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ABSTRACT
Among randomized numerical linear algebra strategies, so-called sketching procedures are emerging as effective reduction means
to accelerate the computation of Krylov subspace methods for, for example, the solution of linear systems, eigenvalue computa-
tions, and the approximation of matrix functions. While there is plenty of experimental evidence showing that sketched Krylov
solvers may dramatically improve performance over standard Krylov methods, especially when combined with a truncated orthog-
onalization step, many features of these schemes are still unexplored. We derive a new sketched Arnoldi-type relation that allows
us to obtain several different new theoretical results. These lead to an improvement of our understanding of sketched Krylov
methods, in particular by explaining why the frequently occurring sketched Ritz values far outside the spectral region of 𝐴 do not
negatively influence the convergence of sketched Krylov methods for 𝑓(𝐴)𝑏. Our findings also help to identify, among several pos-
sible equivalent formulations, the most suitable sketched approximations according to their numerical stability properties. These
results are also employed to analyze the error of sketched Krylov methods in the approximation of the action of matrix functions,
significantly contributing to the theory available in the current literature.

1 | Introduction

The field of numerical linear algebra is currently experiencing
a shift of paradigm with the advent of fast and scalable ran-
domized algorithms for many core linear algebra problems, the
most prominent one probably being the now widely adopted ran-
domized singular value decomposition [1]. A specific, important
tool that has emerged in recent years in the context of random-
ized numerical linear algebra is the so-called sketch-and-solve
paradigm. While initially only used—very successfully—for
computations with rather crude accuracy demands, for example,
(low-rank) matrix approximation [2, 3], it was recently discovered
that—when combined with Krylov subspace methods—it might
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also be applicable for high accuracy computations as, for
example, the solution of linear systems, eigenvalue computa-
tions, and the approximation of matrix functions [4–7]. The main
idea in these methods is to use randomized sketching for reducing
the cost of orthogonalization by, for example, combining it with
a truncated Gram–Schmidt process. This often allows a huge
boost in performance, as orthogonalization is typically the main
bottleneck in polynomial Krylov methods when applied to non-
symmetric problems, particularly on modern high-performance
architectures, where each inner product introduces a global syn-
chronization point and communication tends to be the dominat-
ing factor. For symmetric matrices, computation of an orthogonal
Krylov basis is possible by the short recurrence Lanczos method
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[8], so that the gains one can obtain by reducing the cost of orthog-
onalization are rather limited. We therefore focus on the nonsym-
metric case in the following.

While it was experimentally confirmed that sketched Krylov
solvers might dramatically improve performance over standard
Krylov methods [4–7], many features of these methods are not
fully understood yet. In particular, the numerical stability of these
methods and how exactly they relate to their non-randomized
counterparts needs further analysis. Several recent studies lay
a theoretical groundwork with elements of an analysis [5, 6,
9, 10], however, none of these can satisfactorily explain the
behavior observed in practice yet, in particular for nonsym-
metric problems. For example, sometimes these methods work
incredibly well, essentially reproducing the behavior of the full
(non-sketched) Arnoldi method at a fraction of the cost, but in
other cases they may fail completely; see, for example, the exper-
iments reported in [5, 6]. The currently available theory can nei-
ther satisfactorily explain the successful cases, nor the failures.

In this work, we derive new theoretical results which help bet-
ter understand the overall behavior of Krylov methods that com-
bine truncated orthogonalization with randomized sketching and
identify which of the several possible (mathematically equiv-
alent) formulations of sketched Krylov approximations can be
expected to enjoy the most favorable numerical stability proper-
ties. We then use these results to analyze the error of sketched
Krylov methods for approximating the action of matrix functions,
𝑓(𝐴)𝑏, where 𝐴 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛, significantly contributing to
the currently available theory [5, 6].

One of our main results is a new Arnoldi-type relation for the
sketched basis (Proposition 3.1). This is a general result and it can
be used to analyze many of the sketching approaches obtained
so far, from linear systems to eigenvalue problems. We show that
full, truncated, and sketched Arnoldi methods are all related by
basis transformations and rank-one additions; see the summary
in Table 1. These explicit relations allow us to derive new alge-
braic expressions for the distance between the full Arnoldi and
sketched approximations to matrix function evaluation, which
we analyze in detail (Corollaries 5.1 and 5.4). This analysis
is based on new results concerning the connection between
functions of certain rank-one modified matrices and divided
differences (Theorems 4.1 and 4.2). We also provide an explana-
tion of the good performance of the so-called sketched-whitened
Arnoldi method, in spite of apparently adverse spectral proper-
ties of the involved projected matrix; see in particular the family
of bounds (42).

Here is an outline of the paper. In Section 2 we recall some back-
ground material that will serve as a foundation for our analysis.
In particular, we cover the (full and truncated) Arnoldi method
for 𝑓(𝐴)𝑏 (Section 2.1), subspace embeddings (Section 2.2), and

TABLE 1 | Summary of analyzed matrix function approximations, in the truncated and fully orthonormal bases.

Approx Truncated basis 𝑼𝒅 Fully orthonormal basis 𝓤𝒅

𝑓FOM
𝑑

— 𝒰𝑑𝑓(ℋ𝑑)𝑒1 ∥ 𝑏 ∥ (2)
𝑓TR
𝑑

𝑈𝑑𝑓(𝐻𝑑)𝑒1 ∥ 𝑏 ∥ (4) 𝒰𝑑𝑓
(
ℋ𝑑 − ℎ𝑑+1,𝑑𝓉𝑒

𝑇
𝑑

)
𝑒1 ∥ 𝑏 ∥ (36)

𝑓SK
𝑑

𝑈𝑑𝑇
−1
𝑑
𝑓
(
𝐻̂𝑑 + 𝑡̂𝑒𝑇

𝑑

)
𝑒1 ∥ Sb ∥ (18) 𝒰𝑑𝑓

(
ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑

)
𝑒1 ∥ 𝑏 ∥ (33)

prior work on sketched Krylov methods (Section 2.3). In Section 3
we show that a new Arnoldi-like relation, that we name the
sketched Arnoldi relation, holds also when truncated Krylov sub-
space methods and sketching techniques are combined. Then,
in Section 4 we show how to rewrite the sketched Arnoldi rela-
tion in terms of functions of certain rank-one modified matri-
ces and present some general results on such matrix func-
tions that will be employed to relate sketched and non-sketched
approximations in Section 5. The role of eigenvector-related
coefficients is further investigated in Section 6, leading to the
counterintuitive observation that the outlying spurious Ritz val-
ues generated by the sketched approach do not contribute to the
error vector. In Section 7 we discuss some issues related to the sta-
bility of the analyzed procedures, while our conclusions are given
in Section 8.

In the following, the notation ∥ ⋅ ∥ will be used to denote the
Euclidean norm for vectors and the corresponding induced norm
for matrices. Similarly, ∥ 𝑧 ∥∞≔ max𝑖 ∣ 𝑧𝑖 ∣ will denote the vec-
tor infinity norm whereas ∥ 𝑇 ∥∞ the corresponding matrix
norm. The identity matrix will be denoted by 𝐼, with dimen-
sion clear from the context, while 𝑒𝑗 will denote the 𝑗th col-
umn of the identity matrix. We denote the 𝑑th Krylov sub-
space corresponding to 𝐴 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛 by 𝒦𝑑(𝐴, 𝑏) =
span

{
𝑏,Ab, 𝐴2𝑏, . . . , 𝐴𝑑−1𝑏

}
. Finally, roman font (ℋ𝑑, 𝒰𝑑) will

be used for quantities related to a non-orthogonal Arnoldi rela-
tion and calligraphic font (ℋ𝑑,𝒰𝑑) for quantities related to a fully
orthogonal Arnoldi relation. Matlab [11] has been used for all our
numerical experiments.

Throughout, exact arithmetic computations will be assumed in
our derivations.

2 | Background Material

In this section, we review a few known tools that will be crucial
ingredients in our analysis.

2.1 | The Full and Truncated Arnoldi Method

The backbone of most Krylov subspace methods is the Arnoldi
process [12], which, given a matrix 𝐴 ∈ ℝ𝑛×𝑛, a vector 𝑏 ∈
ℝ𝑛, and a target dimension 𝑑, computes a nested orthonormal
basis 𝒰𝑑 ∈ ℝ𝑛×𝑑 of 𝒦𝑑(𝐴, 𝑏) via the modified Gram–Schmidt
orthonormalization and gives rise to the Arnoldi relation

𝐴𝒰𝑑 = 𝒰𝑑+1ℋ 𝑑
= 𝒰𝑑ℋ𝑑 +𝒽𝑑+1,𝑑𝓊𝑑+1𝑒

𝑇
𝑑 (1)

where ℋ
𝑑
=
[
ℋ𝑑;𝒽𝑑+1,𝑑𝑒

𝑇
𝑑

]
∈ ℝ(𝑑+1)×𝑑, is an unreduced upper

Hessenberg matrix containing the orthogonalization coefficients,
and 𝒰𝑑+1 =

[
𝒰𝑑,𝓊𝑑+1

]
.
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Given the quantities from the Arnoldi relation (1), one can extract
an approximation for 𝑓(𝐴)𝑏 from the Krylov subspace via

𝑓FOM
𝑑 = 𝒰𝑑𝑓(ℋ𝑑)𝑒1 ∥ 𝑏 ∥ (2)

We call this the full Arnoldi (or FOM, in analogy with the Full
Orthogonalization Method for linear systems) approximation.

The main contributions to the computational cost of perform-
ing 𝑑 steps of the Arnoldi method are 𝑑 matrix vector prod-
ucts with 𝐴 at a cost of 𝒪(𝑑 nnz(𝐴)) floating point operations
(flops), assuming that 𝐴 is sparse with nnz(𝐴) nonzeros, and the
modified Gram–Schmidt orthogonalization which has a cost of
𝒪
(
𝑑2𝑛

)
flops across all 𝑑 iterations. Due to its quadratic growth,

the cost of orthogonalization quickly dominates the overall cost
of the method. In particular, on modern high performance
architectures, each inner product introduces a global synchro-
nization point, which leads to a large amount of communica-
tion, unless specific “low-sync” implementations are used, which
come with their own challenges regarding numerical stability;
see, for example, the recent survey [13].

An alternative—which is well-explored in the solution of linear
systems—is to use a truncated Arnoldi method (see algorithm
6.6 in [14]), that is, instead of orthogonalizing a new basis vec-
tor against all previous basis vectors, one only orthogonalizes it
against a fixed number 𝑘 of previous vectors (with 𝑘 = 2 mimick-
ing the Lanczos method for Hermitian 𝐴 [8]), thereby overcom-
ing the quadratic growth of the orthogonalization cost. This leads
to a truncated Arnoldi relation

AU𝑑 = 𝑈𝑑+1𝐻𝑑 (3)

with 𝑈𝑑+1 =
[
𝑈𝑑, 𝑢𝑑+1

]
, where now 𝐻𝑑 is banded and the

columns of 𝑈𝑑 are not all mutually orthonormal. In the following
we denote𝐻𝑑 =

[
𝐻𝑑; ℎ𝑑+1,𝑑𝑒

𝑇
𝑑

]
, where only the last component in

the last row is nonzero. Given (3), one can compute the truncated
FOM approximation

𝑓TR
𝑑 = 𝑈𝑑𝑓(𝐻𝑑)𝑒1 ∥ 𝑏 ∥ (4)

which was, for example, recently proposed in algorithm 3.3 of [5].
The price one pays for the reduction in orthogonalization cost
when using (4) is that, typically, convergence is delayed in com-
parison to the full Arnoldi approximation (2); see, for example [5]
as well as Example 7.1 below.

2.2 | Subspace Embeddings

The foundations of the sketched Krylov methods discussed in
this paper are subspace embeddings [2, 15, 16], which embed
a low-dimensional subspace 𝒱 of ℝ𝑛 into a smaller space ℝ𝑠,
𝑠 ≪ 𝑛, such that inner products (or norms) are distorted in a
controlled manner. Specifically, a matrix 𝑆 ∈ ℝ𝑠×𝑛 is called an
𝜀-subspace embedding for 𝒱 (for a given distortion parameter
𝜀 ∈ [0, 1)), if

(1 − 𝜀) ∥ 𝑣∥2 ≤∥ Sv∥2 ≤ (1 + 𝜀) ∥ 𝑣∥2 (5)

for all 𝑣 ∈ 𝒱 . This is equivalent to requiring

⟨𝑢, 𝑣⟩ − 𝜀 ∥ 𝑢 ∥∥ 𝑣 ∥≤ ⟨Su, Sv⟩ ≤ ⟨𝑢, 𝑣⟩ + 𝜀 ∥ 𝑢 ∥∥ 𝑣 ∥ (6)

for all 𝑢, 𝑣 ∈ 𝒱 by the parallelogram inequality.

Constructing 𝑆 as above requires knowledge of the subspace 𝒱
that shall be embedded. In our context, 𝒱 will be a Krylov sub-
space 𝒦𝑑(𝐴, 𝑏) which is not known in advance. To still con-
struct an embedding in this case, one can use so-called oblivious
embeddings. A matrix 𝑆 is an oblivious 𝜀-subspace embedding
for subspaces of dimension 𝑑, if condition (5) holds with high
probability for any subspace 𝒱 with dim(𝒱 ) = 𝑑. To be pre-
cise, the inputs for constructing 𝑆 are the embedding quality 𝜀,
the sketching dimension 𝑠 and an accepted failure probability 𝛿.
Based on these, 𝑆 is constructed using probabilistic methods; see,
for example [16], or sect. 8 of [17] for details.

Frequently, oblivious subspace embeddings are constructed as
subsampled trigonometric transforms,

𝑆 =

√
𝑠
𝑛

DNE (7)

where 𝐸 ∈ ℝ𝑛×𝑛 is a diagonal matrix with Rademacher entries
(i.e., the diagonal entries are randomly chosen as ±1 with equal
probability), 𝐷 ∈ ℝ𝑠×𝑛 contains 𝑠 randomly selected rows of
the identity matrix, and 𝑁 ∈ ℝ𝑛×𝑛 is an orthogonal trigonomet-
ric transform (e.g., discrete Fourier transform, discrete cosine
transform or Walsh–Hadamard transform). One can show that
(7) with 𝑠 = 𝒪

(
𝜀−2

(
𝑑 + log 𝑛

𝛿

)
log 𝑑

𝛿

)
is an oblivious 𝜀-subspace

embedding with failure probability 𝛿. With a careful implemen-
tation, such 𝑆 can be applied to a vector in 𝒪(𝑛 log 𝑠) flops. In
practice, selecting the smaller sketching dimension 𝑠 = 𝒪

(
𝜀−2 𝑑

𝛿

)
appears to work very well, except for a few academic examples.
We refer to, for example [18], and sect. 9 of [17] for a discussion
and experimental evidence.

As the required sketching dimension 𝑠 depends quadratically on
the embedding quality 𝜀, one typically needs to accept a rather
crude embedding quality, such as 𝜀 = 1∕

√
2 or 𝜀 = 1∕2, in order

to avoid excessive growth of computational cost.

To conclude this subsection, we mention that a subspace embed-
ding 𝑆 induces a semidefinite inner product

⟨𝑢, 𝑣⟩𝑆 ≔ ⟨Su, Sv⟩ (8)

From the embedding property, it directly follows that when
restricted to𝒱 , ⟨⋅, ⋅⟩𝑆 is an actual inner product; see, for example,
sect. 3.1 in [9].

In the remainder of the paper, we often simply call 𝑆 a “sketching
matrix,” thereby meaning that it is an 𝜀-subspace embedding for
a certain Krylov subspace (which will be clear from the context)
with a suitable value of 𝜀.

2.3 | The Sketched Arnoldi Method

As already mentioned in the introduction, a rather novel
approach for reducing the orthogonalization cost in Krylov sub-
space methods via truncated orthogonalization without sacrific-
ing convergence speed is to combine the method with oblivious
subspace embeddings, leading to so-called sketched Krylov meth-
ods; see [7] for an application to linear systems and eigenvalue
problems as well as [5, 6] for approximating the action of matrix
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functions. Similar ideas have also been discussed in [9] in the con-
text of model order reduction.

The main idea of the methods in [6, 7] is to first cheaply construct
a non-orthogonal Krylov basis and then subsequently approxi-
mately orthogonalize it, working just with sketched vectors of
size 𝑠 ≪ 𝑛 (a process known as basis whitening). We explain
the methodology for approximations of 𝑓(𝐴)𝑏, closely following
sect. 2 of [6]. Given a non-orthogonal Krylov basis 𝑈𝑑 result-
ing from a truncated Arnoldi process and a sketching matrix 𝑆,
the “sketched FOM” (sFOM) approximation for 𝑓(𝐴)𝑏 can be
defined as

𝑓SK
𝑑 = 𝑈𝑑𝑓

(
(SU𝑑)

†SAU𝑑

)
(SU𝑑)

†Sb (9)

where (SU𝑑)
† denotes the Moore-Penrose pseudoinverse of SU𝑑.

The basis whitening procedure then consists of computing a thin
QR decomposition SU𝑑 = 𝑄𝑑𝑇𝑑 of the sketched basis and per-
forming the replacements

SU𝑑 ← 𝑄𝑑, SAU𝑑 ← (SAU𝑑)𝑇
−1
𝑑 , 𝑈𝑑 ← 𝑈𝑑𝑇

−1
𝑑 (10)

Note that the matrix 𝑈𝑑𝑇
−1
𝑑

from the last replacement need not
be formed,1 because inserting (10) into (9) yields

𝑓SK
𝑑 = 𝑈𝑑

(
𝑇−1
𝑑 𝑓

(
𝑄∗
𝑑SAU𝑑𝑇

−1
𝑑

)
𝑄∗
𝑑Sb

)
(11)

which can be evaluated by first applying𝑇−1
𝑑

via back substitution
and then multiplying by 𝑈𝑑.

The motivation for using (10) and (11) is that the trans-
formed basis 𝑈𝑑𝑇

−1
𝑑

appearing in (16) is orthogonal with respect
to the inner product ⟨⋅, ⋅⟩𝑆 and is known to be extremely
well-conditioned in terms of its spectral condition number. This
is stated in the following result, which directly follows from
Corollary 2.2 in [4]; see also sect. 4 in [19] for related, earlier
results in a probabilistic setting.

Proposition 2.1. If 𝑆 is an 𝜀-subspace embedding of
𝒦𝑑(𝐴, 𝑏), then the 2-norm condition number of 𝑈𝑑𝑇

−1
𝑑

is bounded
as

𝜅2
(
𝑈𝑑𝑇

−1
𝑑

) ≤ √
1 + 𝜀
1 − 𝜀

(12)

For example, for a practically reasonable distortion parameter 𝜀 =
1∕

√
2, Proposition 2.1 guarantees that 𝜅2

(
𝑈𝑑𝑇

−1
𝑑

) ≤ 1 +
√

2 ≈
2.4142.

Numerical experiments in sect. 5 of [6] show that indeed, the
approximation (11) often converges remarkably similar to the
full Arnoldi approximation despite using the cheaper truncated
orthogonalization. It is also observed that the method may some-
times fail completely, though.

As an alternative to using sketching as a means to retrospec-
tively improve the conditioning of a locally orthogonal Krylov
basis, another recently explored avenue for reducing orthogonal-
ization cost and communication in Krylov methods via sketch-
ing is to perform a full Gram–Schmidt orthogonalization, but
with respect to the semidefinite inner product ⟨⋅, ⋅⟩𝑆 defined in

(8) instead of the Euclidean inner product; cf., for example [4,
10], for use of this technique in the context of solving linear sys-
tems by FOM or GMRES. In algorithm 3.1 of [5] this approach
is extended to approximating the action of matrix functions.
By using this approach, inner products in the orthogonaliza-
tion become cheaper (as they involve only vectors of length 𝑠 ≪
𝑛), but the asymptotic cost of the orthogonalization remains at
𝒪
(
𝑑2𝑛

)
, just as for full Arnoldi. This approach is therefore mainly

attractive when working in a highly parallel computing environ-
ment where inner products are the main bottleneck due to expen-
sive communication.

3 | The Sketched Arnoldi Relation

In the following, we focus on better understanding the behavior
of the sketched Arnoldi approximation (9) (or equivalently (11)).
To do so, we start by deriving a sketched analogue of the Arnoldi
relation (1), which allows to rewrite (11) in a way that is both eas-
ier to interpret and—more importantly—allows to derive several
new theoretical results in later sections of this paper.

Proposition 3.1. Let 𝑈𝑑+1, 𝐻𝑑 be the quantities from a trun-
cated Arnoldi relation (3) and let SU𝑑+1 = 𝑄𝑑+1𝑇𝑑+1 be a thin QR
decomposition with

𝑄𝑑+1 = [𝑄𝑑, 𝑞] and 𝑇𝑑+1 =

[
𝑇𝑑 𝑡

0𝑇 𝜏𝑑+1

]

Then the following Arnoldi-like formula holds:

SAU𝑑 = SU𝑑

(
𝐻𝑑 + re𝑇𝑑

)
+ 𝜏𝑑+1ℎ𝑑+1,𝑑qe𝑇𝑑 (13)

with 𝑟 = ℎ𝑑+1,𝑑𝑇
−1
𝑑
𝑡 and 𝑞⊥SU𝑑.

Proof . Le ℎ𝑇 = ℎ𝑑+1,𝑑𝑒
𝑇
𝑑

. We have

SAU𝑑 = SU𝑑+1𝐻𝑑 = 𝑄𝑑+1𝑇𝑑+1𝐻𝑑 = 𝑄𝑑+1

[
𝑇𝑑𝐻𝑑 + th𝑇[
0𝑇, 𝜏𝑑+1

]
𝐻𝑑

]

= 𝑄𝑑𝑇𝑑

(
𝐻𝑑 +𝑇−1

𝑑 th𝑇)+𝜏𝑑+1qh𝑇 = SU𝑑

(
𝐻𝑑 +𝑇−1

𝑑 th𝑇)+𝜏𝑑+1qh𝑇

(14)

The result follows by inserting the definition of 𝑟.

The action of sketching appears only in the vector 𝑟 and in the
scalar 𝜏𝑑+1, while the matrix 𝐻𝑑 + re𝑇

𝑑
differs from 𝐻𝑑 only in its

last column, with a rank-one modification. This will have a quite
interesting impact in the following derivations.

Remark 1. Relations of the form (3) do not only arise in the
context of the truncated Arnoldi method, but also in case of
other recurrences for generating non-orthogonal Krylov bases,
for example, employing Chebyshev or Newton polynomials; see
[20]. Proposition 3.1 thus also applies to these methods, but
we restrict to truncated Arnoldi here for ease of exposition and
because it appears to be the most widely used basis generation
method in sketched Krylov methods.

In order to relate Proposition 3.1 to the basis whitening proce-
dure (10) outlined in Section 2.3, first note that this procedure

4 of 16 Numerical Linear Algebra with Applications, 2024
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was already implicitly employed in the derivation of the sketched
Arnoldi relation due to occurrence of the thin QR decomposition.
The underlying orthogonalization step can be even better appre-
ciated by rewriting (14) as

SAU𝑑𝑇
−1
𝑑 = 𝑄𝑑𝑇𝑑

(
𝐻𝑑 + 𝑇−1

𝑑 th𝑇)𝑇−1
𝑑 + 𝜏𝑑+1qh𝑇𝑇−1

𝑑 (15)

from which we obtain the whitened-sketched Arnoldi relation
(WS-Arnoldi in short)

SA
(
𝑈𝑑𝑇

−1
𝑑

)
= 𝑄𝑑

(
𝐻̂𝑑 + 𝑡̂𝑒𝑇𝑑

)
+

ℎ𝑑+1,𝑑𝜏𝑑+1

𝜏𝑑
qe𝑇𝑑 (16)

where 𝐻̂𝑑 = 𝑇𝑑𝐻𝑑𝑇
−1
𝑑

and 𝑡̂ =
(
ℎ𝑑+1,𝑑∕𝜏𝑑

)
𝑡.

The inclusion of the orthogonalization coefficients 𝑇𝑑, and thus
the use of (16) in place of (13), seems to be very beneficial to the
numerical computation. Indeed, computing functions of 𝐻𝑑 +
re𝑇

𝑑
appears to be quite sensitive to round-off, due to the growing

components of 𝑟, which lead to poor balancing; see the discussion
in Remark 3. Note however, that√

1 − 𝜀
1 + 𝜀

𝜅2(𝑇𝑑) ≤ 𝜅2(𝑈𝑑) ≤
√

1 + 𝜀
1 − 𝜀

𝜅2(𝑇𝑑)

so that 𝑇𝑑 must necessarily be ill-conditioned whenever 𝑈𝑑 is
ill-conditioned. As 𝑈𝑑 results from a truncated orthogonaliza-
tion process, it will become more and more ill-conditioned as 𝑑
increases. Despite this fact, inversion of 𝑇𝑑 can be expected to not
be very problematic in the context of sketched Krylov methods,
as we discuss in Section 7.

The result of Proposition 3.1 can be used to analyze sketched
Krylov methods for the approximation of matrix functions𝑓(𝐴)𝑏.
Some first steps regarding the analysis of these methods were
done in sect. 3.2 of [6] and sect. 4 of [5]. Still, sketched Krylov
methods for 𝑓(𝐴)𝑏 are far from being fully understood from a
theoretical perspective. We highlight two particular issues that
have not been well explored so far. First, sketching might (and
often does) introduce “sketched Ritz values” which lie very far
outside the spectral region of 𝐴. However, these tend to mostly
not negatively influence the performance of the methods. Sec-
ond, there exist many different formulations for how to compute
sketched Krylov approximations, all of them involving computa-
tions with potentially very ill-conditioned matrices; cf. also the
discussion in the preceding paragraph. Still, even in the presence
of severe ill-conditioning and rank deficiency, sketched Krylov
methods can work well in practice. Throughout the next sections,
we approach both these issues and derive new theoretical results
which allow to better capture the properties of the sketched
Arnoldi approximation and better explain the observed behavior.
We start by discussing the relation between the sketched Arnoldi
approximation and functions of certain rank-one modified matri-
ces in Section 4.

4 | The Impact of Rank-One Modifications
on Matrix Functions

The formula (11) defining the sketched Arnoldi approximation
is quite hard to interpret and thus not very insightful. In partic-
ular, the meaning of the small matrix 𝑄∗

𝑑
SAU𝑑𝑇

−1
𝑑

at which 𝑓 is

evaluated is rather unclear. We now show how to rewrite it using
the tools from Section 3 to obtain formulas that are both easier to
interpret and more suitable for a subsequent theoretical analysis.

From the sketched Arnoldi relation (13) and the fact that
(SU𝑑)

† = 𝑇−1
𝑑
𝑄∗
𝑑
, we directly obtain by straightforward algebraic

manipulations that (9) simplifies to

𝑓SK
𝑑 = 𝑈𝑑𝑓

(
𝐻𝑑 + re𝑇𝑑

)
𝑒1 ∥ 𝑏 ∥ (17)

a form much more reminiscent of the standard and truncated
FOM approximations (2) and (4). Using the WS-Arnoldi relation
(16), we can also write

𝑓SK
𝑑 = 𝑈𝑑𝑇

−1
𝑑 𝑓

(
𝐻̂𝑑 + 𝑡̂𝑒𝑇𝑑

)
𝑒1 ∥ Sb ∥ (18)

As shown above, the sFOM approximation to 𝑓(𝐴)𝑏 involves a
rank-one modification to 𝐻𝑑, or a similar matrix. To better under-
stand the role of such modification, we begin by stating a quite
general result, which provides an explicit relationship between
𝑓(𝑀) ∈ ℝ𝑑×𝑑 and functions of a rank-one modification of the
form 𝑓

(
𝑀 + ve𝑇

𝑑

)
. We assume in the following that 𝑀 + ve𝑇

𝑑
is

diagonalizable with eigenvalue decomposition

𝑀 + ve𝑇𝑑 = 𝑋Λ𝑋−1, where Λ = diag(𝜆1, . . . , 𝜆𝑑) (19)

and define the corresponding function

𝑔𝑣(𝑡) =
𝑑∑
𝑖=1

𝛼𝑖𝛽𝑖𝑓[𝑡, 𝜆𝑖] (20)

where

𝑓[𝑡, 𝜆] =

{
𝑓′(𝑡), if 𝑡 = 𝜆
𝑓(𝑡)−𝑓(𝜆)

𝑡−𝜆
, otherwise

(21)

denotes a divided difference and 𝛼𝑖 = 𝑒𝑇
𝑑

Xe𝑖 , 𝛽𝑖 = 𝑒𝑇𝑖 𝑋
−1𝑒1 with

𝑋 from the eigenvalue decomposition (19) of 𝑀 + ve𝑇
𝑑

. The sub-
script in 𝑔𝑣 is meant to keep track of the rank-one modification
used to generate the spectral quantities defining 𝑔𝑣 . The proof of
this result is given in Appendix B.

Theorem 4.1. Let 𝑀 + ve𝑇
𝑑

have the eigendecomposition (19)
and assume that 𝑓 is defined in a region containing the eigenvalues
of 𝑀 and 𝑀 + ve𝑇

𝑑
. Then

𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1 = 𝑔𝑣(𝑀)𝑣

where 𝑔𝑣 is defined in (20).

The formula derived in Theorem 4.1 provides insightful infor-
mation on the role of the (undesired) eigenvalues of the reduced
sketched matrix; see Section 6. However, this expression for the
matrix function 𝑔𝑣 makes it difficult to analyze and measure the
error between the different function evaluations; see also [21]
where such observations are made for 𝑔0. The following reformu-
lation leads to a more penetrating interpretation, and it may be
read off as a different definition of 𝑔𝑣; see Appendix B for its proof.
Notice that the second definition in the theorem below is stated in
terms of higher-order divided differences, which—among other
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representations—can be defined recursively based on (21) (see,
e.g., sect. 5 in [22]) or via the Cauchy integral formula, as

𝑓
[
𝑧1, . . . , 𝑧𝑑+1

]
=

1
2𝜋i ∫Γ

𝑓(𝑧)

(𝑧 − 𝑧1) · · ·
(
𝑧 − 𝑧𝑑+1

)dz (22)

see sect. 9 in [22].

Theorem 4.2. Let 𝑀 be upper Hessenberg and let m𝑑 ≔∏𝑑−1
𝑗=1𝑀𝑗+1,𝑗 , where 𝑀𝑗+1,𝑗 denotes the (𝑗 + 1, 𝑗)th entry of 𝑀.

Assume that 𝑀 + ve𝑇
𝑑

has the eigendecomposition (19), that all
eigenvalues {𝜆1, . . . , 𝜆𝑑} of 𝑀 + ve𝑇

𝑑
are simple and that 𝑓 is defined

in a region containing the eigenvalues of 𝑀 and 𝑀 + ve𝑇
𝑑

. Then

𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1 = m𝑑

𝑑∑
𝑖=1

1
𝜔′(𝜆𝑖)

𝑓[𝑀, 𝜆𝑖]𝑣 (23)

with 𝜔(𝑧) =
∏𝑑

𝑖=1(𝑧 − 𝜆𝑖), from which it also holds

𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1 = m𝑑 𝑓[𝑀, 𝜆1, . . . , 𝜆𝑑]𝑣 (24)

where 𝑓[𝑀, 𝜆1, . . . , 𝜆𝑑] is the order-(𝑑 + 1) divided difference of
the function 𝑓.

Remark 2. Higher-order divided differences have been used
before in matrix function computations, see, for example [23, 24],
where they are employed for representing the error of the (stan-
dard) Arnoldi approximation in the context of restarted methods
(where, in our notation, the function 𝑔0 appears, as no rank-one
modifications occur in that setting). As the authors of [23, 24]
observe, the numerical computation of higher-order divided dif-
ferences can quickly become unstable, so that restarted algo-
rithms based on these error representations did not turn out
to be universally applicable, in particular not for “hard” prob-
lems. Except for [21], where a slightly more stable representa-
tion based on first-order divided differences was used, similar to
our Theorem 4.1, there has not been too much subsequent work
exploring this connection. In sect. 4 of [24], it is also briefly dis-
cussed how to use a divided difference representation in order
to estimate the norm of the Arnoldi error when 𝐴 is (close to)
normal.

While it might not be generally useful for numerical computa-
tions, in the following we rather use the divided difference repre-
sentation as a theoretical tool which allows to compare different
methods and obtain insight into their qualitative behavior.

A few comments on the previous results are in order. By compar-
ing Theorem 4.1 and (23), it follows that for any 𝑖 ∈ {1, . . . , 𝑑} it
holds

𝛼𝑖𝛽𝑖 =

𝑑−1∏
𝑗=1

𝑀𝑗+1,𝑗

𝜔′(𝜆𝑖)

providing some insight into the magnitude of the product 𝛼𝑖𝛽𝑖 for
outlying eigenvalues 𝜆𝑖 . In Section 6 the role of 𝛽𝑖 will be explored
in more details.

We now use the above analysis in order to obtain a general bound
for the norm of the difference between a function of a matrix

and its rank-one modification. This bound emphasizes the role
of the function 𝑓 and the domain on which it acts. The role of the
vector 𝑣 defining the rank-one modification will be discussed in
more detail in Section 5. The results in Theorem 4.2 can be con-
veniently interpreted by using a matrix analog of the well-known
relation between divided differences and differentiation. For an
analytic function ℎ defined on the field of values of 𝑀, we will
also make use of the following bound proved by Crouzeix and
Palencia [25],

∥ ℎ(𝑀) ∥2≤ (1 +
√

2) max
𝑧∈𝐹(𝑀)

∣ ℎ(𝑧) ∣ (25)

We recall that the field of values of a square matrix 𝑀 ∈ ℂ𝑑×𝑑 is
defined as 𝐹(𝑀) =

{
𝑧 ∈ ℂ ∶ 𝑧 = (𝑥∗Mx)∕(𝑥∗𝑥), 𝑥 ∈ ℂ𝑑, 𝑥 ≠ 0

}
.

The following bound can be derived from the Genocchi–Hermite
representation of divided differences; see, for example [22],
appendix B.16 of [26] or problem (6.1.43) in [27].

Proposition 4.1. Let 𝐷 be a closed, convex set in the complex
plane containing 𝑧1, . . . , 𝑧𝑑+1 and let 𝑓 be analytic on 𝐷. Then

∣ 𝑓
[
𝑧1, . . . , 𝑧𝑑+1

]
∣≤

max
𝜁∈𝐷

∣ 𝑓(𝑑)(𝜁) ∣

𝑑!

From this proposition, we obtain the following bound which will
be used in Section 6 below for the sketched Arnoldi approxima-
tion.

Corollary 4.1. Let the assumptions of Theorem 4.2 hold and let
𝐷 ⊆ ℂ be convex and contain 𝐹(𝑀) as well as the nodes 𝜆1, . . . , 𝜆𝑑.
Then,

∥ 𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1 ∥≤ m𝑑(1 +

√
2)

max
𝜁∈𝐷

∣ 𝑓(𝑑)(𝜁) ∣

𝑑!
∥ 𝑣 ∥ (26)

Proof . Denote

ℎ = 𝑓[⋅, 𝜆1, . . . , 𝜆𝑑] (27)

that is, ℎ(𝑧) = 𝑓[𝑧, 𝜆1, . . . , 𝜆𝑑]. From (24), we then have

∥ 𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1 ∥= m𝑑 ∥ ℎ(𝑀) ∥ (28)

Due to the assumptions on 𝐷, we can apply Proposition 4.1 and
further use (25) to bound

∥ ℎ(𝑀) ∥≤ (1 +
√

2) max
𝑧∈𝐹(𝑀)

∣ ℎ(𝑧) ∣≤ (1 +
√

2)
max
𝜁∈𝐷

∣ 𝑓(𝑑)(𝜁) ∣

𝑑!
(29)

Putting (28) and (29) together concludes the proof.

For bounded 𝐷, estimates of the form (26) are insightful for func-
tions such as the exponential, for which it is easy to see that the
term m𝑑∕𝑑! will eventually go to zero with growing 𝑑, as m𝑑 ≤
(∥ 𝑀 ∥∞)𝑑, while all derivatives 𝑓(𝑑) remain bounded. Interest-
ingly, this asymptotic behavior agrees with classical bounds for
Krylov subspace approximations for the exponential function
[28]. In the next section we will show that the error formulas in

6 of 16 Numerical Linear Algebra with Applications, 2024
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Theorem 4.1 and Theorem 4.2 are very general, and can be used
to relate the approximation obtained by the fully orthogonal basis
with that computed by either the truncated or sketched bases.
Hence, the bound in (26), although rather pessimistic in general,
ensures that the two quantities 𝑓

(
𝑀 + ve𝑇

𝑑

)
𝑒1 and 𝑓(𝑀)𝑒1 will

coincide in exact arithmetic, for large enough 𝑑.

Example 4.3. We consider the following problem with the
Toeplitz matrix 𝑀𝑑, where the subscript stresses the dependence on
the dimension 𝑑,

for d=5:5:30
M=toeplitz( [-4, 2, zeros(1,d-2)],
[-4, 1/2, 1/2, zeros(1,d-3)]);
rng(21*pi); e1=eye(d,1);
v=flipud(linspace(1,20,d))’.*randn(d,1);
Mhat=M+v*[zeros(1,d-1),1];
y1=expm(M)*e1;
y1s=expm(Mhat)*e1;

end

These data were chosen for full reproducibility. We also consider
the case where the Toeplitz matrix 𝑀 is substituted by the true
upper Hessenberg matrix obtained with the full Arnoldi recur-
rence at the given iteration d. For this latter case, the Arnoldi
iteration was used with 𝑏 equal to a unit norm constant vector
of dimension 2500, and 𝐴 the finite difference discretization
of the operator Δ𝑢 − 10xu𝑥 − 10yu𝑦 , subject to zero boundary
conditions. The left plot of Figure 1 shows the error norm ∥

exp
(
𝑀𝑑 + 𝑣𝑑𝑒

𝑇
𝑑

)
𝑒1 − exp(𝑀𝑑)𝑒1 ∥ and the bound (1 +

√
2) ∥ 𝑣𝑑 ∥

m𝑑∕𝑑!. Since m𝑑 is moderate, the convergence slope of the
asymptotic curve nicely follows that of the true error. The right
plot shows an analogous performance for the matrix obtained via
an Arnoldi procedure.

For functions other than the exponential the bound in (26) may
not be significant. As an example, for 𝑧−1∕2 the formula for the
derivative contains a factor that essentially grows as the factorial.
To provide further insight, we resort to representations involving
more general tools that take into account the properties of divided

differences in complex domains. More precisely, we can use a
result proved by Curtiss in 1962. We first recall that for a bounded
region 𝐷 of the complex plane whose boundary is an admissi-
ble Jordan curve, it is possible to define a function 𝑧 = 𝜒(𝜔) =
𝜇𝜔 + 𝜇0 +

𝜇1
𝜔
+ 𝜇2

𝜔2 + · · ·, where 𝜇 > 0 is called the capacity of the
Jordan curve, and 𝜔 is defined outside the unit circle. The func-
tion𝜒 maps conformally the region outside the unit circle into the
exterior of𝐷. Setting𝜔 = 𝑟 exp(i𝜃), there exists a maximum value
of 𝑟, that is 𝜌 > 1, such that 𝑓 is analytic on the region between
the exterior of 𝐷 and the curve 𝐶𝑟 = {𝑧 = 𝜒(𝑟 exp(i𝜃))}, with 𝜃 ∈
[0, 2𝜋]. We refer to [29] for a more comprehensive description of
the notation.

Theorem 4.4. (Theorem 4.1 in [29]) With the above notation,
let 𝐷 be a bounded region of the complex plane whose boundary is
an admissible Jordan curve, and let 𝜇 be the capacity of 𝜕𝐷. Let 𝑓 be
analytic on 𝐶 = 𝐷 and let the sequence of {𝜆1, . . . , 𝜆𝑑} be equidis-
tributed on 𝜕𝐷. Let 𝜌 > 1 be the largest value such that 𝑓 is analytic
in the extended curve 𝐶𝜌 containing 𝐶. Then for any 𝑟, 1 < 𝑟 < 𝜌,

∣ 𝑓[𝜆1, . . . , 𝜆𝑑] ∣≤
𝓁𝐶𝑟

2𝜋(𝜇r)𝑑
max
𝑧∈𝐶𝑟

∣ 𝑓(𝑧) ∣

where 𝓁𝐶𝑟
is the length of the curve 𝐶𝑟.

Combining the result of Theorem 4.4 with (24) and the first
inequality in (29), we obtain the following bound, where 𝐷 can
be taken as the convex set above,

∥ 𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1 ∥

≤ m𝑑(1 +
√

2) max
𝑧∈𝐹(𝑀)

∣ 𝑓[𝑧, 𝑧1, . . . , 𝑧𝑑] ∣∥ 𝑣 ∥

∼ 𝓁𝐶𝑟

m𝑑

(𝜇r)𝑑
max
𝑧∈𝐶𝑟

∣ 𝑓(𝑧) ∣∥ 𝑣 ∥

Clearly, the above analysis assumes an idealized setting (e.g., in
reality, the 𝜆𝑖 will not be equidistributed on 𝜕𝐷) and additionally,
the obtained bound cannot be expected to be sharp and descrip-
tive of the actual difference of the two approximations. It should

FIGURE 1 | Example 4.3. True error ∥ exp
(
𝑀𝑑 + 𝑣𝑑𝑒

𝑇
𝑑

)
𝑒1 − exp(𝑀𝑑)𝑒1 ∥ (dashed line) as the dimension 𝑑 grows, and bound (1 +

√
2) ∥ 𝑣𝑑 ∥ m𝑑∕𝑑!

(solid line). Left: Toeplitz matrix. Right: 𝑀𝑑 obtained by the Arnoldi recurrence with 𝐴 from discretized PDE problem.
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merely be seen as a first hint at what kind of results might be pos-
sible to obtain for general 𝑓. However, such more refined results
will require advanced tools from complex analysis which are well
beyond the scope of the current work.

5 | Error Analysis With Respect To the FOM
Approximation

We can now use Theorem 4.1 to relate the different possible
sketched and truncated Krylov approximations to each other, as
they all result from rank-one modifications of one another. Note
that for the sketched Krylov approximation, we will use the repre-
sentation (17) for analysis purposes (as it directly uses the matrix
𝐻𝑑), although the representation (18) is better suited for actual
computations, as we will illustrate in Example 7.1 below. Before
stating our results, let us introduce yet another way of writing the
sketched or truncated Krylov approximations: As both 𝑈𝑑 and
𝒰𝑑 contain nested bases of 𝒦𝑑(𝐴, 𝑏), there exists a nonsingu-
lar upper triangular matrix 𝒯𝑑 such that 𝑈𝑑 = 𝒰𝑑𝒯𝑑; the matrix
𝒯𝑑 can, for example, be obtained via a Gram–Schmidt-based QR
decomposition. We write

𝒯𝑑+1 =

[
𝒯𝑑 𝓉

0𝑇 𝜏̂𝑑+1

]
(30)

Using this, we can write the sketched FOM approximation in
terms of the orthogonal Krylov basis 𝒰𝑑 as

𝑓SK
𝑑 = 𝒰𝑑𝑓

(
𝒯𝑑𝐻𝑑𝒯

−1
𝑑 +𝒯𝑑re𝑇𝑑𝒯

−1
𝑑

)
𝒯𝑑𝑒1 ∥ 𝑏 ∥ (31)

Now, from (3) and the fact that the columns of 𝒰𝑑 are orthonor-
mal it follows by straightforward algebraic manipulations that

𝒯𝑑𝐻𝑑𝒯
−1
𝑑 = ℋ𝑑 − ℎ𝑑+1,𝑑𝒰

𝑇
𝑑 𝑢𝑑+1𝑒

𝑇
𝑑𝒯

−1
𝑑 (32)

Thus, the matrix at which 𝑓 is evaluated in (31) is a rank-one
modification of ℋ𝑑. Further simplification is possible by noting
that the first columns of 𝑈𝑑 and 𝒰𝑑 are identical, so the top-left
entry of 𝒯𝑑 can be chosen to be 1 and furthermore, 𝑒𝑇

𝑑
𝒯 −1

𝑑
=

𝑒𝑇
𝑑
∕𝜏̂𝑑. Using these observations together with (32) allows to

rewrite (31) as

𝑓SK
𝑑 = 𝒰𝑑𝑓

(
ℋ𝑑 + 𝑟̂𝑒𝑇𝑑

)
𝑒1 ∥ 𝑏 ∥ (33)

where we introduced the shorthand notation

𝑟̂ =
(
𝒯𝑑𝑟 − ℎ𝑑+1,𝑑𝒰

𝑇
𝑑 𝑢𝑑+1

)
∕𝜏̂𝑑

=
(
𝒯𝑑𝑇

−1
𝑑 𝑡 −𝒰𝑇

𝑑 𝑢𝑑+1
)(
ℎ𝑑+1,𝑑∕𝜏̂𝑑

) (34)

=
(
𝒯𝑑𝑇

−1
𝑑 𝑡 − 𝓉

)(
ℎ𝑑+1,𝑑∕𝜏̂𝑑

)
(35)

with 𝓉 coming from (30).

By following the same steps for the truncated FOM approxima-
tion, we find the representation

𝑓TR
𝑑 = 𝒰𝑑𝑓

(
ℋ𝑑 − ℎ𝑑+1,𝑑 𝓉𝑒

𝑇
𝑑

)
𝑒1 ∥ 𝑏 ∥ (36)

Due to the many different possible formulations, we summa-
rize all important matrix function approximations (both in the

truncated and fully orthonormal bases) in Table 1 to provide the
reader with an overall picture. Among the various sketched forms
we have discussed, we report here only those that appear to be
most reliable for practical purposes.2

For studying the a priori error with respect to the ideal FOM
approximation, writing the truncated and the sketched approxi-
mations in terms of the fully orthonormal basis 𝒰𝑑 (third column
in Table 1) leads to more insightful formulas that we also exploit
in the results below. It should be kept in mind, however, that in
our setting the formulation of sketched and truncated approxi-
mations via the fully orthonormal basis is not computationally
affordable.

Corollary 5.1. The sketched and full Arnoldi approximations
𝑓SK
𝑑

and 𝑓FOM
𝑑

from (17) and (2) fulfill

𝑓SK
𝑑 − 𝑓FOM

𝑑 = 𝒰𝑑𝑔𝑟̂(ℋ𝑑)𝑟̂ ∥ 𝑏 ∥ (37)

where 𝑟̂ is defined in (35) and 𝑔𝑟̂ is defined in (20), with respect
to the eigendecomposition of ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑
.

Proof . The result follows by applying Theorem 4.1 with 𝑀 = ℋ𝑑

and 𝑣 = 𝑟̂.

Corollary 5.2. The truncated and full Arnoldi approximations
𝑓TR
𝑑

and 𝑓FOM
𝑑

from (4) and (2) fulfill

𝑓TR
𝑑 − 𝑓FOM

𝑑 = 𝒰𝑑𝑔𝑦(ℋ𝑑)𝑦 ∥ 𝑏 ∥

where 𝑦 = −ℎ𝑑+1,𝑑𝓉 and 𝑔𝑦 is defined in (20), with respect to the
eigendecomposition of 𝑑 + ye𝑇

𝑑
.

Proof . The result follows by applying Theorem 4.1 with 𝑀 = ℋ𝑑

and 𝑣 = −ℎ𝑑+1,𝑑𝓉.

There are several possibilities for comparing the sketched and
truncated Arnoldi approximations to each other. We present only
the one based on the banded Hessenberg matrix 𝐻𝑑 and the
non-orthogonal basis 𝑈𝑑 in the following. It would also be pos-
sible, using (33) and (36), to state a result in terms of the matrices
𝒰𝑑 and ℋ𝑑 from the full Arnoldi process, but this is less appro-
priate here as neither of the two methods uses these matrices in
practice.

Corollary 5.3. The truncated and sketched Arnoldi approxi-
mations 𝑓TR

𝑑
and 𝑓SK

𝑑
from (4) and (17) fulfill

𝑓TR
𝑑 − 𝑓SK

𝑑 = 𝑈𝑑𝑔𝑟(𝐻𝑑)𝑟 ∥ 𝑏 ∥

where 𝑔𝑟 is defined in (20), with respect to the eigendecomposition
of 𝐻𝑑 + re𝑇

𝑑
.

Proof . The result follows from Theorem 4.1 applied with 𝑀 = 𝐻𝑑

and 𝑣 = 𝑟.

When bounding the distance between the different approxima-
tions, the results of Theorem 4.4 and Proposition 4.1 can be
used to handle the matrix functions occurring on the right-hand
sides of the preceding corollaries by bounding ∥ 𝑔𝑣(ℋ𝑑) ∥. Such
bounds on the norm of the matrix function are only useful if
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we also have appropriate bounds available for the vectors 𝑣.
In the following, we particularly discuss the vector 𝑣 = 𝑟̂ from
Corollary 5.1 which relates the sketched to the full Arnoldi
approximation.

Consider Equation (34). Using the fact that 𝑡 = 𝑄∗
𝑑+1Su𝑑+1

together with 𝑇−1
𝑑
𝑄∗
𝑑
= (SU𝑑)

†, we find the representation

𝑟̂ =
(
𝒯𝑑(SU𝑑)

†Su𝑑+1 −𝒰𝑇
𝑑 𝑢𝑑+1

)(
ℎ𝑑+1,𝑑∕𝜏̂𝑑

)
= 𝒰𝑇

𝑑

(
𝑈𝑑(SU𝑑)

†Su𝑑+1 − 𝑢𝑑+1

)(
ℎ𝑑+1,𝑑∕𝜏̂𝑑

)
where we have used𝒯𝑑 = 𝒰𝑇

𝑑
𝑈𝑑 for the second equality. The vec-

tor (SU𝑑)
†Su𝑑+1 appearing above is the solution vector 𝑥𝑆 of the

sketched least squares problem

𝑥𝑆 = arg min𝑥∈ℝ𝑑 ∥ 𝑆
(
𝑈𝑑𝑥 − 𝑢𝑑+1

)
∥

From established theory covering sketching methods for least
squares problems [2], it is known that the solution 𝑥𝑆 of the
sketched problem cannot have a significantly higher residual
than the solution of the original problem if the embedding quality
is high enough. Precisely, denoting by 𝑥⋆ = 𝑈†

𝑑
𝑢𝑑+1 the solution

of the non-sketched least squares problem, we have the following
inequality relating the residuals of 𝑥𝑆 and 𝑥⋆,

∥ 𝑈𝑑𝑥𝑆 − 𝑢𝑑+1 ∥≤
√

1 + 𝜀
1 − 𝜀

∥ 𝑈𝑑𝑥⋆ − 𝑢𝑑+1 ∥

see eq. (2.3) in [7], which is adapted from results in [2, 16].

Further, due to the fact that 𝑈𝑑 = 𝒰𝑑𝒯𝑑 is a QR decomposition,
we have that ∥ 𝑈𝑑𝑥⋆ − 𝑢𝑑+1 ∥=∣ 𝜏̂𝑑+1 ∣. Since ∥ 𝑈𝑑𝑥⋆ − 𝑢𝑑+1 ∥=∥(
𝐼 −𝒰𝑑𝒰

𝑇
𝑑

)
𝑢𝑑+1 ∥, the quantity ∣ 𝜏̂𝑑+1 ∣ measures the contribu-

tion of the new vector 𝑢𝑑+1 to the expansion of the Krylov sub-
space.

Putting all this together and using the fact that 𝒰𝑑 has orthonor-
mal columns, we find

∥ 𝑟̂ ∥≤ ℎ𝑑+1,𝑑

|||||
𝜏̂𝑑+1

𝜏̂𝑑

|||||
√

1 + 𝜀
1 − 𝜀

(38)

As long as the space keeps growing, we expect that ||| 𝜏̂𝑑+1

𝜏̂𝑑

||| ≈ 1, so
that an overall result of the following form can be obtained from
Proposition 4.1.

Corollary 5.4. Let ℋ𝑑 ∈ ℂ𝑑×𝑑 be the upper Hessenberg matrix
from the (full) Arnoldi relation (1), h𝑑 ≔ ∏𝑑−1

𝑗=1 (ℋ𝑑)𝑑+1,𝑑, and let
𝐷 ⊆ ℂ be a convex set that contains 𝐹(ℋ𝑑) and the eigenvalues of
ℋ𝑑 + 𝑟̂𝑒⊤

𝑑
. Then

∥ 𝑓SK
𝑑 − 𝑓FOM

𝑑 ∥≲ (1 +
√

2)
√

1 + 𝜀
1 − 𝜀

∥ 𝑏 ∥
h𝑑

𝑑!
max
𝑧∈𝐷

∣ 𝑓(𝑑)(𝑧) ∣

(39)

The bound in Corollary 5.4 depends on the set 𝐷, and in gen-
eral, 𝐷 might be much larger and have less favorable proper-
ties than 𝐹(ℋ𝑑) (which is guaranteed to lie within 𝐹(𝐴)). For
example, a straightforward choice of 𝐷 would be the convex

hull of 𝐹(ℋ𝑑) ∪ 𝐹
(
ℋ𝑑 + 𝑟̂𝑒⊤

𝑑

)
. In that case, the bound (39) qual-

itatively reproduces available results from the literature, as, for
example, theorem 4.3 in [5] and corollary 2.4 in [6]. These results
rely on the Crouzeix-Palencia theorem applied directly to 𝑓SK

𝑑
−

𝑓FOM
𝑑

and thus necessarily need to work with a region 𝐷 in the
complex plane that includes the field of values of the sketched
and projected matrix. In contrast, we apply the Crouzeix-Palencia
theorem only to ℎ from (27), which is evaluated at ℋ𝑑. The
influence of the rank-one modified matrix ℋ𝑑 + 𝑟̂𝑒⊤

𝑑
thus only

occurs through its eigenvalues, thus giving us more freedom in
the choice of 𝐷. In particular, it allows us to use the results pre-
sented in Section 6 below to argue why eigenvalues far outside
𝐹(ℋ𝑑) do not negatively influence the behavior of the method.
This is in line with experimental evidence reported in [5, 6] as
well as in our Example 7.1 below.

6 | On the Error Vector and the Role
of Outlying Spurious Ritz Values

In the previous section, we wrote the error between different
methods in terms of the “error” vector (see Theorem 4.1)

𝑔𝑣(𝑀)𝑣 =
𝑑∑
𝑖=1

𝛼𝑖𝛽𝑖𝑓[𝑀, 𝜆𝑖]𝑣

where 𝛼𝑖 = 𝑒𝑇
𝑑

Xe𝑖 , 𝛽𝑖 = 𝑒𝑇𝑖 𝑋
−1𝑒1 with 𝑋 from the eigenvalue

decomposition (19).

The magnitude of the 𝛼𝑖, 𝛽𝑖 and of the divided differences needs
further analysis. In general, and for large ∥ 𝑣 ∥, we do not expect
the eigenvalues of ℋ𝑑 and ℋ𝑑 + ve𝑇

𝑑
(or 𝐻𝑑 and 𝐻𝑑 + ve𝑇

𝑑
) to be

close to each other. We now discuss this again in the particular
situation of Corollary 5.1, that is, for 𝑣 = 𝑟̂, noting that the deriva-
tion works similarly in the other cases.

For any nonzero 𝑑 × 𝑑 lower Hessenberg matrix 𝑁, we define

𝛾𝜆,𝑁 ≔ min
𝑖=1, . . . ,𝑑−1

∣ 𝑁𝑖,𝑖 − 𝜆 ∣

∣ 𝑁𝑖,𝑖+1 ∣
(40)

This quantity allows us to analyze the contribution of the eigen-
values of ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑
in the error vector. We recall here that the

eigenvalues of ℋ𝑑 + 𝑟̂𝑒𝑇
𝑑

are the same as those of 𝐻𝑑 + re𝑇
𝑑

. As
soon as ill-conditioning arises in the generation of the basis 𝑈𝑑,
the entries of 𝑟 start to grow in magnitude. In this case, some
of the eigenvalues 𝜆𝑖 may be far from the field of values of ℋ𝑑,
as 𝐹

(
ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑

)
is not included in 𝐹(ℋ𝑑), whereas others may

be either close or within 𝐹(ℋ𝑑). In the following, we show that
whenever ∥ 𝑟 ∥ grows, the quantity 𝛽𝑖 is positively affected by
becoming correspondingly small.

We next assume that 𝛾𝜆𝑖 ,ℋ𝑑
> 1. In particular, this is the case if

the eigenvalue 𝜆𝑖 is far from 𝐹(ℋ𝑑), relative to ∥ ℋ𝑑 ∥. It appears
that a significantly distant eigenvalue does not interfere with the
actual error, so that the corresponding term in the sum of 𝑔𝑣
becomes negligible, in spite of possibly large values of 𝑓[ℋ𝑑, 𝜆].
This argument is justified next.

Proposition 6.1. Let 𝑁 be a 𝑑 × 𝑑 lower Hessenberg matrix
with 𝑁𝑘,𝑘+1 ≠ 0, for all 𝑘, and let 𝑁̂ = 𝑁 + 𝑒𝑑𝑣

∗ for some 𝑣. Then
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for each eigenpair (𝜆, 𝑦) of 𝑁̂ with ∥ 𝑦 ∥= 1 it holds, denoting the
components 𝑦 = (𝜂1, . . . , 𝜂𝑑)

𝑇 , that

∣ 𝜂𝑘+1 ∣≤ ∣ 𝑁𝑘,𝑘 − 𝜆 ∣

∣ 𝑁𝑘,𝑘+1 ∣
∣ 𝜂𝑘 ∣ +

∥ 𝑁𝑘,1∶𝑘−1 ∥

∣ 𝑁𝑘,𝑘+1 ∣
, 𝑘 = 1, . . . , 𝑑 − 1

and

∣
(
𝑁𝑑,𝑑 + 𝑣𝑑

)
− 𝜆‖‖‖𝜂𝑑 ∣≤∥ 𝑣1∶𝑑−1 +𝑁𝑑,1∶𝑑−1 ∥

Proof . Let (𝜆, 𝑦) be an eigenpair of 𝑁̂, that is 𝑁̂𝑦 = 𝜆y. For each
row 𝑘 with 2 ≤ 𝑘 < 𝑑 it holds

𝑁𝑘,𝑘+1𝜂𝑘+1 = −
(
𝑁𝑘,𝑘 − 𝜆

)
𝜂𝑘 + 𝑁𝑘,1∶𝑘−1𝜂1∶𝑘−1

We assume that not all indexed components of 𝑦 are zero, other-
wise the bound follows trivially. Hence,

∣ 𝜂𝑘+1 ∣ ≤ ∣ 𝑁𝑘,𝑘 − 𝜆 ∣

∣ 𝑁𝑘,𝑘+1 ∣
∣ 𝜂𝑘 ∣ +

∥ 𝑁𝑘,1∶𝑘−1 ∥

∣ 𝑁𝑘,𝑘+1 ∣
∥ 𝜂1∶𝑘−1 ∥

≤ ∣ 𝑁𝑘,𝑘 − 𝜆 ∣

∣ 𝑁𝑘,𝑘+1 ∣
∣ 𝜂𝑘 ∣ +

∥ 𝑁𝑘,1∶𝑘−1 ∥

∣ 𝑁𝑘,𝑘+1 ∣

Equating the last row yields the second bound.

A few comments are in order. Let 𝜙𝑘(𝜆) =
∏𝑘

𝑗=1
(𝑁𝑗,𝑗−𝜆)
𝑁𝑗,𝑗+1

be the
polynomial of degree 𝑘 associated with the diagonal and super-
diagonal of 𝑁.

If ∣𝑁𝑗,𝑗−𝜆∣

∣𝑁𝑗,𝑗+1 ∣
> 1 for each 𝑗, then the proposition above implies that

∣ 𝜂𝑘+1 ∣≈∣ 𝜙𝑘(𝜆) ∣, 𝑘 < 𝑑

This means that the components tend to grow as a power of 𝑘,
that is

∣ 𝜂𝑘 ∣≈ 𝑂
(
𝛾𝑘−1
𝜆,𝑁

)
(41)

Due to the unit norm of 𝑦, this means that if 𝜆 is sufficiently far
from the diagonal elements of 𝑁, the first components of 𝑦 are
tiny, and the subsequent components grow as a growing power
of such distance, with the last component of 𝑦 being 𝑂(1) (see
Example 4.3). Finally, we observe that the inequality ∣𝑁𝑗,𝑗−𝜆∣

∣𝑁𝑗,𝑗+1 ∣
> 1

for each 𝑗 may also hold if ∣ 𝜆 ∣ is much larger than ∣ 𝑁𝑗,𝑗 ∣ and
∣ 𝑁𝑗,𝑗+1 ∣; in this case, the increasing property of the components
is an intrinsic property of the eigenpair, and it may occur also for
𝜆 not far from the field of values of 𝑁.

The result of Proposition 6.1 is quite general. To apply it to our
setting for the error formula, we take 𝑁 = ℋ ∗

𝑑
. Except for nor-

malization, 𝑦 = 𝑦𝑖 is the left eigenvector of ℋ𝑑 corresponding to
the eigenvalue 𝜆𝑖 for some 𝑖. In particular, 𝑦∗𝑖 𝑒1 = 𝑒𝑇𝑖 𝑋

−1𝑒1. If 𝜆𝑖 is
far away from the diagonal elements of ℋ ∗

𝑑
, the contribution of

𝛽𝑖 = 𝑒𝑇1 𝑋
−1𝑒𝑖 =

(
𝑦𝑖
)

1 becomes extremely limited, that is,

∣ 𝛽𝑖 ∣≈ 𝑂
(
𝛾1−𝑑
𝜆,𝑁

)
This property is crucial because it ensures the following counter-
intuitive result: although the rank-one modification can dramat-
ically affect the spectrum, the wildly varying eigenvalues are not
going to contribute to the error.

The following example illustrates the eigenvector growth
property.

Example 6.1. We consider the Toeplitz data in Example 4.3
for fixed 𝑑 = 100, with ℋ ∗

𝑑
playing the role of𝑁 and

(
ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑

)∗
that of𝑁 + 𝑒𝑑𝑣

𝑇 . The left plot in Figure 2 shows the spectral quan-
tities associated with the two matrices, including the boundary
of 𝐹(ℋ𝑑) for later reference. The plot clearly reports the pres-
ence of many eigenvalues of ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑
outside the field of values

of ℋ𝑑, and also falling into the right half-plane. The right plot
shows the components absolute value of the two left eigenvec-
tors of ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑
corresponding to the eigenvalues pointed to in

the left plot. The two additional lines report the values of ∣ 𝜙𝑘(𝜆) ∣
for the two eigenvalues; the vectors containing these quantities

FIGURE 2 | Example 6.1. Left: Boundary of the field of values of ℋ𝑑 (solid blue line) along with its eigenvalues of 𝑑 (red crosses) and the eigen-
values of ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑
(black circles). The arrows point to the eigenvalues used in the right plot. Right: Absolute values of the eigenvector components for

the selected eigenvalues, together with the normalized vector of polynomial values 𝜙𝑘 .
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have been scaled so that the last component has unit value. The
eigenvector components behavior is as expected, and it is accu-
rately predicted by the quantity ∣ 𝜙𝑘(𝜆) ∣. We notice that the first
several components of each eigenvector have a magnitude at the
level of machine epsilon. In exact arithmetic their values would
follow the steep slope of the other components.

It is worth mentioning that whenever 𝛽𝑖 is small, the term
𝛽𝑖𝑓[𝑁, 𝜆𝑖] remains small. For instance, for the exponential,

𝛽𝑖 exp [𝑁, 𝜆𝑖] ≈
||𝑁𝑘

||𝑑−1

||𝑁𝑘,𝑘+1 − 𝜆𝑖||𝑑−1 (𝑁 − 𝜆𝑖𝐼)
−1(exp(𝑁) − exp(𝜆𝑖)𝐼)

for some 𝑘 < 𝑑. Let us assume, as in the previous example, that
𝛾𝜆𝑖 ,𝑁 ≈∣ 𝜆𝑖 ∣> 1. Then

∣ exp(𝜆𝑖) ∣(
𝛾𝜆𝑖 ,𝑁

)𝑑−1
≈

∣ exp(𝜆𝑖) ∣||𝜆𝑖||𝑑−1

which goes to zero as 𝑑 goes to infinity.

For our purposes, the analysis above shows that the likely erratic
spectral behavior in the sketched approach will not negatively
affect the final approximation. Loosely speaking, the matrix
structure takes care of purging the undesired eigenvalues. In
this way, the “bad” portion of the generated space is implicitly
deflated.

Motivated by the analysis above, we return to the relation 𝛼𝑖𝛽𝑖 =
m𝑑

𝜔′(𝜆𝑖 )
. Let 𝒥 be the set of indexes 𝑖 such that 𝛽𝑖 is not tiny. Hence,

the sum over all eigenvalues can be limited to those in 𝒥 , that is

𝑑∑
𝑖=1

𝛼𝑖𝛽𝑖𝑓[𝑀, 𝜆𝑖]𝑣 ≈
∑
𝑖∈𝒥

𝛼𝑖𝛽𝑖𝑓[𝑀, 𝜆𝑖]𝑣

A similar reduction can be written for (24), in terms of
the 𝑑th order divided differences 𝑓[𝑀, 𝜆1, . . . , 𝜆𝑑], namely
𝑓
[
𝑀, 𝜆𝑖1 , . . . , 𝜆𝑖|𝒥 |

]
. Hence, the set 𝒥 identifies the “effective”

eigenpairs on which the approximation error actually lives.

In the context of the sketched Arnoldi method, this shows that
bounds like (39) would not be expected to be descriptive of the
actual behavior of the method if they were to rely on approxima-
tion properties on the whole field of values 𝐹

(
ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑

)
. Rather,

the behavior of the method is dictated by a region that may be only
slightly larger than the spectral region of ℋ𝑑. Precisely, in light of
(26) and the analysis above, to obtain a convergence estimate for
the sketched Arnoldi method, we can take 𝐷 as any convex set
containing 𝐹(ℋ𝑑) ∪ {𝜆𝑖 ∶ 𝑖 ∈ 𝒥 }. We therefore introduce a more
descriptive region of the complex plane: Let 𝛿 ≥ 0 be such that all
eigenvalues 𝜆𝑖, 𝑖 ∈ 𝒥 satisfy dist(𝜆, 𝐹(ℋ𝑑)) < 𝛿, and let

𝐹(ℋ𝑑, 𝛿) ≔ {𝑧 ∈ ℂ ∶ dist(𝑧, 𝐹(ℋ𝑑)) ≤ 𝛿}

we will call this the effective field of values of ℋ𝑑. Clearly,
𝐹(ℋ𝑑) ⊆ 𝐹(ℋ𝑑, 𝛿).

For 𝜆𝑖 with 𝑖�∈𝒥 , we let 𝜁𝑖 = arg min𝑧∈𝜕𝐹(ℋ𝑑)
∣ 𝑧 − 𝜆𝑖 ∣. Then we

define the following set of values

𝜆𝑖 =

{
𝜆𝑖 𝑖 ∈ 𝒥

𝜁𝑖 𝑖�∈𝒥

Then, according to the previous discussion,

𝑑∑
𝑖=1

1
𝜔′(𝜆𝑖)

𝑓[ℋ𝑑, 𝜆𝑖]𝑣 ≈
𝑑∑
𝑖=1

1

𝜔′
(
𝜆𝑖

)𝑓[ℋ𝑑, 𝜆𝑖

]
𝑣

The definition of the 𝜆𝑖 ’s thus allows us to move (rather than
remove) the inactive eigenvalues, while maintaining the num-
ber of terms in the divided difference. With these definitions,
and using ℎ(𝑧) ≔ 𝑓

[
𝑧, 𝜆1, . . . , 𝜆𝑑

]
, (29), applied for 𝑀 = ℋ𝑑,

becomes

∥ ℎ(ℋ𝑑) ∥ ≤ (1 +
√

2) max
𝑧∈𝐹(ℋ𝑑)

∣ ℎ(𝑧) ∣

≤ (1 +
√

2)
max𝜁∈𝐹(ℋ𝑑,𝛿)

∣ 𝑓(𝑑)(𝜁) ∣

𝑑!

The bound employs the region of the complex plane where the
sketched method is active, and this region can be much smaller
than the field of values of ℋ𝑑 + 𝑟̂𝑒𝑇

𝑑
. By means of these new tools,

we can obtain an approximate bound of the form

∥ 𝑓
(
ℋ𝑑 + 𝑟̂𝑒𝑇𝑑

)
𝑒1 − 𝑓(ℋ𝑑)𝑒1 ∥

≲ m𝑑(1 +
√

2)
max𝜁∈𝐹(ℋ𝑑,𝛿)

∣ 𝑓(𝑑)(𝜁) ∣

𝑑!
∥ 𝑟̂ ∥

(42)

which is a family of analogues of (26) depending on the effective
field of values, or more precisely on 𝛿.

To summarize, our analysis shows that convergence of the
sketched method will always depend on a region that is not much
larger than that of ℋ𝑑 (and thus that of 𝐴): If sketched Ritz val-
ues far outside the spectral region of ℋ𝑑 occur, they simply do
not play a role. Only those that are slightly outside need to be
accounted for. Thus, one can typically expect at most a slight
delay of convergence due to sketching. The role of 𝛾𝜆,𝑁 is crucial,
and its relation with the field of values of𝑁 deserves further work,
which will be postponed to a later investigation: while 𝛾𝜆,𝑁 > 1
whenever 𝜆 is far away from 𝐹(ℋ𝑑), we also observed that this
condition might sometimes hold for eigenvalues close to or even
within the field of values, indicating that there might be even
more sketched Ritz values that do not significantly influence the
error.

A by-product of this analysis is the following: If none of the
sketched Ritz values lie outside of 𝐹(ℋ𝑑), then we can take 𝛿 = 0
above, and the convergence behavior of the sketched Arnoldi
method simply depends on properties of 𝑓 on 𝐹(ℋ𝑑, 0) = 𝐹(ℋ𝑑),
irrespective of how large 𝐹

(
𝐻̂𝑑 + 𝑡̂𝑒𝑇

𝑑

)
is. This is in contrast to, for

example, the results of [5] which rely on the Crouzeix-Palencia
theorem [25] and therefore always depend on the whole field
of values of 𝐻̂𝑑 + 𝑡̂𝑒𝑇

𝑑
, even if the sketched Ritz values are

well-behaved.
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7 | Robust Computation of Sketched
Approximations

In this section, we want to briefly discuss two further issues
related to the experimentally observed numerical (in)stability
of sketched Krylov methods. On the one hand, we provide
arguments that explain why the WS-Arnoldi version (18) of
the sFOM approximation typically appears to be very robust in
floating point arithmetic despite the inversion of the possibly
very ill-conditioned matrix 𝑇𝑑 that is involved. On the other
hand, we explain which potential problems can occur with the
non-whitened variant (17) based on a rank-one modification
of 𝐻𝑑.

By starting from expression (18) for the sketched-whitened
approximation, that is 𝑓SK

𝑑
= 𝑈𝑑𝑇

−1
𝑑
𝑦 with 𝑦 = 𝑓

(
𝐻̂𝑑 + 𝑡̂𝑒𝑇

𝑑

)
𝑒1 ∥

Sb ∥, we want to analyze the stability properties of 𝑇−1
𝑑
𝑦 and

show that the solution accuracy is not significantly influenced
by the possible ill-conditioning of 𝑇𝑑. To this end, we recall the
well-known fact that in general, triangular systems are often
solved to much higher accuracy in floating point arithmetic than
their condition number would suggest (although it is not possi-
ble to prove a precise, general results in this direction as—rather
academic—counter examples exist). This observation goes back
to Wilkinson [30] and has since then been investigated many
times; see, for example, Chapter 8 in [31] for an overview. In the
following, we provide a result that is specifically tailored to our
situation.

We first recall the following standard forward error bound for
triangular systems; see, for example, Equation (2.6) in [32]. Let
𝑧 = 𝑇−1

𝑑
𝑦 and 𝑧̃ be the exact and computed solutions, respec-

tively. Then

∥ 𝑧 − 𝑧̃ ∥∞
∥ 𝑧 ∥∞

≤ (𝑑 + 1) ucond(𝑇𝑑, 𝑧) + 𝑂
(
𝑢2) (43)

where

cond(𝑇𝑑, 𝑧) =
∥∣ 𝑇−1

𝑑
∣ ∣ 𝑇𝑑 ∣ ∣ 𝑧 ∣∥∞
∥ 𝑧 ∥∞

and ∣ ⋅ ∣ is the component-wise absolute value. Here u is the unit
roundoff.

Proposition 7.1. Let cond∞(𝑇) =∥ 𝑇 ∥∞∥ 𝑇−1 ∥∞ denote the
infinity norm condition number. Assume 𝑇𝑑 can be partitioned in
such a way that

𝑇𝑑 =

[
𝑇1 𝑇2

0 𝜏𝑇3

]
, cond∞(𝑇1) = 𝑐1, and cond∞(𝑇3) = 𝑐3

and 𝜏 > 0. Both 𝑇1, 𝑇3 are square and nonsingular. Then (43)
holds with

cond(𝑇𝑑, 𝑧)

≤ max
{
𝑐3 ∥ 𝑧2 ∥∞, 𝑐1 ∥ 𝑧1 ∥∞ + ∥ |𝑇−1

1 𝑇2| ∥∞ (
1 + 𝑐3

)
∥ 𝑧2 ∥∞

}
∥ 𝑧 ∥∞

where 𝑧 = [𝑧1; 𝑧2] is partitioned accordingly with 𝑇𝑑.

Proof . Let 𝑇̃3 = 𝜏𝑇3. We spell out the definition of cond(𝑇𝑑, 𝑧)
in terms of the partitioning of 𝑇𝑑. We first write 𝑇−1

𝑑
=[

𝑇−1
1 , −𝑇−1

1 𝑇2𝑇̃
−1
3 ; 0, 𝑇̃−1

3

]
. We then have

∥∣ 𝑇−1
𝑑 ∣ ∣ 𝑇𝑑 ∣ ∣ 𝑧 ∣∥∞=∥∣ 𝑇−1

𝑑 ∣

[|𝑇1| |𝑧1| + |𝑇2| |𝑧2||𝑇̃3| |𝑧2|
]

∥∞

=∥

[|𝑇−1
1 |(𝑇1| |𝑧1| + |𝑇2| |𝑧2)+ ∣ 𝑇−1

1 𝑇2𝑇̃
−1
3 ∣ ∣ 𝑇̃3 ∣ ∣ 𝑧2 ∣

∣ 𝑇̃−1
3
‖‖‖𝑇̃3 ∣ ∣ 𝑧2 ∣

]
∥∞

≤∥
[
𝑐1 ∥ 𝑧1 ∥∞ + ∥ |𝑇−1

1 𝑇2| ∥∞ (
1 + 𝑐3

)
∥ 𝑧2 ∥∞

𝑐3 ∥ 𝑧2 ∥∞

]
∥∞

= max
{
𝑐3 ∥ 𝑧2 ∥∞, 𝑐1 ∥ 𝑧1 ∥∞ + ∥ |𝑇−1

1 | |𝑇2| ∥∞ (
1 + 𝑐3

)
∥ 𝑧2 ∥∞

}
◽

Proposition 7.1 shows that, as long as the ill-conditioning of 𝑇𝑑

is encoded in its right-bottom corner as the multiplicative term
𝜏, the entry-wise condition number cond(𝑇𝑑, 𝑧), and thus the for-
ward error in (43), is bounded solely by the condition numbers of
well-behaved submatrices and exact arithmetic quantities. More-
over, notice that𝑇3 in Proposition 7.1 does not need to be a matrix
but it can also be just a scalar. In this case it holds 𝑐3 = 1 and
𝜏 = 𝜏𝑑.

The assumptions in Proposition 7.1 are easily met in our
sketched-and-truncated framework. Indeed, the non-orthogonal
basis 𝑈𝑑 gradually becomes more ill-conditioned as the itera-
tion progresses and (almost) linear dependence occurs mostly
between “later” basis vectors. To understand this, consider the
extreme case of no orthogonalization at all: Then, the sequence
of Krylov basis vectors converges towards the dominant eigen-
vector of 𝐴, so that later basis vectors will all point in almost
the same direction, while staying well linearly independent with
respect to the first basis vectors. A similar phenomenon is pre-
served when employing a partial orthogonalization with small
truncation parameter.

As the sketching matrix 𝑆 distorts inner products in a controlled
manner due to (6), this property of𝑈𝑑 is inherited by the sketched
basis SU𝑑 for which we perform the QR decomposition. This
observation implies that the severe ill-conditioning of𝑇𝑑 is mostly
encoded in a bottom right subblock, the same exact scenario
depicted in Proposition 7.1.

Remark 3. Considering (17), note that the matrix 𝐻𝑑 + re𝑇
𝑑

is
often not well-balanced, in the sense that the norm of its last
column is typically much larger than that of all other columns.
It is known since the 1970s that balancing can have an influ-
ence on the approximation accuracy for matrix functions; for
example, when using techniques such as Padé approximation [33,
34], although the effect is difficult to rigorously quantify; cf., for
example, sect. 3 and 6 in [35].

We turn to the specific case of scaling-and-squaring methods
for the matrix exponential. A first step in such methods is the
computation of a parameter 𝛾 such that ∥ 2−𝛾

(
𝐻𝑑 + re𝑇

𝑑

)
∥< 1.

When 𝐻𝑑 + re𝑇
𝑑

is poorly balanced, the value of 𝛾 will be almost
solely determined by its last column, and the entries of all other
columns in 2−𝛾

(
𝐻𝑑 + re𝑇

𝑑

)
might become tiny. This and related
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effects are known under the term overscaling in the matrix func-
tion literature; see, for example, sect. 1 in [36] or [37]. Clearly,
this can result in a noticeable decrease in the accuracy of the
method in the presence of round-off error. In contrast, the matrix
𝐻̂𝑑 + 𝑡̂𝑒𝑇

𝑑
from (17) will typically be better balanced due to the

similarity transformation with 𝑇𝑑 and thus less prone to overscal-
ing effects.

We next report the results of an illustrative example. For the
sake of clarity we report an algorithmic description of the
whitened-sketched Arnoldi method that we use as Algorithm 1 in
Appendix A. We stress that in our implementation the QR decom-
position employed in the whitening procedure was updated from
one iteration to the next instead of recomputing it, therefore caus-
ing only a modest computational cost increase, for 𝑠 significantly
smaller than 𝑛.

Example 7.1. In this example, 𝐴 is obtained by discretizing
the convection-diffusion operator

(𝑢) = −𝜈Δ𝑢 + 𝑤 ⋅ 𝑢 (44)

on the unit square [0, 1]2 by centered finite differences. We
use viscosity parameter 𝜈 = 10−2, the convection field 𝑤 =(

3
2
𝑦
(
1 − 𝑥2), −3𝑥

(
1 − 𝑦2)), and 𝑁 = 50 discretization points

in each spatial direction. The resulting matrix 𝐴 ∈ ℝ𝑁2×𝑁2 is
highly non-normal with extremely ill-conditioned eigenvector
basis, 𝜅(𝑋) ≈ 1.5 ⋅ 1022. We aim to approximate the action of the
matrix exponential exp(−𝐴)𝑏, where 𝑏 is the normalized vector of
all ones.

We begin by comparing different possible implementations of
sFOM, using a truncation parameter 𝑘 = 2 in the generation of
the non-orthogonal Krylov basis 𝑈𝑑 and a sketching dimension
𝑠 = 400. Specifically, we compare the whitened-sketched sFOM
approximation (18) with the version (17) based on the rank one

modification 𝐻𝑑 + re𝑇
𝑑

. Due to the bad balancing of 𝐻𝑑 + re𝑇
𝑑

,
the computation of exp

(
𝐻𝑑 + re𝑇

𝑑

)
might be extremely sensitive

to round-off, also depending on which algorithm is used for
the matrix exponential; cf. also the discussion in Remark 3. We
therefore compare two different versions: one which directly
uses the built-in MATLAB function expm (which implements
the scaling-and-squaring method from [36]) and one which
first computes a Schur decomposition of 𝐴 and then applies
expm only to the triangular factor. Note that this can lead to
better numerically stability for two reasons: First, the triangu-
lar factor of the Schur decomposition will in general be better
balanced than 𝐻𝑑 + re𝑇

𝑑
, and second, expm contains several

implementation tricks to specifically improve the behavior for
triangular inputs; see sect. 2 in [36]. For the whitened-sketched
Arnoldi method, due to the better balancing, using either
expm directly or working with a Schur decomposition gives
virtually identical results so that we do not report separate
curves here.

The results of this experiment are depicted on the left-hand side
of Figure 3. It can be clearly observed that the whitened-sketched
method closely follows the convergence of the full Arnoldi
method, with only a very small deviation towards the end of
the process. In contrast, both versions of sFOM based on the
rank-one modification (17) show signs of instability. While all
sketched methods behave identical for the first 90 iterations,
the version based on expm becomes very unstable after that
and shows increasing/stagnating error norms for about 50 iter-
ations before continuing to converge after that. The version
based on the Schur decomposition longer behaves similarly to
the whitened-sketched method, but also starts to deviate around
the 130th iteration, when reaching a relative error norm of
about 10−8.

It is a common conception (see, e.g., [7],) that convergence of
sketched methods typically deteriorates once the non-orthogonal

FIGURE 3 | Left: Comparison of different versions of the sFOM approximation with full Arnoldi for approximating the action of the matrix
exponential. The conditioning of the non-orthogonal Krylov basis 𝑈𝑑 is also depicted. Right: Comparison of “best” sFOM implementation (i.e.,
whitened-sketched) with truncated Arnoldi. In both cases, the truncation parameter is 𝑘 = 2 and the sketching parameter is 𝑠 = 400.
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basis becomes numerically linearly dependent (i.e., once it has a
condition number larger than 𝜀−1

machine, the reciprocal of the unit
round-off). Our experiment clearly reveals that this is not nec-
essarily true and that there are also other factors which have
an influence. For sFOM using expm, stability problems occur
long before the basis becomes severely ill-conditioned, and the
whitened-sketched method continues to converge smoothly also
once this happens. Only for sFOM using a Schur decomposition,
the linear dependence of the basis and occurrence of stability
problems coincide.

In the right part of Figure 3, we compare the best perform-
ing of the sFOM variants, that is, the whitened-sketched ver-
sion (18), to truncated Arnoldi (4) using the same truncation
parameter 𝑘 = 2. We can observe that in truncated Arnoldi, con-
vergence is significantly delayed. In the initial 110 iterations of
the method, a plateau of stagnating (or even slightly increasing)
error norms occurs. After that, convergence begins, and the con-
vergence rate is only slightly slower than that of the full (and
whitened-sketched) method. The truncated method reaches the
target relative error norm 10−11 after 200 iterations. Thus, the
sketched-whitened method uses 25% fewer matrix–vector prod-
ucts in this case.

8 | Conclusions

We have provided a new analysis of sketched Krylov sub-
space methods. In particular, we have derived a new sketched
Arnoldi relation, which applies to any Krylov method that
combines subspace embeddings with a truncated orthog-
onalization process. This relation can be used to obtain
new insights into the behavior of these methods and bet-
ter explains some phenomena that are frequently observed,
for example, that methods continue to perform well even
if they produce spurious Ritz values far outside the field of
values of 𝐴.

To demonstrate this, we have specifically focused on the
application of sketching to the approximation of𝑓(𝐴)𝑏, the action
of a matrix function on a vector. We have derived new formu-
las for expressing certain rank-one modifications of a matrix
function via divided differences and then used those to compare
sketched and truncated Krylov approximations to the standard
(full) Arnoldi approximation. In particular, we could prove that
for functions like the exponential, for growing Krylov dimension
𝑑, the sketched Arnoldi approximation is guaranteed to converge
to the full Arnoldi approximation, and the nature of our bound
suggests that one can expect this convergence to take place at
roughly the same speed as convergence of the full Arnoldi approx-
imation to 𝑓(𝐴)𝑏.

Our focus in this work was on deepening the theoretical under-
standing of existing sketching approaches, not on introducing
new algorithmic concepts. Therefore, we did not perform
extensive, large-scale numerical experiments, as thorough exper-
imental studies illustrating the potential of sketched Krylov
methods for matrix functions already exist in the literature; see,
for example [5, 6].

In [38] we employ the sketched Arnoldi approximation derived
here for analyzing and implementing sketched and truncated
Krylov subspace methods for efficiently solving matrix Sylvester
and Lyapunov equations.
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Endnotes
1 Forming this matrix would incur a cost of 𝒪

(
𝑑2𝑛

)
and thus be as expen-

sive as performing the full Arnoldi method in the first place, so this
needs to be avoided.

2 For a matrix analysis, the truncated-Arnoldi form of the sketched
approximation, namely 𝑓SK

𝑑
= 𝑈𝑑𝑓

(
𝐻𝑑 + re𝑇

𝑑

)
𝑒1 ∥ 𝑏 ∥, would have sev-

eral advantages. However, as we illustrate in Example 7.1 this form may
showcase a quite erratic numerical behavior, compared with the stabi-
lized one reported in the table.
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Appendix A

Pseudocode for Sketched-and-Truncated Arnoldi Method

We report here the pseudocode illustrating the sketch-and-truncated
Krylov subspace method for the approximation of 𝑓(𝐴)𝑏.

We stress that adopting the whitening (lines 8 and 9 of Algorithm 1)
does not remarkably increase the overall computational cost of the pro-
cedure. Indeed, assuming the sketched basis SU𝑑 and its QR factors 𝑄𝑑

and 𝑇𝑑 have been stored (these are small dimensional matrices), line 8
requires the application of the sketching to 𝑢𝑑+1, whose cost depends on
the selected sketching but it is often only polylogarithmic in 𝑛, and the
update of the QR factorization of

[
SU𝑑, Su𝑑+1

]
, which can be computed

in 𝑂(sd) flops by, for example, a Gram-Schmidt procedure. Moreover, we
can fully take advantage of the upper Hessenberg, banded structure of 𝐻𝑑

and the triangular pattern of 𝑇𝑑 to reduce the cost of updating 𝐻̂𝑑 in line
9; see sect. 5 in [38].

Notice that Algorithm 1 can be additionally enhanced with a two-pass
strategy to avoid storing the whole basis 𝑈𝑑 . If this strategy is imple-
mented, step 10 is postponed to after the end of the loop, and step 11 is
reduced to store only the last 𝑘 + 1 vectors. Finally, an ad-hoc stopping
criterion tailored to the function𝑓 at hand can be included in the for-loop.

ALGORITHM 1 | Sketched-and-truncated Krylov method for𝑓(𝐴)𝑏.
Input: 𝐴 ∈ ℝ𝑛×𝑛 , 𝑏 ∈ ℝ𝑛 , 𝑆 ∈ ℝ𝑠×𝑛 , integers 0 < 𝑘 < maxit ≪ 𝑛
Output: 𝑓SK

𝑑
≈ 𝑓(𝐴)𝑏

1: Set 𝑈1 = 𝑢1 = 𝑏∕ ∥ 𝑏 ∥, 𝑄1 = SU1∕ ∥ SU1 ∥, 𝑇1 =∥ SU1 ∥
2: for 𝑑 = 1, . . . ,maxit do
3: Compute 𝑢̃ = Au𝑑

4: for 𝑖 = max{1, 𝑑 − 𝑘 + 1}, . . . , 𝑑 do
5: Set 𝑢̃ = 𝑢̃ − 𝑢𝑖ℎ𝑖,𝑑 , where ℎ𝑖,𝑑 = 𝑢̃𝑇𝑢𝑖
6: end for
7: Set ℎ𝑑+1,𝑑 =∥ 𝑢̃ ∥ and 𝑢𝑑+1 = 𝑢̃∕ℎ𝑑+1,𝑑
8: Update skinny QR: 𝑄𝑑+1𝑇𝑑+1 =

[
SU𝑑, Su𝑑+1

]
9: Update 𝐻̂𝑑 = 𝑇𝑑𝐻𝑑𝑇

−1
𝑑

and set 𝑡̂ =
(
ℎ𝑑+1,𝑑∕𝜏𝑑

)
𝑡

10: Compute 𝑓SK
𝑑

= 𝑈𝑑

(
𝑇−1
𝑑

(
𝑓
(
𝐻̂𝑑 + 𝑡̂𝑒𝑇

𝑑

)
𝑒1 ∥ Sb ∥

))
11: Set 𝑈𝑑+1 =

[
𝑈𝑑, 𝑢𝑑+1

]
12: end for
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Appendix B

Proofs

In this section, we report the proofs of Theorem 4.1 and Theorem 4.2.

Proof of Theorem 4.1. We follow the steps in Theorem 2.1 of [21]. We
first write (

zI −𝑀 − ve𝑇𝑑
)−1

𝑒1 − (zI −𝑀)−1𝑒1

= (zI −𝑀)−1
[
(zI −𝑀)

(
zI −𝑀 − ve𝑇𝑑

)−1
𝑒1 − 𝑒1

]
= (zI −𝑀)−1𝑣

[
𝑒𝑇𝑑
(

zI −𝑀 − ve𝑇𝑑
)−1

𝑒1

]

Using the eigendecomposition of 𝑀 + ve𝑇
𝑑

, we have

𝑒𝑇𝑑
(

zI −𝑀 − ve𝑇𝑑
)−1

𝑒1 =
𝑑∑
𝑖=1

𝛼𝑖𝛽𝑖
𝑧 − 𝜆𝑖

Let Γ be a closed curve enclosing the eigenvalues of 𝑀 + ve𝑇
𝑑

and of
𝑀. Then

𝑓
(
𝑀 + ve𝑇𝑑

)
𝑒1 − 𝑓(𝑀)𝑒1

=
1

2𝜋i ∫Γ
𝑓(𝑧)

((
zI −𝑀 − ve𝑇𝑑

)−1
𝑒1 − (zI −𝑀)−1𝑒1

)
dz

=
1

2𝜋i ∫Γ
𝑓(𝑧)(zI −𝑀)−1𝑣

(
𝑒𝑇𝑑
(

zI −𝑀 − ve𝑇𝑑
)−1

𝑒1

)
dz

(B1)

=
1

2𝜋i

𝑑∑
𝑖=1

𝛼𝑖𝛽𝑖 ∫Γ
𝑓(𝑧)

1
𝑧 − 𝜆𝑖

(zI −𝑀)−1dz 𝑣

=
𝑑∑
𝑖=1

𝛼𝑖𝛽𝑖𝑓[𝑀, 𝜆𝑖]𝑣

=𝑔𝑣(𝑀)𝑣

(B2)

where we used the contour integral representation of divided differences
(see, e.g., eq. 51 in [22]) in the second to last equality.

Remark 4. We note that in lemma 2.2 of [39] a conceptually different
representation for rank-one updates of matrix functions was found—also
based on the integral representation (B1)—but that this representation is
less useful for our analysis.

We then proceed with showing Theorem 4.2.

Proof of Theorem 4.2. Following the proof of Theorem 4.1, formula (B1)
dwells with the quantity

 ≔ ∫Γ
𝑓(𝑧)(zI −𝑀)−1𝑣

(
𝑒𝑇𝑑
(

zI −𝑀 − ve𝑇𝑑
)−1

𝑒1

)
dz (B3)

Now, let 𝑀̂ = 𝑀 + ve𝑇
𝑑

and 𝑀̂𝑧 = zI − 𝑀̂, where 𝑧 ∈ ℂ is such that zI − 𝑀̂
is nonsingular. Further denote by 𝜙𝑑(𝑧) = 𝑧𝑑 + 𝑐𝑑−1𝑧

𝑑−1 + . . .Ã1/4𝑐1𝑧 +
𝑐0 the characteristic polynomial of 𝑀̂𝑧 , so that by the Cayley-Hamilton
theorem, we have 𝜙𝑑

(
𝑀̂𝑧

)
= 𝑀̂𝑑

𝑧 + 𝑐𝑑−1𝑀̂
𝑑−1
𝑧 + . . . + 𝑐1𝑀̂𝑧 + 𝑐0𝐼 = 0,

with 𝑐0 = (−1)𝑑 det
(
𝑀̂𝑧

)
. Then we have

𝑀̂−1
𝑧 =

−1
𝑐0

(
𝑀̂𝑑−1

𝑧 + 𝑐𝑑−1𝑀̂
𝑑−2
𝑧 + . . . + 𝑐1𝐼𝑑

)
Since 𝑀, and thus 𝑀̂𝑧 , is upper Hessenberg, it holds

𝑒𝑇𝑑 𝑀̂
−1
𝑧 𝑒1 =

(−1)𝑑+1

det
(
𝑀̂𝑧

) 𝑒𝑇𝑑 𝑀̂𝑑−1
𝑧 𝑒1 =

(−1)𝑑+1

det
(
𝑀̂𝑧

) 𝑑−1∏
𝑗=1

𝑀̂𝑗+1,𝑗

=
(−1)2𝑑

det
(
𝑀̂𝑧

) 𝑑−1∏
𝑗=1

𝑀𝑗+1,𝑗 =
1

det
(
𝑀̂𝑧

) 𝑑−1∏
𝑗=1

𝑀𝑗+1,𝑗

Moreover,

det
(
𝑀̂𝑧

)
=

𝑑∏
𝑗=1

𝜆𝑗
(
𝑀̂𝑧

)
=

𝑑∏
𝑗=1

(
𝑧 − 𝜆𝑗

)
where 𝜆𝑗 are the eigenvalues of 𝑀̂. Therefore,

𝑒𝑇𝑑
(

zI −𝑀 − ve𝑇𝑑
)−1

𝑒1 =
𝑑−1∏
𝑗=1

𝑀𝑗+1,𝑗

𝑑∏
𝑖=1

(𝑧 − 𝜆𝑖)
−1

We can thus write the integral in (B3) as

 =
𝑑−1∏
𝑗=1

𝑀𝑗+1,𝑗 ∫Γ

𝑓(𝑧)

𝜔(𝑧)
(zI −𝑀)−1𝑣dz

To obtain (23), we write the partial fraction expansion of 1∕𝜔(𝑧), that for
distinct eigenvalues is given by

1
𝜔(𝑧)

=
𝑑∑
𝑖=1

1
𝜔′(𝜆𝑖)

1
𝑧 − 𝜆𝑖

where the prime denotes differentiation of𝜔(𝑧)with respect to 𝑧, yielding

∫Γ

𝑓(𝑧)

𝜔(𝑧)
(zI −𝑀)−1𝑣dz =

𝑑∑
𝑖=1

1
𝜔′(𝜆𝑖) ∫Γ

𝑓(𝑧)

𝑧 − 𝜆𝑖
(zI −𝑀)−1𝑣dz

Using once again the contour integral representation of divided differ-
ences and collecting the other terms, the formula (23) is proved.

To obtain (24) we use the integral representation (22) to write

∫Γ

𝑓(𝑧)

𝜔(𝑧)
(zI −𝑀)−1dz = 𝑓[𝑀, 𝜆1, . . . , 𝜆𝑑]

or, equivalently, we observe that

1
2𝜋i

𝑑∑
𝑖=1

1
𝜔′(𝜆𝑖)

𝑓[𝑧, 𝜆𝑖] = 𝑓[𝑧, 𝜆1, . . . , 𝜆𝑑]

see, for example, eq. (1.1) in [29].
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