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Abstract: Facing global warming’s consequences is a major issue in the present times. Regarding
the climate, projections say that heavy rainfalls are going to increase with high probability together
with temperature rise; thus, the hazard related to rainfall-induced shallow landslides will likely
increase in density over susceptible territories. Different modeling approaches exist, and many of
them are forced to make simplifications in order to reproduce landslide occurrences over space and
time. Process-based models can help in quantifying the consequences of heavy rainfall in terms of
slope instability at a territory scale. In this study, a narrative review of physically based deterministic
distributed models (PBDDMs) is presented. Models were selected based on the adoption of the
infinite slope scheme (ISS), the use of a deterministic approach (i.e., input and output are treated as
absolute values), and the inclusion of new approaches in modeling slope stability through the ISS.
The models are presented in chronological order with the aim of drawing a timeline of the evolution
of PBDDMs and providing researchers and practitioners with basic knowledge of what scholars have
proposed so far. The results indicate that including vegetation’s effects on slope stability has raised in
importance over time but that there is still a need to find an efficient way to include them. In recent
years, the literature production seems to be more focused on probabilistic approaches.

Keywords: physical modeling; shallow landslides; infinite slope scheme; slope stability

1. Introduction

Among landslides, those involving shallow soil (up to a 2–3 m depth) are most
frequently induced by rainfall and are highly dangerous, as no premonitory signs are
present over territories [1]. The landslide occurrence is the final step of a chain of processes
that starts with rainfall infiltration and leads to slope collapse [2]. Therefore, a tool including
process quantification to prepare for potential landslide hazards is necessary, especially
under climate change conditions; in fact, the temperature rise will allow the atmosphere
to hold more moisture so that a greater magnitude of heavy rainfall will likely occur [3].
However, little is known about the effects of climate and its variation on slope stability,
landslides, landslide hazards, and the related risk of climate change [4].

Rainfall is recognized as the major shallow landslide triggering factor [5], and over
time, different techniques have been employed to predict rainfall-induced shallow land-
slides in order to constitute Landslide Early Warning System (LEWS) tools [6]. To model
landslide occurrences, two main approaches are recognized: physically based modeling
and statistical modeling. These models can help in assessing not only the landslide suscep-
tibility of large areas but also the related hazard, which is defined as the detection of the
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triggering time of a landslide (i.e., “when” or “how frequently” will occur) [7]. Physically
based models are also referred to as process-based models, while statistical approaches are
further named “data-driven models” as they use past events data based on the assumption
that environmental conditions leading to landslides in the past are likely to provoke new
instability phenomena in the future [8]. Although they represent interesting techniques for
large scale susceptibility analysis, they highly depend on the resolution of past landslides
inventories, which can propagate high levels of uncertainty to the outputs if they are not
sufficiently detailed. Moreover, under climate change conditions, data-driven approaches
have to be undertaken carefully since new environmental and meteorological conditions
may not be represented by the past [9].

The use of physical–mathematical models has recently gained large consensus among
engineers and the scientific community, not only for applications at the local or slope
scale but also at larger extensions, as they can take into account the dynamic variability of
the system [10]. Physically based model applications over large areas are also supported
by remote sensing, which allows extensive observation of landslides, especially where
it would not be possible with ground-based techniques, thus providing robust landslide
inventories upon which model output accuracy can be assessed [11–14]. Whether the
aim is to design emergency plans to warn people or inform policy makers about the
consequences of extreme climatic events, physically based distributed models represent
valid tools as they can detect landslide occurrences in advance. When dealing with future
landslide prediction and climate change impacts on slope stability, this modeling approach
is considerably noteworthy, especially when vegetation presence is considered [15], thanks
to the possibility of assessing single aspects’ contribution to the overall stability.

Physically based deterministic distributed models (PBDDMs) adopt deterministic
approaches for both input and output and can be used to back-analyze real landslides in
order to derive soil hydraulic and geotechnical parameters. Deterministic models can be
highly sensitive to the input parameters’ variability. To reduce uncertainty in assigning
unknown soil parameters, some physical models include probabilistic treatments of input
data or are coupled with other approaches to obtain probability maps of failure as outputs,
e.g., [16].

When developing new models for shallow landslide detection, the processes to con-
sider must be decided. Normally, PBDDMs for shallow landslide prediction are composed
of a hydrological module interfaced with a geotechnical module, typically based on the
estimation of the slope safety factor through the limit equilibrium method, as it is less
computationally demanding than finite element numerical methods, which are often not
practically useable over large areas [17]. At the same time, the hydrological processes
involved in landslide initiation are many, and including all of them in a single model would
make it impossible to run in a reasonable computational time. Because of this complexity,
the majority of the existing models that consider hydrological aspects in detail tend to sim-
plify the mechanical aspects. The simplified approach based on the infinite slope scheme
(ISS) is adopted in the majority of PBBDMs for rainfall-induced shallow landslides. In this
approach, the assumption of a planar failure geometry is considered consistent with the
shape, size, and failure mechanisms of rainfall-induced shallow landslides, although this
assumption has some applicability limitations [18].

In recent years, models including antecedent hydrological information have raised
importance in landslide hazard assessment [19], and including vegetation-related processes
has become fundamental in shallow landslides’ prediction. This is because canopies and
roots modify the stability condition of slopes under both hydrological and mechanical
viewpoints [20–22]. The rooted portion of soil has peculiar characteristics, and its behavior,
together with proper consideration of unsaturated soil mechanics, should be taken into
account in shallow landslide prediction. Furthermore, the interest in nature-based solutions
(NBSs) and bioengineering techniques has raised the importance of preventing landslides
over territories, not only because of environmental purposes but also because of economic
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aspects [23–25]. Quantitatively assessing the role of vegetation on slope stability is of
importance, although a comprehensive methodology is still lacking [26].

In this work, a non-systematic narrative review of the main physically based deter-
ministic distributed models developed over time is presented, highlighting which aspects
or techniques were used and introduced over time by the different models. The review is
restricted to the models that adopt the infinite slope scheme and are based on the limit equi-
librium method. The aim is to draw a chronological memory of rainfall-induced shallow
landslides deterministic modeling and also to address new research efforts in directions that
have not yet been explored. This paper is organized as follows. In the second section, a brief
discussion of shallow landslide modeling methods is presented, stretching some conceptual
aspects of hydrology and plants’ contribution. The third section presents the materials
and methods adopted for this work, while the fourth section describes the selected models
in detail. It was chosen to include only models that do not use any kind of probabilistic
approach. This choice is meant to be helpful for practitioners and non-academic, but also for
new researchers, in order to classify physically based models for rainfall-induced shallow
landslides into two different groups: “purely” physically based deterministic distributed
models (PBDDMs), i.e., the specific topic of this review, and hybrid forms. In the end, a
conclusive section considers aspects that still have to be properly explored in PBDDMs.
Some suggestions are also provided.

2. Shallow Landslide Modeling Methods
2.1. Hydrology

As already mentioned, the majority of the existing PBDDMs for rainfall-induced
shallow landslides prediction are composed of two interfaced modules: one computes the
hydrological phenomena, and the other computes the slope stability.

A recognized mechanism for shallow landslide activation is the rapid formation of nil
or positive pore water pressure because of soil saturation [27–29]. Saturated lenses develop
in response to rainfall events because of infiltration and seepage processes, and they can
trigger landslides when enlarged enough. Water can accumulate in the soil because of the
presence of an impermeable or low-permeability layer, either during vertical downward
seepage or upward movements [30]. Some landslides can then completely or partially
mobilize into destructive earth flows because of liquefaction [31–34], while others only
translate the detached material up to a certain distance.

Because of these observations, the first slope stability models were developed based on
saturated soil conditions [35]. Under saturation conditions, soil properties and hydrological
parameters can be assumed as constant, and the role of matric suction (i.e., negative pore
water pressure) is neglected. Real meteorological conditions can even be ignored in models
based on saturated soil mechanics. In the most simplified cases where the soil is considered
to be partially saturated, real rainfall amounts are considered as contributing to the uprising
of a pre-existing groundwater table.

Some limitations of these simplified approaches have been recognized, and practical
applications related to slope stability problems also involve unsaturated soil mechanics [36].
In fact, since shallow landslides have been observed to occur even under negative pore
water pressure, i.e., when the soil is in partially saturated condition [37,38], it is important
to consider the evolution in time of pore-water pressures and unsaturated soil mechanics
in PBDDMs.

Unsaturated soil mechanics are normally based on non-linear soil property functions,
including the constitutive relationship between soil water content and soil suction (also
defined as the water potential or hydraulic head), namely, the Soil Water Retention Curve
(SWRC, or Soil Water Characteristic Curve, SWCC), and the one that relates soil suction
or soil water content to soil hydraulic conductivity, namely, the Hydraulic Conductivity
Function (HCF) [39,40]. The relationships are unique for a certain pore size distribution of
soil and are empirically defined. However, because of hysteretic behavior, these properties
follow different patterns during wetting or drying phases [41]. Also, the presence of
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vegetation was demonstrated to alter the pore size distribution because of root growth,
leading to an evolution of the SWRC and of the soil permeability over time with respect to
SWRC or HCF of bare soil [42].

When considering unsaturated conditions, transient or stationary input rainfall can
be assumed for hydrological balance computation, and water movements can be assessed
through a transient analysis. The most commonly used approach to determine the transient
values of soil water content is the use of partial differential equations—in particular, nu-
merical solutions of Richards’ equation for unsaturated seepage process [43,44] at different
spatial domains (i.e., 1-D, 2-D, or 3-D). This approach allows to consideration of different
hydrological processes into a single balance equation, although in the 3-D domain, its
computation over large areas can be consuming both in terms of energy and time [45].

When dealing with rainfall-induced landslide hydrology, several processes should
be quantified. In any case, the major water input is represented by rainfall infiltration,
which enters the soil matrix and undergoes gradient and gravity-driven movements. Then,
subsurface flows and redistribution processes take place, and soil hydraulic conductivity
anisotropy should be considered [46]. In most cases, different hydraulic behaviors are only
considered along soil vertical directions [47].

When a numerical problem is involved, it is essential to properly define boundary
conditions, that is, defining how the considered physical system acts at the borders of its
spatial and temporal domains [48].

As already mentioned, defining the antecedent condition of soil moisture prior to rain-
fall is fundamental to correctly simulate water movements during a precipitation event [49].
The global soil water balance equation should be solved for a certain time span, which
should be antecedent with respect to the period of interest, in order to assess consistent
soil moisture as an initial condition. In this sense, as a key hydrological process, plant
growth and evapotranspiration activity should not be neglected [50]. In fact, vegetation
alters the soil water content through different mechanisms, including the absorption of
water over the rooted portion of the soil; the modification of SWRC; and parameters such
as the saturated hydraulic conductivity, canopy rainfall interception, and the creation of
preferential flow patterns through roots and stems. This latter aspect is very difficult to
consider simultaneously with matrix flow equations if the model allows the consideration
of two different domains at the same time [51]. Although preferential flow paths can have
different natures and can originate in different ways, any of them is replicable by models
based on matrix flow equations only if approaches such as dual-permeability (or double
porosity) are adopted [52,53].

Notwithstanding the effectiveness of Richards’ equation in soil water balance compu-
tation, this approach may not be the most efficient in specific cases. For example, when
a landslide is triggered because of an in-depth wetting front propagation, the hydro-
logical mechanisms can be approximated through simplified approaches for infiltration
(e.g., [54,55]).

2.2. Slope Stability

With regard to the geotechnical modules of PBDDMs, the most commonly used
approach for slope stability is the computation of a Factor of Safety (FoS). This approach
is based on the limit equilibrium method and considers the relation between stabilizing
and destabilizing actions on a slope. When the FoS is equal to 1, the slope is in a critical
equilibrium state; as the FoS drops below 1, the entire slope is estimated as unstable.

Several methods to compute FoS exist [56]. In a general sense, FoS is computed
over one or more potential failure surfaces in order to detect under which conditions
and/or at which depth the landslide is triggered. PBDDMs should adopt an automatic
procedure for analyzing different slip surfaces, especially when the soil strength and pres-
sure profiles differ along with depth and the model can consider multi-layered soils with
different parametrization.
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Since shallow landslides are normally translational and their length/depth ratio is
generally low, the infinite slope method (ISM), which assumes a ground-parallel planar fail-
ure surface, represents the most commonly used approach, although it has limitations [18].
Among others, Lu and Godt developed an equation for FoS that allows the classic saturated
soil mechanics theory based on the effective stress concept to be easily extended to the
unsaturated regime [57]. However, models that aim to simulate rotational movement also
exist, as well as models that can approximate the landslide runout [58].

It is known that vegetation contributes to soil reinforcement in different ways and
at different spatial scales [59,60]. With regard to plant roots, it is known that the rooting
system can extend the soil shear strength either through water absorption or mechanical
reinforcement, normally quantified as an additional cohesive term extending the soil’s
effective cohesion [61] and normally applied on the sliding surface. The mechanical
reinforcement seems to be more effective in the shallower portion of the soil with respect
to the hydrological reinforcement, which is effective down to a 1–2 m depth [62]. More
in detail, the mechanical improvement in soil shear strength is exerted through the root
network tensile strength and its interaction with soil and bedrock anchoring, as well as
the ability of roots to cross the slip surface [63]. Both large and fine roots contribute to
the global exerted reinforcement [64]. The overall root cohesion can be derived through
different methods, namely, the Wu and Waldron model (WWM), the Fiber Bundle Model
(FBM), the Analytical Fiber Bundle Model (AFBM), the Root Bundle Model (RBM), and
the root bundle model with root-failure Weibull survival function (RBMw) [25,65–70]. The
root reinforcement can be either basal or lateral when applied at the base of a failure plane
or on the lateral sides of the landslide body, respectively. Nevertheless, in soil conditions
close to saturation, it is not totally clear if these effects are still present or not [59,60]. Few
of the existing models consider the real spatial variability of root distribution to assess the
root reinforcement [71], even if the vegetation stand characteristics affect the magnitude of
stabilization effects, especially if gaps are present [72].

PBDDMs can be applied at the slope scale, basin scale, or regional scale. In the first
case, it may be possible to carry on field campaigns to obtain specific soil hydraulic and
geotechnical parameters. In the second case, especially when the analyzed area is larger
than a single slope or a small catchment, field work can become very expensive, and
assigning reliable soil parameters can be challenging. For models that do not involve
probabilistic approaches, parameters can be assigned based on texture or pedotransfer
functions applied to geological units if extended field campaign data are not available [73].

3. Materials and Methods

This study builds upon previous review papers such as [20,25,74] and follows a non-
systematic approach, mainly focusing on chronology and some specific aspects of different
models. The flow chart of the methodology is represented in Figure 1.

A total of 43 models considered by other reviews were screened, and only 18 were
detected as “purely deterministic”. A total of 11 duplicates considered by more than one
review were removed, while other 13 models presented some probabilistic approaches,
and then they were removed. The resulting 18 deterministic models were analyzed, and
4 of them were discarded as they do not use the infinite slope scheme (ISS) as geotechnical
model. In the last screening step, 2 models were removed because they were originally
presented as non-distributed models, and 2 models considered by other reviews were an
extension of a pre-existing model. The models which constitute extension of their previous
version were, however, cited in the following section.
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Figure 1. Flow chart of the methodology. * One of the reviewed models, SOSlope, uses the Discrete
Element Method, but the ISS was adopted for the geometry definition. ** With “similar approaches”,
it is intended that the model was extending its previous version.

4. Discussion on Models

The 12 selected models are discussed in detail.
SHALSTAB [75] is one of the first GIS-based PBDMs published in 1994. It computes

slope stability for cohesionless soils over an infinite slope under a steady-state flow condi-
tion, and it is intended to be used with ESRI-ArcGIS. By assuming a steady saturated flow,
the model is able to calculate the rainfall amount that is necessary to trigger a landslide over
a specified area using a contour-based Digital Elevation Model (DEM) methodology. Its
output is an estimation of the critical saturated soil height computed through a hydrological
model called TOPOG [76]. The model neglects the effects of the degree of saturation in the
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vadose zone. Because of its structure and mathematical formulations, SHALSTAB is not
suitable to forecast the timing of landslide triggering.

In 1995, the dSLAM model was published [77]. The model aims to quantify the slope
instability in steep and forested areas. With dSLAM, the mechanical root reinforcement
is introduced in PBDDMs for shallow landslides, while hydraulic vegetation effects are
ignored. The model is designed for translational slide overlying a lithic contact. dSLAM is a
contour-based model and does not account for rainfall spatial distribution. The mechanical
root reinforcement is considered a constant additive term to the overall soil cohesion.
Hydrology is based on a kinematic wave groundwater model [78], and it can be run either
with actual hyetographs or long-term sequences of precipitation. The authors demonstrate
that the spatial distribution of slope instability is controlled by topography and forest
harvesting. During major rainstorms, groundwater flow greately affects the factor of safety.

In 1998, the SHETRAN model was extended with a shallow landslide erosion and
sediment yield component [79,80]. It is a basin-scale model that considers spatial variability
of rainfall input and hydrological responses. It considers snowmelt as a triggering factor as
well. The model computes the landslides’ impact on sediment yields at the basin outlet,
deriving the volume of dislocated material. Two levels of resolution are comprised: first,
a finer spatial assessment of shallow landslide susceptibility is carried out, and a critical
soil saturation condition is obtained through GISLIP, a GIS analysis tool; subsequently, a
time-varying simulation based on the hydrological grid-based physical SHE model [81] is
conducted at a coarser resolution, at which the geotechnical stability analysis also is
conducted Therefore, the model can be computationally sustainable for basin-scale simula-
tions (areas around 500 km2). The SHE model comprises evapotranspiration activity and
canopy interception.

In 2000, Iverson proposed a model intending to assess the effects of transient rainfall on
the timing, rates, and locations of landslides [82]. The hydrology is computed considering
the soil infiltration capacity equal to the saturated hydraulic conductivity in order to derive
analytical values of the pressure head, assuming a pre-existing steady-state pore pressure.
The aim of the model is to derive rainfall thresholds for triggering shallow landslides,
corresponding to the peak value of pore pressure, by deriving transient pore pressure
distributions that are added to the pre-existing one. Although a simplified transient
analysis is included, Iverson’s model is better suitable for shallow landslides related to
short-duration rainfall (from approximately 1 h to 70 h), as the model neglects lateral water
flow [83]. The model also derives post-failure motion.

TRIGRS [84] is a grid-based PBDDM that aims at locating the timing and size of
landslides. At the time, most of the landslide prediction models were producing only
susceptibility maps, not involving a complete transient and distributed analysis. In its first
version, TRIGRS solves on a pixel-by-pixel basis the one-dimensional vertical version of
Richards’ equation by [85], assuming differentiated bare soil areas, which are characterized
by a unique homogeneous isotropic layer. In general, TRIGRS is the most commonly
used PBDDM for shallow landslides at the regional scale, even if no graphical interface
is provided. Its use is linked to a Geographical Information System (GIS), where input
data can be prepared and outputs can be visualized. Many versions of TRIGRS have been
developed over time, including the unsaturated version, the accounting of a vegetation
effect [86], and a parallelized version [87]. TRIGRS provides the minimum Factor of Safety
(FoS) calculated at selected time steps of a rainstorm, the pore water pressures, and the
depth of the minimum FoS at a certain time step. The soil is described by a SWRC. The
unique consideration of 1-D water movements, although accurate under certain conditions,
is not appropriate when complex topography is present over a large area. Moreover, the
input DEM spatial resolution seems to strongly affect the results [88].

In the same year, 2008, the SLIP model was developed [89,90]. It is a PBDDM that
adopts a simplified hydrological approach to simulate soil water balance, assuming that
the saturated portion of the soil increases because of infiltrating rainfall. At the same time,
the soil desaturates through a percolation process. To be quickly applied to large areas
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with low computational effort, the model avoids the need to be provided with complex
hydrological formulation and approximates a transient seepage computation. In its recent
version, the SLIP model also includes a simplified approach for plant interception and
root cohesion, changing the model into G-SLIP [91]. SLIP represents a valid example of a
simplified although effective solution for Early Warning Systems over large areas, which is
an urgent need due to climate change.

In 2011, the SUSHI model was proposed by Capparelli and Versace [92]. It describes
water movements in a bi-dimensional domain, allowing the consideration of irregular
soil stratigraphy and different soil parameters. A 2-D Richards’ equation is involved in
the model, following the assumption of isotropic soil through the adoption of a specific
“capillarity coefficient”. This coefficient represents the rate at which water is absorbed or
released because of pressure head changes in the soil. A fully implicit method and the
finite difference method are employed for hydrology computation in the SUSHI model.
Evapotranspiration is accounted for by adopting a uniform root distribution and deriving
a sink transpiration term. The vegetation is modeled considering a fixed Leaf Area Index
value (LAI) throughout the year.

In 2013, Lepore et al. [93] published a model called tRIBS-VEGGIE-Landslide, then
modified by Arnone et al. [94] in 2016 to include probabilistic treatment of uncertainties.
The methodology is based on a Triangular Irregular Network (TIN) mesh and accounts for
post-failure movement by considering selected slope angles as thresholds for determining
whether the landslide body will move down to a run-out distance. Landslide movement is
assumed to follow the same flow directions evaluated by the tRIBS hydrological compo-
nent (the deepest descend), which is based on a transient computation of infiltration and
redistribution processes. The basin morphology can be modified by landslide deposits,
with consequent impact on most of the simulated processes. Concerning vegetation, the
model considers root mechanical reinforcement together with general soil cohesion, while
the transpiration is estimated through the methodology provided by [95], which is based on
vapor pressure deficit, soil moisture levels, rooting profile, leaf area, and available energy.

In 2014, Milledge et al. [96] pointed out that the existing models were highly computa-
tionally demanding and were not practically applicable across landscapes. The proposed
model, called MD-STAB, simulates lateral resistances acting on landslide margins using
earth pressure theory and the lateral root distribution, which is modeled as an exponen-
tial function of soil depth in a three-dimensional limit equilibrium force balance. This
assumption allows the model to consider roots that laterally cross the shearing surfaces.
The possibility of considering forces that act on the lateral sides of rigid blocks contradicts
the infinite slope assumption, for which the inter-slice interactions are ignored. This model
has also been extended, including the derivation of root reinforcement from field-measured
forest stand characteristics [97]. The model ignores infiltration, soil suction, and capillary
rises, and the groundwater level is steady and parallel to the slope surface.

In 2017, SOSlope was published by Cohen and Schwarz [98]. The model focuses on
the effect of root and soil strength on slope stability in forests, accounting for single-tree
contribution. The hydrological aspects are considered through a simplified and empirical
dual-porosity model. Through this approach, SOSlope can approximate the water dynamics
in both the soil matrix and the preferential flow domains. The model is suitable for
assessing fundamental aspects such as the role of the forest structure (e.g., tree size, tree
spacing), root distribution, and root mechanical properties on the triggering mechanisms
of shallow landslides. SOSlope considers both lateral and basal root reinforcement and
is able to reproduce the self-organized redistribution of forces on a slope during rainfall-
triggered shallow landslides. The model is particularly suitable for highly detailed forest
management purposes, and outputs can be used in GIS environments.

Lizàrraga and Buscarnera, in 2018, developed a model that uses suction-dependent
plasticity and limit equilibrium theories to derive the slope Factor of Safety (FoS) in un-
saturated soils [99,100]. The model considers mechanical aspects usually not included in
other models, such as suction-hardening and liquefaction potential [101]. The aim is to
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simultaneously quantify the susceptibility to frictional slips and liquefaction-induced flow
slides of shallow soil slopes in order to incorporate these considerations in regional-scale
landslide hazard mapping. The underlying hydrology is a transient computation based on
Richards’ equation. Laboratory data are used to determine input parameters. The model
application points out the strong interplay between infiltration mechanisms (i.e., slow or
fast) and the mode and depth of slope instability. Vegetation effects are neglected.

In 2023, Abdollhai et al. [102] proposed a model specifically designed for the estimation
of hillslope post-wildfire stability against rainfall-induced landslides. The proposed model
constitutes a physically based yet practical slope stability framework capable of capturing
the interplay of key driving factors and wildfire-induced alterations. The aim is to derive
post-wildfire temporal changes in the Factor of Safety in response to rainfall. The transient
hydrological analysis is conducted through an analytical approximation of 1D Richards’
equation. The soil is considered isotropic and homogeneous. Changes in saturated soil
water content are determined as a function of the soil elastic modulus, and the method
proposed by [103] is then used to derive saturated water content in deformable soils. The
post-wildfire effects on vegetation are quantified as a reduction in the transpiration rate
due to the decrease in the number of roots. The infiltration capacity is also affected by
wildfire, although in the first application, the authors decided not to account for it.

Figure 2 reports the normalized number of citations of the different considered models.
The normalized number of citations is calculated as the ratio between the total number of
citations (as derived by Google Scholar) and the number of years since publication (i.e., the
difference between the current year—2024—and the year of publication). It can be seen that
the most cited models are the Iverson model, SHALSTAB, and TRIGRS. Out of them, only
the dSLAM model has a normalized citation number higher than 25. These four models
can thus be considered as milestones of PBDDM knowledge and development over time.
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Figure 2. PBDDMs’ normalized number of citations obtained (derived by Google Scholar). Models
are in chronological order [99,102].

Table 1 summarizes some features of the 12 analyzed models. Notwithstanding the
adoption of the infinite slope scheme, the hydrology modules, as highlighted, show that
the use of the 1D Richards equation in deterministic models for shallow landslides is the
most commonly used method.
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Table 1. A summary of the 12 selected models. * The columns “Country of application” and “Real
case study” refer to the related cited paper in this review. “WWM” stands for “Wu and Waldron root
reinforcement model”; “AFBM” stands for “Analytical Fiber Bundle Model” for root reinforcement.

Model Country of
Application * Real Case Study Hydrology Vegetation

SHALSTAB [75] United States

Tennessee Valley
(colluvial soils), Mettman

Ridge (colluvial soils),
and Split Creek

(silty sands)

Derivation of the critical
saturated soil height
through TOPOG [76]

-

dSLAM [77] United States

Cedar Creek basin,
Oregon Coast

Range—real landslides
not well documented

Kinematic wave
groundwater model [78]

Mechanical basal root
reinforcement (WWM) as

constant Cr

SHETRAN [79]
United Kingdom of

Great Britain and
Northern Ireland

Kirkton research
catchment in Balquhidder,
Scotland—real landslides

not well documented

Lateral flow: Boussinesq
equation; vertical flow: 1D

Richards’ equation;
snowmelt

ET, interception, spatially
variable land use

Iverson [82] - - Reduced form of Richards’
equation -

TRIGRS [84] - - Richards’ equation
per [85]

Extension by [86]
comprises root cohesion

and tree surcharge

SLIP [90] Italy Different areas of Italy
Increase in the saturated

portion of the soil
with rainfall

Extension by [91]
comprises interception

and root cohesion

SUSHI [92] Italy

May 1998 Sarno
landslides on pyroclastic

soils from Campania
(Italy)

1D Richards’ equation
(Hydro-SUSHI module)

ET as function of LAI,
interception

tRIBS-VEGGIE-
Landslide [93] Puerto Rico Luquillo forest (Puerto

Rico)—no real landslides 1D Richards’ equation

Hydrological effects:
transpiration [95],

evaporation reduction
by canopies;

vegetation variable with
time, space, and depth

(root distribution and root
water uptake);
root cohesion

MD-STAB [96] United States

November 1996, Coos
Bay, Mettnam ridge

debris flow
(gravelly sand)

Hydrostatic condition

Only mechanical
reinforcement: basal and

lateral, variable
with depth

SOSlope [98] - - Macropore water pressure
and matrix suction

Mechanical lateral root
reinforcement (RBM)

Lizárraga et al.
[99] Italy

May 1998 landslides on
pyroclastic soils from

Campania (Italy)

Authors used TRIGRS to
compute hydrology -

Abdollahi et al.
[102] United States

2019 Las Lomas
watershed (California)

shallow landslide (sandy
loam and loam soils)

1D Richards’ equation
ET

Mechanical basal root
reinforcement (AFBM)
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5. Discussion and Conclusions

Based on the publishing date, several models were described in this narrative review,
trying to draw a comprehensive overview of physically based deterministic models for
shallow landslides.

By analyzing the literature, purely deterministic approaches appear to have recently
become less explored than they were in recent decades. However, it appears clear that the
attention given to the stabilizing effects of vegetation has grown over the years, as testified
by the rising complexity involved when trying to assess these effects in a consistent way.
Big challenges are still open about this topic since most of the root reinforcement models
are based on variables and parameters not easily derivable such as root architecture or
root diameters. Most of the root reinforcement models have a strong empirical basis that
is not easily applicable at large scale, particularly when different kinds of plant species
cohabit [104]. New paradigms and expedients should be explored for root effect quantifica-
tion over large areas, and purely deterministic models can help in this task, as the processes
and the related parameters can be quantified and studied singularly in a specific way. An
example is provided by [105], where root-induced modifications of soil hydraulic properties
(namely, the saturated hydraulic conductivity and the Soil Water Retention Curve) are
included in a physically based model. From this point of view, involving vegetation as a
dynamic variable, accounting for growing over time and the space of roots and canopy,
based on real meteorological data and intraseasonal dynamic variability, can improve the
performance of slope stability models [106,107].

More studies based on remote sensing linking canopy development with root architec-
tures, rooting depth, and root spatial extensions could help in applying root development
and reinforcement models over large areas, as vegetation parameters can be more easily de-
rived when related to aboveground biomass [61]. On the contrary, non-invasive techniques
for estimating roots’ morphometric characteristics are still difficult to use.

An important aspect that constitutes a strong point since the first PBDMs were pub-
lished is the interoperability with GIS environments. This aspect can help decision makers
to cross different sources of information about territories. As it is difficult to have a unique,
comprehensive PBDDM for all the processes that should be accounted for in landslide
hazard assessment, overlaying different model outputs or different spatial information can
provide more insights on a large scale. In fact, it should not be overlooked that PBDDMs
pretend to give a single, specific output based on single, selected input parameters that may
not represent reality, especially when large periods are considered. Comparing different
sources of information through pre- or post-processing techniques and procedures may
help raise the reliability of landslide risk assessment analyses, maintaining an acceptable
operational time.

In distributed models, sensitivity analysis to different DEM (or mesh) spatial resolu-
tions should be included. It is known that accuracy changes according to the considered
spatial resolution, either when computing hydrological phenomena or slope stability, es-
pecially when this latter is based on the infinite slope method. This aspect appears not
properly considered when new models are developed, although the problem is crucial for
proper application of the model itself. In fact, spatial discretization of the domain can lead
to different results.

Although rarely discussed when new models are developed, an important aspect for
practical applications is the required running time of the different algorithms at the scale of
interest. This problem is crucial, especially if the model should be used in early warning
systems for civil protection purposes at the regional scale.

It is worth remembering that a very important expedient to overcome the spatial
uncertainty of parameters is including probabilistic approaches in PBDMs, thus leading to
hybrid solutions. There are several valid examples in the literature, such as SINMAP [108],
GEOTOP-Fs [109], HIRESSS [110], SlideForMap [111], and FSLAM [112] These models
include probabilistic assessments at different complexity rates, but in this paper, it was pre-
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ferred to focus on physically based distributed models characterized by only deterministic
input parameters and deterministic output results.
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