
function evaluated at the actual realization of the target var-
iable. Given a generic forecast horizon h, let yo

t+h
 (where o 

stands for “observed”) denote the realization of variable y at 
time t + h, which is not observed at time t , when the forecast 
for t + h is produced. Also, let R be the length of the time-
span over which forecasts are optimized. The first objective 
function, denoted by f1, is given by the sum of log scores 
over the period of interest. Specifically, our first objective 
function at a given time � is as follows: 

where � is a place- holder for either w or �0, depending on 
whether we consider forecast combinations or Bayesian 
averaging.

2. PITs. The PIT is the cumulative predictive density function 
evaluated at the actual realization of the variable. If the 
density forecast used to compute the PIT corresponds to the 
true distribution of the variable, then, for h = 1, the PIT val-
ues are the realizations of independently and identically dis-
tributed (i.i.d.) uniform (0,1) variables (Diebold, Gunther, 
and Tay 1998). Therefore, a uniformity test on the PITs can 
be seen as a test of correct specification of the density fore-
casts (see also  Rossi and Sekhposyan 2014). Accordingly, 
the second objective function is given by the following: 

where Φ( ⋅ ) denotes the cumulative predictive density func-
tion, ks( ⋅ ) indicates the function returning the test statistics 

of the Kolmogorov–Smirnov (KS) test of uniformity, and as 
before, � is a place- holder for either w or �0. Maximizing 
− ks( ⋅ ) is equivalent to maximizing the p- value of the KS 
test (whose null hypothesis is uniformity).

Both the optimization based on f1 and the one based on f2 are 
solved numerically. For each fi, with i = 1,2, the optimization 
algorithm delivers two vectors at time �: the vector of optimal 
forecast weights w∗

i,�
 for the set of alternative views, that is,

and the vector of optimal prior probabilities �0∗
i,�

: 

The former represents the typical problem explored in the liter-
ature on density forecast combination, whereas the latter can be 
seen as an empirical method for eliciting priors in the context 
of Bayesian model averaging. The optimal prior �0∗

i,�
 represents 

the discrete prior probability distribution of views such that 
the resulting posterior �∗

i,�
, when used as a vector of forecast 

weights, maximizes the density forecast performance, based on 
the selected objective function. In practice, the main difference 
between (13) and (14) is that the first problem directly delivers 
weights for forecast combination, while in the second case, the 
actual forecast weights are the posterior probabilities and so will 
also depend on the marginal likelihoods of all views, that is, 
p(y|�0K ,i) ∀K , i (see the Supporting Information Appendix).

3   |   Empirical Application: US GDP Growth

This section illustrates the approach through an empirical ap-
plication to density forecasts of US GDP growth. We use real- 
time quarterly data from 1948Q1 to 2019Q44 and consider the 
year- on- year growth rate of real GDP (expressed in percentage 
points in what follows).5 Over this period, the (unconditional) 
distribution of GDP growth is nonnormal (the Jarque- Bera test 
rejects normality at the 1% level of significance) and, in particu-
lar, fat- tailed (kurtosis is close to 4), in line with the findings of 
prior literature (e.g., Fagiolo, Napoletano, and Roventini 2008; 
Ascari, Fagiolo, and Roventini 2015).

We set the lag length p of the model to 5, in consideration of the 
quarterly frequency of the variable. As explained below in more 
detail, we first produce pseudo- out- of- sample forecasts using a re-
cursive window scheme. Then, we calculate optimal weights w∗ 
and priors �0∗ over time, following the procedure from Section 2.3. 
Finally, we assess the performance of pooled forecasts on an eval-
uation sample, that is, using observations of the target variable 
that have not been used in the optimization procedure.

3.1   |   Priors and Fed Scenarios

We consider a total of 13 alternative views on the US GDP 
growth regimes. Eight views impose strongly informa-
tive priors derived from the scenarios of the Fed stress tests 

(9)p
(
yt+1|yt ,w

)
=

K∑

K=1

PK∑

i=1

p
(
yt+1|yt ,�

0
K ,i

)
wK ,i

(10)p
(
yt+1|yt ,�0

)
=

K∑

K=1

PK∑

i=1

p
(
yt+1|yt ,�

0
K ,i

)
�K ,i

(11)f1,� (�) =

�−h∑

t=�−h−R+1

ln
(
p
(
yo
t+h

|yt ,�
))

(12)f2,� (�) = − ks
({

Φ
(
yot+1|yt ,�

)}�−1

t=�−R

)

(13)w∗
i,� = arg max

w
fi,� (w)

(14)�0∗i,� = arg max
�0

fi,�
(
�0

)
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2015–2018.6 The remaining five views are “vague” views, 
defined by imposing uninformative priors on MSAR param-
eters. We consider different assumptions on the number of re-
gimes K = 1,2, 3,4, 5.7

Let us first consider the Fed- based views. For each of the four 
stress tests under consideration, two views are constructed, one 
with K = 3 and the other with K = 5. In the view with K = 3, one 
of the regimes (which may be called the “normal times” regime) is 
derived from the Fed baseline scenario, another (“recession re-
gime”) from the adverse scenario, and the last one (“severe reces-
sion regime”) from the severely adverse scenario.8 In particular, 
we “center” each regime on the corresponding Fed scenario using 
the rule described in Section  2.2. Specifically, we consider an 
AR(5) model where the coefficients are given by the k- state- specific 
hyperparameters of the prior �0K ,i, so Equation  (8) implies 

Ek
�
yt
�
= b(

K ,i)

0,k
∕
�
1 −

∑5
j=1 a

(K ,i)
j,0

�
. Then, after setting a value for 

the state- independent a(K ,i)
j,0

, with j = 1, … , 5, each regime- 
specific b(K ,i)

0,k
 is chosen in such a way that this expectation matches 

a specific value derived from the relevant scenario of the Fed stress 
test. For the normal times regime, this value is the average growth 
rate in the last four quarters of the baseline scenario, which is as-
sumed to be close to the convergence value of the year- on- year 
growth rate in the absence of shocks.9 For both the recession and 
the severe recession regimes, the value to be matched is the aver-
age growth rate in the first four quarters of the corresponding sce-
nario, as the first quarters are those when the negative shocks are 
assumed to occur and the growth rates are lowest.

An example may help. Let us consider the view with K = 3 de-
rived from the 2018 Fed stress test. The average growth rate of 
GDP in the last four quarters of the baseline scenario is 2.1%, 
while the average growth rates in the first four quarters of the 
adverse and severely adverse scenarios are −2.125% and 
−6.275%, respectively. As customary in the related Bayesian 
literature (e.g., Alessandri and Mumtaz  2017; Frühwirth- 
Schnatter 2006), we set the prior on the autoregressive compo-
nent of the model using a parsimonious specification. In 
particular, we set the prior mean of the autoregressive coeffi-
cients to the (approximate) OLS estimate of an AR(1), that is, 
to 0.9 for the first lag and 0 for the higher- order lags (recall, 
however, that we allow up to 5 lags in the posterior estimates 
of the model). Then, 

∑5
j=1 a

(K ,i)
j,0

= 0. 9. Accordingly, the prior 

means for the regime- specific intercepts are set to 
b0,1 = 2.1∕(1 − 0.9) = 0.21 for the normal times regime, 
b0,2 = − 2.125∕(1 − 0.9) = − 0.2125 for the recession regime, 
and b0,3 = − 6.275∕(1 − 0.9) = − 0.6275 for the severe reces-
sion regime.

The four stress test- based views with K = 5 expand the views 
with K = 3 by adding two regimes: a regime which we may 
call “recovery from recession”, designed to match the last four 
quarters of the adverse scenario, and a regime of “recovery from 
severe recession”, which matches the last four quarters of the se-
verely adverse scenario. This is done in consideration of the fact 
that growth rates in the last four quarters of Fed's adverse and 
severely scenarios are assumed to be higher than the baseline 
rates, implying a rebound of the economy after a negative shock. 
Of course, such regimes may be more generally interpreted as 

“favorable regimes” characterized by positive shocks and not 
necessarily as recoveries from recessions.

In the five vague views, all priors on the intercepts are centered 
on 0 and have a variance of 1 percentage point, while the pri-
ors on the autoregressive coefficients are centered on 0.5 for the 
first lag, on 0 for the higher- order lags, and have a variance of 1. 
Taken jointly, these assumptions imply a large prior variance on 
the regime- specific means of the GDP growth rate. Conversely, 
in the Fed- based views, the priors for both � and � are strongly 
informative, so as to ensure that the regime- specific means are 
tightly centered on the stress test values. In particular, both pri-
ors are assumed to have minimal variance, equal to 10−5. For the 
autoregressive coefficients �, the prior mean is assumed to be 0.9 
for the first lag and 0 for higher- order lags, as mentioned in the 
previous example.

No strong assumption is made regarding the regime- switching 
error variance �2

k
. Instead, a diffuse hierarchical prior is as-

sumed in all views, using a gamma hyper- prior for C0, that is, 
C0 ∼ 

(
g0 ,G0

)
, where g0 and G0 are hyperparameters.10

Finally, the hyperparameters for the k- th row of the transi-
tion matrix � are set in such a way that the (prior) expected 
probability of remaining in the same state k in the next pe-
riod is E(�kk) = 2∕3 regardless of the number of regimes 
K  and for any k, while the probability of moving to a dif-
ferent, specific state j decreases with the number of re-
gimes, specifically E(�kj) = 1∕[3(K − 1)], for any j ≠ k  (see 
Frühwirth- Schnatter 2006).11

The summary of the alternative views is provided in Table  1, 
where views 1–5 are the vague ones, while views 6–13 are those 
derived from the Fed stress tests 2015–2018. Table  A1 in the 
Supporting Information Appendix reports the GDP scenarios of 
the Fed stress tests.

3.2   |   Optimization Scheme

We generate a sequence of pseudo- out- of- sample density fore-
casts using a recursive- window estimation scheme.12 Next, the 
forecasts are used to carry out the optimization of weights/pri-
ors, which is iterated over time. The procedure can be described 
as follows. Let us assume that we are at time Tw and the forecast 
horizon is h. For each view under consideration, the MSAR 
model is recursively estimated using observations between an 
initial time t0 and time t , with t = T0,T0 + 1, … ,Tw − h. Time T0 
is therefore the end period of the shortest estimation sample. 
Estimates at T0 are used to make forecasts for period T0 + h; esti-
mates at T0 + 1 are used to make forecasts for T0 + 1 + h, and so 
on. Thus, at time Tw, a sequence of past forecasts is available for 
each view. At this point, the algorithm computes the optimal 
weights/priors based on the last R forecasts, that is, maximizes 
the relevant objective function between Tw − R + 1 and Tw. Once 
the optimal weights/priors are retrieved, they are used to com-
bine the different view- specific forecasts for the future period 
Tw + h, which is out of the optimization sample. When the actual 
value of the variable of interest is observed, at time Tw + h, the 
performance of the combined forecast is measured. The index Tw 
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6 of 13 Journal of Forecasting, 2024

runs from T0 + h + R − 1 to T + h, where T  is the end of the larg-
est estimation sample. T + 2h is the last available observation for 
the target variable. Therefore, the period from T0 + 2h + R − 1 to 
T + 2h defines the evaluation sample, or test set. Figure 1 sum-
marizes the procedure, which closely follows Ganics (2017).

More specifically, the application to the US GDP growth sets 
t0 = 1948Q1, T0 = 1967Q4, R = 40 quarters, h = 1 quarter, and 
T   =  2019Q2. Accordingly, the evaluation sample runs from 
1978Q1 to 2019Q4.13 We focus on the forecast horizon h = 1 
because, as previously mentioned, the result of PIT uniformity 

of well- behaved forecasts, used for the optimization, only 
holds for h = 1 (see Rossi and Sekhposyan 2014).

3.3   |   Results

3.3.1   |   Main Results

Table  2 shows the performance of our composite regime- 
switching forecasts using optimal forecast weights and optimal 
priors and compares it with benchmark approaches. We label 

TABLE 1    |    Alternative views for the regime- switching model of US GDP growth.

Hyperparameters

View no. View type K b0 B0 a0 A0 ekk c0 g0 G0

1 Vague 1 0 1 (0.5 0 0 0 0) 1 2 3 0.5 0.5

2 Vague 2 (0,0) 1 (0.5 0 0 0 0) 1 2 3 0.5 0.5

3 Vague 3 (0,0,0) 1 (0.5 0 0 0 0) 1 2 3 0.5 0.5

4 Vague 4 (0,0,0,0) 1 (0.5 0 0 0 0) 1 2 3 0.5 0.5

5 Vague 5 (0,0,0,0,0) 1 (0.5 0 0 0 0) 1 2 3 0.5 0.5

6 Fed stress test 3 (0.265,−0.0475,−0.4275) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

7 Fed stress test 3 (0.2275,−0.1850,−0.5675) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

8 Fed stress test 3 (0.205,−0.1950,−0.59) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

9 Fed stress test 3 (0.21,−0.2125,−0.6275) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

10 Fed stress test 5 (0.39, 0.1975, 0.265,−0.0475,−0.4275) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

11 Fed stress test 5 (0.39, 0.3, 0.2275,−0.1850,−0.5675) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

12 Fed stress test 5 (0.39, 0.3, 0.205,−0.1950,−0.59) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

13 Fed stress test 5 (0.43, 0.32, 0.21,−0.2125,−0.6275) 10−5 (0.9 0 0 0 0) 10−5 2 3 0.5 0.5

Note: The table lists the 13 priors (views) used to estimate the Bayesian Markov- switching autoregressive (MSAR) model considered in the empirical application. K 
denotes the assumed number of regimes; b0 ,B0 ,a0 ,A0 , ekk , c0 , g0, and G0 are the hyperparameters of the priors. Please refer to Section 2 for an explanation of the 
parameters. Views 1–5 represent diffuse priors, while views 6- 13 are strongly informative priors derived from the Fed supervisory scenarios.

FIGURE 1    |    Optimization scheme. Note: The figure summarizes the density forecast optimization scheme. First, the MSAR model is recursively 
estimated on actual GDP data (dark blue bar) using alternative views. The sample start date is denoted with t0; the end date runs from T0 to T . For 
each sample window, the estimates generate density forecasts with horizon h (light blue bar). A rolling sequence of R forecasts is used to compute 
optimal forecast weights and prior probabilities (green bar) for the views. The optimal weights/priors obtained in each period are used to combine 
the view- specific forecasts for subsequent periods. The resulting composite forecasts (dark yellow bar) are evaluated by comparison with the actual 
data over the period from T0 + 2h + R − 1 to T + 2h.
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our forecasts as scenario- augmented MSAR (SA- MSAR) fore-
casts. As mentioned in Section 2.3, weights w∗

1
 and priors �∗

1
 re-

sult from the optimization based on the sum of log scores, while 
w∗
2
 and �∗

2
 are obtained by maximizing the p- value of the KS test 

of uniformity for the PITs. The first benchmark considered is a 
simple AR model (corresponding to view 1 in Table 1). Next, we 
consider three models that allow for nonnormal and heteroske-
dastic errors: an AR with Student- t  errors, an AR with ARCH 
errors, and an AR with GARCH errors. As with the MSAR mod-
els, the lag length for the AR component is set to 5 for all models, 
while the ARCH and GARCH components have a lag length of 1. 
The remaining two benchmarks consist in uniform combination 

schemes over the alternative views, assigning equal forecast 
weights/prior probabilities to different values of K and, for any 
given K, equal weights/probabilities to the alternative views de-
fined using K regimes.14

The table shows the average predictive density (APD), that is, 
the average of the exponential of log scores, and the p- value of 
the KS test.

The results indicate that our optimized SA- MSAR forecasts 
achieve good forecast accuracy and good calibration of forecast 
distributions. When optimized by log scores, the SA- MSAR fore-
casts outperform all benchmarks in terms of APDs. When opti-
mized by PITs, they lead to nonrejection of the null hypothesis 
of uniformity at the 5% level in the KS test, indicating a reliable 
specification of the conditional predictive distribution of GDP 
growth. Thus, optimized SA- MSAR forecasts achieve well- 
behaved PITs.15 By contrast, all benchmarks lead to rejection of 
the PIT uniformity hypothesis.

The approach can be used to evaluate the time- varying contri-
bution of different views to the composite forecasts. Figures 2 
and 3 display the evolution over time of the optimal forecast 
weights. The corresponding figures for the posterior proba-
bilities resulting from the optimal priors are reported in the 
Supporting Information Appendix (Figures  A1 and A2). In 
each figure, the area chart in the left panel shows the time- 
varying weights for all views from 1978Q1 to 2019Q4. The 
right panel plots the cumulative weight assigned to the views 
derived from the Fed supervisory scenarios. Figure  2 shows 
the results of the optimization based on log scores, while 
Figure  3 shows the results of the optimization based on the 
PITs. As can be seen from Figure 2, the vague views tend to 
dominate in the case of log- score optimization. In terms of 
optimal weights w∗

1
, the cumulative weight of the Fed- based 

views lies in the range 7%–42% until 1990 and is zero after-
wards. Similarly, the Fed- based views provide nonzero contri-
butions to optimized posteriors only between 1982 and 1987 
(see Figure A1 in the Supporting Information Appendix). 

TABLE 2    |    Density forecast performance.

Forecasting method APD KS

AR 0.28 0.00

AR- t 0.31 0.00

AR- ARCH 0.30 0.00

AR- GARCH 0.21 0.00

SA- MSAR -  Equal forecast weights 0.32 0.00

SA- MSAR -  Equal prior probabilities 0.36 0.00

SA- MSAR -  Optimal weights w∗
1

0.37 0.00

SA- MSAR -  Optimal priors �∗
1

0.37 0.00

SA- MSAR -  Optimal weights w∗
2

0.33 0.07

SA- MSAR -  Optimal priors �∗
2

0.34 0.06

Note: The table reports the density forecast performance of our scenario- 
augmented Markov- switching autoregressive (SA- MSAR) model for US GDP 
using optimal pools of views and compares it with several benchmarks. The 
optimal pools include log- score- based forecast combinations (optimal weights 
w∗
1
), log- score- based Bayesian averaging (optimal prior probabilities �∗

1
), PIT- 

based forecast combinations (optimal weights w∗
2
), and PIT- based Bayesian 

averaging (optimal prior probabilities �∗
2
). APD denotes the average predictive 

density; KS denotes the p- value of the Kolmogorov–Smirnov test of uniformity of 
the PITs. All statistics are computed over the period 1978Q1- 2019Q4. Values in 
bold emphasis highlight the methodology proposed in this paper, as opposed to 
several benchmark methods (not in bold).

FIGURE 2    |    Optimal log- score- based forecast combination weights (w∗
1
) over time. Note: The area chart in the left panel shows the time- varying 

forecast combination weights for all the 13 views used to estimate the Markov- switching AR model. The chart goes from 1978Q1 to 2019Q4. The 
weights (w∗

1
) are obtained using the log- score- based optimization procedure. The right panel plots the cumulative weight assigned to the views 

derived from the Fed's supervisory scenarios (views 6- 13). See Table 1 for the list of views.

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3228 by A

rea Sistem
i D

ipart &
 D

oc, W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 13 Journal of Forecasting, 2024

Overall, these results indicate a minor role of Fed- based views 
in boosting density forecast accuracy.

However, when the PIT- based optimization is considered, the 
contribution of the Fed- based views is much greater. On aver-
age, they account for about 35% of the combined forecasts in the 
case of optimal weights (Figure 2) and 27% in the case of poste-
rior probabilities (see Figure A2 in the Supporting Information 
Appendix). In particular, they dominate in the period following 
the Global Financial Crisis, in terms of both w∗

2
 and �∗

2
. They 

also provide a substantial contribution in the early 1980s and 
during the 1990s. It is important to remark that using a single 
view is not sufficient to achieve well- calibrated forecasts. None 
of these views, when considered individually, leads to nonrejec-
tion of the PIT uniformity hypothesis in the KS test. Instead, the 
combination of different views is what drives the good results in 
terms of calibration.

To illustrate the outcome of our procedure in more detail, Figure 4 
shows density forecasts for a specific quarter, 2016Q4, taken as 
an example. The figure displays three probability density func-
tions (PDFs): the density forecast from an AR model (red line), 
the forecast generated by a three- regime MSAR model using a 
prior derived from the Fed stress test scenarios (green line; view 9 
in Table 1), and the optimized MSAR forecast (blue line), that is, 
the final outcome of our procedure, using combination weights 
w∗
2
. Three dashed vertical lines indicate the three discrete sce-

narios for 2016Q4 contained in Fed's 2016 stress test. The figure 
provides an example of what can be obtained from our approach, 
compared to what is obtained from the single use of the two con-
tinuous/discrete approaches to forecast uncertainty. The (nor-
mal) density forecast of the AR model is a basic example of the 
classical density forecast outcome. The predictive density from 
the three- regime model is an example of scenario- augmented 
forecasts: it has a highly nonstandard left- skewed profile, clearly 
reflecting a mixture of three different regime- specific normals, 
strongly influenced by the tight prior centered on external sce-
narios. The final (blue) forecast is an example of the “optimal” 
combination of different densities (including the red and green 
ones reported in the figure). It has an irregular and leptokurtic 

shape with two bumps in the tails, merging different forecasts as 
well as the prior information provided by external views. Finally, 
for comparison, the figure also reports a histogram representing 
the probability distribution of the annual growth rate provided 
in 2016Q3 (the forecast origin) by the Survey of Professional 
Forecasters.16 Our “optimal” density forecasts are broadly in line 
with the SPF histogram but of course allow for a more detailed 
characterization of the forecast distribution.

Next, we examine the behavior of density forecasts across 
different parts of the GDP distribution. To this aim, Figure 5 
plots the entire empirical distribution of the PITs, along with 

FIGURE 3    |    Optimal PIT- based forecast combination weights (w∗
2
) over time. Note: The area chart in the left panel shows the time- varying 

forecast combination weights for all the 13 views used to estimate the Markov- switching AR model. The chart goes from 1978Q1 to 2019Q4. The 
weights (w∗

2
) are obtained using the PIT- based optimization procedure. The right panel plots the cumulative weight assigned to the views derived 

from the Fed's supervisory scenarios (views 6- 13). See Table 1 for the list of views.

FIGURE 4    |    Density forecasts for 2016Q4. Note: The figure shows 
three probability density functions (PDFs): the density forecast of GDP 
growth from an AR model (red line), the density forecast generated 
by a three- regime model using information from the Fed's stress test 
scenarios (green line, view 9 in Table 1), and the optimized scenario- 
augmented MSAR forecast (blue line), using combination weights w∗

2
. 

The three dashed vertical lines indicate the three scenarios for 2016Q4 
contained in the 2016 Fed stress test. The figure also reports a histogram 
representing the distribution of the annual growth rate provided in 
2016Q3 by the Survey of Professional Forecasters. The actual growth 
rate of GDP in 2016Q4 was 2%.
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9 of 13

the 95% confidence intervals of the uniform distribution, as 
calculated by Rossi and Sekhposyan (2019), which account for 
sample uncertainty.17 The figure shows both the cumulative 
distribution function (CDF) and a histogram of the PITs (nor-
malized), with deciles along the horizontal axis. For perfectly 
calibrated forecasts, the empirical CDF of the PITs would 
lie on the 45° line, and the histogram bars would all have a 
height of 1. We report the empirical distribution of the PITs 
associated with the optimized SA- MSAR forecasts using com-
bination weights w∗

2
. As the figure shows, the empirical CDF 

always lies within the 95% confidence interval of the uniform 
distribution, in line with the result of the KS test in Table 2. 
In the histogram, all bars are within the confidence bands or 
on the bounds, except for the highest decile. This indicates 
that the density forecasts are well- behaved in most parts of 
the GDP growth distribution. Focusing on the tails, we note 
that the bar at the lowest decile lies approximately on the 
lower bound of the 95% confidence interval, suggesting that 
the forecasts capture left tail risk quite adequately. The bar at 
the highest decile lies below the lower bound, indicating some 
overdispersion of the forecasts in the upper tail (i.e., too few 
realizations of the target variable fall in the right tail of the 
forecast density).

3.3.2   |   Extension: Applying Density Transformations

Lastly, we extend our approach by combining it with two 
types of density transformations that have been proposed 
in the literature to further improve density forecast perfor-
mance: the beta- transformed linear pool (BLP; see  Gneiting 
and Ranjan 2010, 2013) and the empirically transformed linear 
opinion pools (EtLOP, Garratt, Henckel, and Vahey 2023). The 
BLP applies a transformation of the conditional forecast densi-
ties using the beta distribution. This can improve the calibration 
and, in particular, the dispersion of density forecasts produced 
by simple linear combinations. The EtLOP transforms the den-
sity forecasts so that they match the empirical CDF of the target 
variable (GDP growth, in our case), in order to better accommo-
date non- Gaussianity.

We alternatively apply the beta transformation and the empir-
ical transformation to the optimized linear combinations of 
density forecasts. In the case of BLP, we select the values of the 
two shape parameters of the beta distribution recursively, using 
the same optimization scheme described before. In the case of 
EtLOP, at any time t considered as the forecast origin, we trans-
form the optimized density forecasts using the empirical distri-
bution of GDP growth estimated nonparametrically (by kernel 
smoothing) on data up to time t.

Table  3 shows the results. We report results using optimal 
weights, but very similar conclusions are obtained using opti-
mal priors. As a benchmark, we also report the results of BLP 
and EtLOP transformations applied to AR forecasts. As the 
table shows, the beta transformation further improves the den-
sity forecast performance of our scenario- augmented MSAR 
forecasts, in terms of both log scores and PITs. The ADP is now 
0.4–0.42, and the p- value of the PIT uniformity test jumps to 
0.68–0.81, depending on the specific weights used. Also, our 

FIGURE 5    |    Empirical distribution of the PITs. Note: The figure shows the empirical distribution of the probability integral transforms (PITs) 
associated with the optimized SA- MSAR density forecasts. The left panel shows the cumulative distribution function and the right panel shows the 
histogram of the PITs (normalized). In both panels, red solid lines indicate the uniform distribution and dashed lines indicate the 95% confidence 
interval of the uniform distribution.

TABLE 3    |    Applying density transformations: BLP and EtLOP.

Forecasting method APD KS

EtLOP -  AR 0.21 0.00

BLP -  AR 0.39 0.18

EtLOP -  SA- MSAR w∗
1

0.26 0.00

EtLOP -  SA- MSAR w∗
2

0.26 0.00

BLP -  SA- MSAR w∗
1

0.42 0.68

BLP -  SA- MSAR w∗
2

0.40 0.81

Note: The table reports the average predictive density (APD) and the p- value 
of a Kolmogorov–Smirnov (KS) test of uniformity of the PITs associated with 
optimized scenario- augmented MSAR (SA- MSAR) forecasts, transformed using 
two alternative approaches: the beta- transformed linear pool (BLP; Gneiting 
and Ranjan 2010, 2013) and the empirically transformed linear opinion pools 
(EtLOP, Garratt, Henckel, and Vahey 2023). As a benchmark, the table also 
reports the results for BLP-  and EtLOP- transformed AR forecasts. Values in bold 
emphasis highlight the extended version of our methodology which achieves the 
best results. The bold letter w in the other rows is motivated by the fact that the 
w variables are defined in bold in the text (see, e.g., Equation (9)).

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3228 by A

rea Sistem
i D

ipart &
 D

oc, W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 13 Journal of Forecasting, 2024

optimized SA- MSAR forecasts, once transformed by BLP, re-
main clearly superior to the benchmark BLP- transformed AR 
forecasts, in terms of both accuracy and calibration, although 
benchmark forecasts have also improved compared to their un-
transformed counterparts from Table 2. Conversely, the EtLOP 
methodology does not appear to provide any improvement in 
this specific empirical application.

Finally, Figure 6 shows the entire empirical distribution of the PITs 
in the case of beta- transformed optimal SA- MSAR forecasts (using 
combination weights w∗

2
). In this case, the highest decile also lies 

within the 95% confidence bands of the uniform distribution.

These results can be interpreted in light of the methodolog-
ical differences between EtLOP and BLP. The main advan-
tage of EtLOP is the great flexibility of the nonparametrically 
fitted empirical distribution used to transform the forecasts. 
However, the distribution can be fitted poorly, especially in the 
tails. Moreover, the approach constrains the forecast densities 
to align with the distribution of past observations. The BLP 
parametric approach is less flexible in adapting to empirical 
data but gives the forecaster more control over the shape of 
the forecasts, as they do not have to conform to the historical 
distribution of the target variable. In our empirical application, 
the fine- tuning of the beta transformation leads to concentrate 
more probability mass in the central part of the forecast dis-
tribution and less in the tails, compared to the untransformed 
forecasts. This adjustment further refines the calibration of 
the tails, as can be seen by comparing Figure 6 with Figure 5. 
Conversely, in this context, the empirically transformed distri-
butions tend to underperform especially in the left tail (under-
estimating the frequency of realizations).

4   |   Conclusions

We have developed an approach for generating density fore-
casts of macroeconomic variables using a variety of discrete 
economic scenarios provided by external sources. The ap-
proach is based on a Bayesian regime- switching model in 

which experts' views are translated into priors on economic 
regimes, and different views are pooled together to enhance 
density forecast performance.

We have presented an empirical application in which density 
forecasts of US GDP are formed using the supervisory scenarios 
defined by the Fed. We have shown that the approach is able to 
achieve both good forecast accuracy and correct calibration of 
predictive distributions, merging the flexibility of mixture pre-
dictive densities provided by regime- switching models with the 
benefits of forecast combination, which are well- established in 
the literature.

Importantly, this methodology allows to evaluate the usefulness 
of economists' views for density forecasting. To illustrate this 
possibility, the empirical application tracks the contribution of 
Fed's scenarios to the optimized forecasts over time.

This approach appears particularly valuable in all contexts in 
which tail risk has a clear economic interpretation and when 
economic projections have to comply with external, possibly 
judgmental views. Researchers and practitioners interested in 
this kind of analysis may fine- tune the approach by tailoring the 
range of views to be considered and by selecting different objec-
tive functions in the optimization procedure.
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FIGURE 6    |    Empirical distribution of the PITs: BLP- MSAR. Note: The figure shows the empirical distribution of the probability integral transforms 
(PITs) associated with the optimized SA- MSAR density forecasts, transformed using a beta distribution (Gneiting and Ranjan 2010, 2013). The left 
panel shows the cumulative distribution function and the right panel shows the histogram of the PITs (normalized). In both panels, red solid lines 
indicate the uniform distribution and dashed lines indicate the 95% confidence interval of the uniform distribution.
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Endnotes

 1 As explained in Federal Reserve (2013, Appendix A of Part 252), “the 
baseline scenario is designed to represent a consensus expectation” 
and is constructed using the forecasts of private sector forecasters 
(e.g., Blue Chip Consensus Forecasts and the Survey of Professional 
Forecasters), government agencies, and other public- sector organi-
zations (e.g., the International Monetary Fund and the Organization 
for Economic Co- operation and Development). To develop the se-
verely adverse scenario, the Fed relies on a recession approach, i.e., 
it specifies the “future paths of variables to reflect conditions that 
characterize post- war U.S. recessions”. The severity of recessions is 
mainly determined by the level and increase of the unemployment 
rate, as well as the occurrence of a housing recession. In post- war 
US recessions that are classified as severe, GDP has dropped about 
3.5 percent and unemployment has increased by a total of about 4 
percentage points, on average (Federal Reserve 2013, Appendix A of 
Part 252, Table 1). The adverse scenario reflects “a set of economic 
and financial conditions that are more adverse than those associated 
with the baseline scenario but less severe than those associated with 
the severely adverse scenario”.

 2 A well- calibrated forecast is one that does not make systematic errors: 
if p is the predicted probability assigned to a given random event, then 
that event should empirically occur with frequency p.

 3 We assume state- independent autoregressive coefficients (see, e.g., 
Hamilton 1989) to avoid the overfitting problems that easily arise in 
macro applications of regime- switching models. In particular, as ex-
plained in Hamilton  (2016), “inference about parameters that only 
show up in regime i can only come from observations within that 
regime. With postwar quarterly data that would mean about 50 obser-
vations from which to estimate all the parameters operating during 
recessions. One or two parameters could be estimated fairly well, but 
overfitting is again a potential concern in models with many parame-
ters. For this reason researchers may want to limit the focus to a few 
of the most important parameters that are likely to change, such as 
the intercept and the variance”.

Also, as pointed out by Hamilton (2016), while there is no theoreti-
cal reason to assume that all regime- specific densities are normal, 
the same concerns of overfitting suggest using a normal distribution, 
which is defined by just two parameters. The assumption of normality 
is generally made in the literature on regime- switching models, with 
very few exceptions, such as Dueker (1997). Some empirical evidence 
may be used to corroborate this assumption. For instance, Acemoglu, 
Ozdaglar, and Tahbaz- Salehi (2017) find that, once large downturns 
are excluded from the data, the US GDP growth distribution appears 
to be well approximated by a normal.

 4 Source: The US Bureau of Economic Analysis, Real Gross Domestic 
Product (series code: GDPC1). We use the complete set of real- time 
data vintages provided in the Archival FRED (ALFRED) database 
compiled by the Federal Reserve Bank of St. Louis. The first vintage 
was released in December 1991. For all sample windows ending be-
fore 1991Q4, we use the data contained in the first available vintage. 
As vintages are generally released at a monthly frequency, for each 
quarter we take the last vintage released within that quarter.

 5 Our choice of using the year- on- year (YoY) rather than the quarter- 
on- quarter (QoQ) growth rate of GDP in the MSAR model follows the 
same reasoning as in Binder and Gross (2013): since the YoY rate is 
more persistent than the QoQ rate, changes in the mean and variance 
of the YoY rate are more likely to reflect the transition between differ-
ent economic regimes compared to changes in the QoQ rate, which 
are more affected by noisy events specific to any given quarter.

 6 The scenarios are available at https:// www. feder alres erve. gov/ super 
visio nreg/ dfast -  archi ve. htm.

 7 Our choice of the maximum number of regimes is supported by the 
results of Bauwens, Carpantier, and Dufays (2017). These authors de-
velop a model that allows for an infinite number of regimes, using 
a nonparametric Dirichlet process. However, when estimating the 

model for US GDP growth (with different breaks for the mean and 
variance parameters), they find that the posterior probability of the 
number of regimes being at most 5 lies between 98% and 100% for 
the mean parameters and between 74% and 100% for the variance, 
depending on the prior used for estimation.

 8 Although the Fed stress test scenarios represent hypothetical paths 
and not forecasts, they are intended to be plausible even when severe. 
Therefore, they can legitimately be assigned predictive probabilities 
(see, e.g., Yuen 2013) and used to form density forecasts.

 9 The stress test scenarios are defined in terms of annualized quarter- 
on- quarter growth rates, so that averaging over the last four quarters 
approximates the year- on- year growth rate in the last quarter.

 10 To make the prior on �2
k
 diffuse, the following values are selected for 

the hyperparameters: c0 = 3, g0 = 0.5 and G0 = 0.5. These imply 
that �2

k
 has a prior expected value of 0.5 percentage points of GDP and 

a high prior variance of 1.25 percentage points (see Section A.3 in the 
Supporting Information Appendix).

 11 Specifically, the hyperparameters for the k- th row of the transition 
matrix � are ekk = 2 and ekj = 1∕(K − 1) if k ≠ j, ∀k, j. Given the 

properties of the Dirichlet distribution, E(�kj) = ekj∕
�∑K

l=1 ekl

�
.

 12 In this context, the choice of using expanding windows, as opposed 
to rolling windows, increases the probability that the variable “visits” 
most or all the regimes within the sample, thus greatly facilitating the 
estimation of the regime- switching model.

 13 We estimate the MSAR model using the MATLAB package bayesf 
Version 2.0 by Frühwirth- Schnatter (2008). For each MSAR esti-
mate, the Markov Chain Monte Carlo (MCMC) algorithm uses 1000 
iterations as burn- in and 1000 iterations to store the results. Starting 
from the sample of forecasts produced by the MCMC algorithm, a 
complete probability density function is fitted using a normal kernel 
smoothing function.

 14 For instance, in the case of equal prior probabilities, it is assumed that 
�0
K
= 1∕K  for each K and that �(�0K ,i|K) = 1∕PK for each view �0K ,i.

 15 Since correct calibration implies that the PITs are realizations of i.i.d 
U(0,1) variables, we also test for the serial independence of the PITs. 
Specifically, following Rossi and Sekhposyan  (2014), we perform a 
Ljung–Box test of independence for both the first and the second mo-
ments of the PITs. Both tests do not reject the null hypothesis of serial 
independence, implying that forecasts are well- calibrated also in this 
respect.

 16 Note that the SPF does not provide a continuous density function of 
the quarterly GDP growth rate but only probabilities associated with 
discrete intervals of annual GDP growth (e.g., the probability that an-
nual GDP growth in 2016 will be between 1% and 2%).

 17 For this analysis, we use Matlab code shared by Rossi and 
Sekhposyan  (2019). As mentioned by Adrian, Boyarchenko, and 
Giannone (2019), confidence bands should be taken as approximations 
when forecasts are computed using an expanding estimation windows.
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