
J. Log. Algebraic Methods Program. 141 (2024) 100986

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

journal homepage: www.elsevier.com/locate/jlamp

A logical account of subtyping for session types

Ross Horne a,∗, Luca Padovani b

a Computer and Information Sciences, University of Strathclyde, Glasgow, United Kingdom
b University of Camerino, Scuola di Scienze e Tecnologie Polo di Informatica, Camerino, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Session types

Subtyping

Linear logic

Fixed points

Termination

We study iso-recursive and equi-recursive subtyping for session types in a logical setting, where
session types are propositions of multiplicative/additive linear logic extended with least and
greatest fixed points. Both subtyping relations admit a simple characterization that can be roughly
spelled out as the following lapalissade: every session type is larger than the smallest session type
and smaller than the largest session type. We observe that, because of the logical setting in which
they arise, these subtyping relations preserve termination in addition to the usual safety properties
of sessions.

1. Introduction

Session types [1–3] are descriptions of communication protocols supported by an elegant correspondence with linear logic [4–7]

that provides session type systems with solid logical foundations. As an example, below is the definition of a session type describing
the protocol implemented by a mathematical server (in the examples of this section, � and ⊕ are 𝑛-ary operators denoting external
and internal labelled choices, respectively):

𝐵 = �{𝖾𝗇𝖽 ∶ ⊥, 𝖺𝖽𝖽 ∶ 𝖭𝗎𝗆⊥
�𝖭𝗎𝗆⊥

�𝖭𝗎𝗆⊗𝐵}

According to the session type 𝐵, the server first waits for a label – either 𝖾𝗇𝖽 or 𝖺𝖽𝖽 – that identifies the operation requested by
the client. If the label is 𝖾𝗇𝖽, the client has no more requests and the server terminates. If the label is 𝖺𝖽𝖽, the server waits for two
numbers, sends their sum back to the client and then makes itself available again offering the same protocol 𝐵. In this example, we
write 𝖭𝗎𝗆⊥ for the type of numbers being consumed and 𝖭𝗎𝗆 for the type of numbers being produced. A client of this server could
implement a communication protocol described by the following session type:

𝐴 =⊕{𝖺𝖽𝖽 ∶ 𝖭𝗎𝗆⊗𝖭𝗎𝗆⊗𝖭𝗎𝗆⊥
�⊕{𝖾𝗇𝖽 ∶ 𝟏}}

This client sends the label 𝖺𝖽𝖽 followed by two numbers, it receives the result and then terminates the interaction with the server
by sending the label 𝖾𝗇𝖽. When we connect two processes through a session, we expect their interaction to be flawless. In many
session type systems, this is guaranteed by making sure that the session type describing the behaviour of one process is the dual of
the session type describing the behaviour of its peer. Duality, often denoted by ⋅ ⊥, is the operator on session types that inverts the
direction of messages. In the above example it is clear that 𝐴 is not the dual of 𝐵 nor is 𝐵 the dual of 𝐴. Nonetheless, we would like
such client and such server to be declared compatible, since the client is exercising only a subset of the capabilities of the server. To

* Corresponding author.
Available online 28 May 2024
2352-2208/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: ross.horne@strath.ac.uk (R. Horne).

https://doi.org/10.1016/j.jlamp.2024.100986

Received 18 November 2023; Received in revised form 23 May 2024; Accepted 23 May 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:ross.horne@strath.ac.uk
https://doi.org/10.1016/j.jlamp.2024.100986
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2024.100986&domain=pdf
https://doi.org/10.1016/j.jlamp.2024.100986
http://creativecommons.org/licenses/by/4.0/

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

express this compatibility we have to resort to a more complex relation between 𝐴 and 𝐵, either by observing that 𝐵 (the behaviour

of the server) is a more accommodating version of 𝐴⊥ or by observing that 𝐴 (the behaviour of the client) is a less demanding version
of 𝐵⊥. We make these relations by means of a subtyping relation ⩽ for session types. Subtyping enhances the applicability of type
systems by means of the well-known substitution principle: an entity of type 𝐶 can be used where an entity of type 𝐷 is expected if
𝐶 is a subtype of 𝐷. After the initial work of Gay and Hole [8] many subtyping relations for session types have been studied [9–13].
Such subtyping relations differ widely in the way they are defined and/or in the properties they preserve, but they all share the
fact that subtyping is essentially defined by the branching structure of session types given by labels. To illustrate this aspect, let us
consider again the session types 𝐴 and 𝐵 defined above. We have

𝐵 ⩽ �{𝖺𝖽𝖽 ∶ 𝖭𝗎𝗆⊥
�𝖭𝗎𝗆⊥

�𝖭𝗎𝗆⊗�{𝖾𝗇𝖽 ∶ ⊥}} =𝐴⊥ (1)

meaning that a server behaving as 𝐵 can be safely used where a server behaving as 𝐴⊥ is expected. Dually, we also have

𝐴 ⩽⊕{𝖾𝗇𝖽 ∶ 𝟏, 𝖺𝖽𝖽 ∶ 𝖭𝗎𝗆⊗𝖭𝗎𝗆⊗𝖭𝗎𝗆⊥
�𝐵⊥} =𝐵⊥ (2)

meaning that a client behaving as 𝐴 can be safely used where a client behaving as 𝐵⊥ is expected. Note how subtyping is crucially
determined by the sets of labels that can be received/sent when comparing two related types. In (1), the server of type 𝐵 is willing
to accept any label from the set {𝖾𝗇𝖽, 𝖺𝖽𝖽}, which is a superset of {𝖺𝖽𝖽} that we have in 𝐴⊥. In (2), the client is (initially) sending a
label from the set {𝖺𝖽𝖽}, which is a subset of {𝖾𝗇𝖽, 𝖺𝖽𝖽} that we have in 𝐵⊥. This co/contra variance of labels in session types is a
key distinguishing feature of all known notions of subtyping for session types.1

In this work we study the notion of subtyping for session types in a setting where session types are propositions of 𝜇MALL∞ [15,

16], the infinitary proof theory of multiplicative additive linear logic extended with least and greatest fixed points. Our investigation
has two objectives. First, to understand whether and how it is possible to capture the well-known co/contra variance of behaviours

when the connectives used to describe branching session types (� and ⊕ of linear logic) have fixed (binary) rather than variable
arity. Second, to understand whether there are critical aspects of subtyping that become relevant when typing derivations are meant
to be logically sound.

At the core of our proposal is the observation that, when session types (hence process behaviours) are represented by linear logic
propositions [4–6], there is no process that behaves according to the type 𝟎 and virtually every process can be declared to behave
according to the type ⊤. If we think of a session type as the set of processes that behave according to that type, this means that the
additive constants 𝟎 and ⊤ may serve well as the least and greatest elements of a session subtyping relation. Somewhat surprisingly,
the subtyping relation arising by these properties of 𝟎 and ⊤ allows us to express essentially the same subtyping relations arising
from the usual co/contra variance of labels. For example, following our proposal the session type of the client, previously denoted
𝐴, would instead be written as

𝐶 =⊕{𝖾𝗇𝖽 ∶ 𝟎, 𝖺𝖽𝖽 ∶ 𝖭𝗎𝗆⊗𝖭𝗎𝗆⊗𝖭𝗎𝗆⊥
�⊕{𝖾𝗇𝖽 ∶ 𝟏, 𝖺𝖽𝖽 ∶ 𝟎}}

using which we can derive both

𝐵 ⩽ �{𝖾𝗇𝖽 ∶ ⊤, 𝖺𝖽𝖽 ∶ 𝖭𝗎𝗆⊥
�𝖭𝗎𝗆⊥

�𝖭𝗎𝗆⊗�{𝖾𝗇𝖽 ∶ ⊥, 𝖺𝖽𝖽 ∶ ⊤}} = 𝐶⊥

as well as

𝐶 ⩽𝐵⊥

without comparing sets of labels, but just using the fact that 𝟎 is the least session type and ⊤ the greatest one. Basically, instead of
omitting those labels that correspond to impossible continuations (cf. the missing 𝖾𝗇𝖽 and 𝖺𝖽𝖽 in 𝐴), we use the uninhabited session
type 𝟎 or its dual ⊤ as impossible continuations (cf. 𝐶). It could be argued that the difference between the two approaches is mostly
cosmetic. Indeed, it is easy to devise (de)sugaring functions to rewrite session types from one syntax to the other. However, the novel
approach we propose allows us to recast the well-known subtyping relation for session types in a logical setting. A first consequence
of this achievement is that the soundness of the type system with subtyping does not require an ad hoc proof, but follows from the
soundness of the type system without subtyping. In addition, we find out that the subtyping relations we propose preserve not only
the usual safety properties – communication safety, protocol fidelity and deadlock freedom – but also termination, which is a liveness
property.

Structure of the paper. In Section 2 we introduce 𝜇CP∞, our reference calculus of sessions closely related to 𝜇CP [6] and CP [4].
In Section 3 we present the type language and the typing rules for 𝜇CP∞ along with the termination property that 𝜇CP∞ enjoys as
a consequence of its relationship with 𝜇MALL∞ [15,16]. Sections 5 and 6 are devoted to the study and comparison of two logical
subtyping relations that differ in the treatment of fixed point operators: in Section 5 we study iso-recursive subtyping, which is quite
restrictive insofar fixed point operators are concerned but enjoys the expected safe substitution principle; in Section 6 we study
equi-recursive subtyping, which is coarser than iso-recursive subtyping but whose soundness proof requires the introduction of explicit

1 Gay and Hole [8] and other authors [9,10,12] define subtyping for session types in such a way that the opposite relations of eqs. (1) and (2) hold. Both viewpoints
are viable depending on whether session types are considered to be types of channels or types of processes. Here we take the latter stance, referring to Gay [14] for a
2

comparison of the two approaches.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 1

Syntax of 𝜇CP∞ .

𝑃 ,𝑄 ∶∶= Process

𝖠⟨𝑥⟩ invocation| 𝑥().𝑃 signal input| 𝑥(𝑦).𝑃 channel input| 𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} choice input| 𝖼𝗈𝗋𝖾𝖼 𝑥.𝑃 corecursion

| (𝑥)(𝑃 |𝑄) composition| 𝖿𝖺𝗂𝗅 𝑥 failure| 𝑥[] signal output| 𝑥[𝑦](𝑃 |𝑄) channel output| 𝑥[𝗂𝗇𝑖].𝑃 choice output (𝑖 ∈ {0,1})| 𝗋𝖾𝖼 𝑥.𝑃 recursion

Table 2

Structural pre-congruence and reduction semantics of 𝜇CP∞ .

[S-PAR-COMM] (𝑥)(𝑃 |𝑄) ≼ (𝑥)(𝑄 | 𝑃)
[S-PAR-ASSOC] (𝑥)(𝑃 | (𝑦)(𝑄 |𝑅)) ≼ (𝑦)((𝑥)(𝑃 |𝑄) |𝑅) 𝑥 ∉ 𝖿𝗇(𝑅), 𝑦 ∉ 𝖿𝗇(𝑃)

[S-CALL] 𝖠⟨𝑥⟩ ≼ 𝑃 𝖠(𝑥) ≜ 𝑃
[R-COMM]

(𝑥)(𝑥[𝑦](𝑃 |𝑄) | 𝑥(𝑦).𝑅)→ (𝑦)(𝑃 | (𝑥)(𝑄 |𝑅)) 𝑥 ∉ 𝖿𝗇(𝑃)

[R-CASE]

(𝑥)(𝑥[𝗂𝗇𝑖].𝑃 | 𝖼𝖺𝗌𝖾 𝑥{𝑄0,𝑄1})→ (𝑥)(𝑃 |𝑄𝑖)
𝑖 ∈ {0, 1}

[R-CLOSE]

(𝑥)(𝑥[] | 𝑥().𝑃)→ 𝑃
𝑥 ∉ 𝖿𝗇(𝑃)

[R-REC]

(𝑥)(𝗋𝖾𝖼 𝑥.𝑃 | 𝖼𝗈𝗋𝖾𝖼 𝑥.𝑄)→ (𝑥)(𝑃 |𝑄)

[R-PAR]
𝑃 →𝑄

(𝑥)(𝑃 |𝑅)→ (𝑥)(𝑄 |𝑅)
[R-STRUCT]
𝑃 ≼ 𝑃 ′ 𝑃 ′ →𝑄′ 𝑄′ ≼𝑄

𝑃 →𝑄

coercions. We wrap up in Section 7 with a more detailed discussion of related and future work. The appendix contains some lengthy
proofs that do not fit well into the main body of the paper.

Origin of the material. This is a restructured and extended version of a paper that appears in the proceedings of the PLACES’23
workshop [17]. The present version includes new examples, the treatment of iso-recursive subtyping (Section 5) as well as detailed
proofs, notably in Section 4, which are not present in the workshop proceedings.

2. Syntax and semantics of 𝝁CP∞

The syntax of 𝜇CP∞ is shown in Table 1 and makes use of a set of process names 𝖠, 𝖡, . . . and of an infinite set of channels 𝑥, 𝑦, 𝑧
and so on. The calculus includes standard forms representing communication actions: 𝖿𝖺𝗂𝗅 𝑥 models a process failing on 𝑥; 𝑥().𝑃 and
𝑥[] model the input/output of a termination signal on 𝑥; 𝖼𝖺𝗌𝖾 𝑥{𝑃 , 𝑄} and 𝑥[𝗂𝗇𝑖].𝑃 model the input/output of a label 𝗂𝗇𝑖 on 𝑥; 𝑥(𝑦).𝑃
and 𝑥[𝑦](𝑃 |𝑄) model the input/output of a channel 𝑦 on 𝑥. Process 𝑥[𝑦](𝑃 |𝑄) outputs a new channel 𝑦 which binds occurrence of
𝑦 in 𝑃 , but, importantly, 𝑦 cannot appear in 𝑄, which has the effect of restricting the communication topology.

In addition, 𝜇CP∞ has prefixes 𝖼𝗈𝗋𝖾𝖼 𝑥 and 𝗋𝖾𝖼 𝑥 for modelling (co)recursive processes whose behaviour is described by a
greatest/least fixed point respectively. These forms should not be confused with recursive binders; they are better seen as checkpoints
in the proof that, respectively, produce and consume energy. The energy must be in balance to sustain computations along infinite
branches of the proof. The syntax originates from prior work on Curry-Howard correspondences for finitary proof systems for linear
logic with fixed points [6].2

A process of the form (𝑥)(𝑃 |𝑄) models a session 𝑥 connecting two parallel processes 𝑃 and 𝑄 and the form 𝖠⟨𝑥⟩ models the
invocation of the process named 𝖠 with parameters 𝑥. For each process name 𝖠 we assume that there is a unique global definition of
the form 𝖠(𝑥) ≜ 𝑃 that gives its meaning. Hereafter 𝑥 denotes a possibly empty sequence of channels. The notions of free and bound
channels are defined in the expected way. We identify processes up to renaming of bound channels and we write 𝖿𝗇(𝑃) for the set of
free channels of 𝑃 .

The operational semantics of 𝜇CP∞ is shown in Table 2 and consists of a structural precongruence relation ≼ and a reduction
relation →, both of which are fairly standard. We write 𝑃 → if 𝑃 →𝑄 for some 𝑄 and we say that 𝑃 is stuck, notation 𝑃 �→, if not
𝑃 →.

2 The difference with the work of Lindley and Morris [6] is that we have only one name in 𝖼𝗈𝗋𝖾𝖼 𝑥 while the construct in prior work features two names. This is
due to differences between the structure of proofs in finitary and infinitary proof systems. In finitary proof systems, the rule for co-recursion features two premises,
3

while only one premise is required in the rule for co-recursion in an infinitary proof system.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Example 1. We can model client and server described in Section 1 as the processes below.

𝖢𝗅𝗂𝖾𝗇𝗍(𝑥) ≜ 𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇1].𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇0].𝑥[]
𝖲𝖾𝗋𝗏𝖾𝗋(𝑥, 𝑧) ≜ 𝖼𝗈𝗋𝖾𝖼 𝑥.𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩}

For simplicity, we only focus on the overall structure of the processes rather than on the actual mathematical operations they perform,
so we omit any exchange of concrete data from this model. ⌟

We provide here a definition of the termination property ensured by our type system (under specific conditions that we will clarify
in subsequent sections).

Definition 1 (Terminating process). A reduction sequence of a process 𝑃 is a (finite or infinite) sequence (𝑃0, 𝑃1, …) of processes such
that 𝑃0 = 𝑃 and 𝑃𝑖 → 𝑃𝑖+1 whenever 𝑖 + 1 is a valid index of the sequence. We say that 𝑃 is terminating if every reduction sequence
of 𝑃 is finite and the last element in it is (structurally precongurent to) a process of the form 𝑥[] for some 𝑥.

Note that this notion of termination entails both deadlock and lock freedom [18,19]. More precisely, if we call “pending action”
every prefix of a process that describes a communication (namely the prefixes 𝑥(), 𝑥[𝑦], 𝑥(𝑦), 𝑥[𝗂𝗇𝑖], 𝖼𝖺𝗌𝖾 𝑥, 𝗋𝖾𝖼 𝑥 and 𝖼𝗈𝗋𝖾𝖼 𝑥), then
for a terminating process 𝑃 we have:

• if 𝑃 ⇒𝑄 �→, then 𝑄 must be of the form 𝑥[], hence 𝑄 contains no pending actions (deadlock freedom);

• if 𝑃 ⇒𝑄, then 𝑄 ⇒ 𝑥[] for some 𝑥, hence each pending action in 𝑄 can be (and is) eventually performed (lock freedom).

Remark 1. This calculus, in the tradition of Caires-Pfenning-Wadler, is not a normal session calculus outside their paradigm. For
example, consider the process where 𝐴⟨𝑥⟩ ≜ 𝖼𝖺𝗌𝖾 𝑥{𝑥[𝗂𝗇0].𝐴⟨𝑥⟩, 𝑥[]}.

(𝑧)(𝑧[𝑥](𝑥[𝗂𝗇0].𝐴⟨𝑥⟩ |𝐴⟨𝑥⟩) | 𝑧(𝑥).𝑥[𝗂𝗇1].𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑥().𝑦[], 𝖿𝖺𝗂𝗅 𝑥})
Experts familiar with session calculi, who match up communications in the obvious way, may reasonably assume that the above
process has one infinite execution path, and infinitely many execution paths that terminate with process 𝑦[]. Yet the process, which
is syntactically valid,3 blocks after one transition step. This is because the rules of 𝜇CP∞ do not allow the two processes created
under a par to be rearranged such that they communicate with each other. In particular, the restrictions on the rule [S-PAR-ASSOC],
combined with the way that reduction rules insist on the channel involved in a communication to tightly bound around the interacting
processes, prevent all further communications. This has the consequences of eliminating races, such as the race in the process above.

Perhaps it would be better, from a broader process calculus perspective, to use a different symbol for parallel composition under
an output prefix, in order to indicate the separation enforced by the rules. However, we do not change the established syntax in this
paper, so that the syntax may be easily matched with papers in the literature [5,4]. ⌟

3. Type system

The type language for 𝜇CP∞ consists of the propositions of 𝜇MALL∞ [15,16,20], namely the multiplicative/additive fragment of
linear logic extended with least and greatest fixed points. We start from the definition of pre-types, which are linear logic propositions
built using type variables taken from an infinite set and ranged over by 𝑋 and 𝑌 .

𝐴,𝐵 ∶∶=𝑋 ∣ ⊥ ∣ 𝟏 ∣ ⊤ ∣ 𝟎 ∣𝐴�𝐵 ∣𝐴⊗𝐵 ∣𝐴�𝐵 ∣𝐴⊕𝐵 ∣ 𝜈𝑋.𝐴 ∣ 𝜇𝑋.𝐴

The usual notions of free and bound type variables apply. A type is a closed pre-type. We write 𝐴⊥ for the dual of 𝐴, which is
defined in the expected way with the proviso that 𝑋⊥ = 𝑋. This way of dualizing type variables is not problematic since we will
always apply ⋅ ⊥ to types, which contain no free type variables. As usual, we write 𝐴{𝐵∕𝑋} for the (pre-)type obtained by replacing
every 𝑋 occurring free in the pre-type 𝐴 with the type 𝐵. Hereafter we let 𝜅 range over the constants 𝟎, 𝟏, ⊥ and ⊤, we let ⋆ range
over the connectives �, ⊕, � and ⊗ and 𝜎 range over the binders 𝜇 and 𝜈. Also, we say that any type of the form 𝜎𝑋.𝐴 is a 𝜎-type
and we adopt the standard convention by which the scope of 𝜎𝑋 extends as much as possible to the right.

We write ⪯ for the sub-formula relation on types. To be precise, ⪯ is the least preorder on types such that 𝐴 ⪯ 𝜎𝑋.𝐴 and
𝐴𝑖 ⪯𝐴1 ⋆𝐴2. For example, consider 𝐴

def
= 𝜇𝑋.𝜈𝑌 .(1 ⊕𝑋) and its unfolding 𝐴′ def

= 𝜈𝑌 .(1 ⊕𝐴). We have 𝐴 ⪯ 1 ⊕𝐴 ⪯𝐴′, hence 𝐴 is a
sub-formula of 𝐴′. Given a set  of types we write min for the ⪯-minimum type in  when it is defined.

Typing judgements have the form 𝑃 ⊢ Γ where 𝑃 is a process and Γ is a typing context, namely a finite map from channels to
types. We can read this judgement roughly as the fact that 𝑃 behaves as described by the types in the range of Γ with respect to the
channels in the domain of Γ . We write 𝖽𝗈𝗆(Γ) for the domain of Γ , we write 𝑥 ∶𝐴 for the typing context with domain {𝑥} that maps
𝑥 to 𝐴, we write Γ , Δ for the union of Γ and Δ when 𝖽𝗈𝗆(Γ) ∩ 𝖽𝗈𝗆(Δ) = ∅.

3 It fails only the condition that channels delegated in the send operation should not appear in the right parallel component. That condition is particular to this
4

family of typed session calculi and is not standard for the 𝜋-calculus.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 3

Typing rules for 𝜇CP∞ .

[CALL]

𝑃 ⊢ 𝑥 ∶𝐴

𝖠⟨𝑥⟩ ⊢ 𝑥 ∶𝐴
𝖠(𝑥) ≜ 𝑃

[CUT]
𝑃 ⊢ Γ , 𝑥 ∶𝐴 𝑄⊢Δ, 𝑥 ∶𝐴⊥

(𝑥)(𝑃 |𝑄) ⊢ Γ ,Δ

[⊤]

𝑃 ⊢ Γ , 𝑥 ∶ ⊤
𝖿𝗇(𝑃) ⊆ 𝖽𝗈𝗆(Γ) ∪ {𝑥} (no rule for 𝟎)

[⊥]
𝑃 ⊢ Γ

𝑥().𝑃 ⊢ Γ , 𝑥 ∶ ⊥

[𝟏]

𝑥[] ⊢ 𝑥 ∶ 𝟏

[�]
𝑃 ⊢ Γ , 𝑦 ∶𝐴,𝑥 ∶𝐵

𝑥(𝑦).𝑃 ⊢ Γ , 𝑥 ∶𝐴�𝐵

[⊗]
𝑃 ⊢ Γ , 𝑦 ∶𝐴 𝑄⊢Δ, 𝑥 ∶𝐵

𝑥[𝑦](𝑃 |𝑄) ⊢ Γ ,Δ, 𝑥 ∶𝐴⊗𝐵

[�]
𝑃 ⊢ Γ , 𝑥 ∶𝐴 𝑄⊢ Γ , 𝑥 ∶𝐵

𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} ⊢ Γ , 𝑥 ∶𝐴�𝐵

[⊕]
𝑃 ⊢ Γ , 𝑥 ∶𝐴𝑖

𝑥[𝗂𝗇𝑖].𝑃 ⊢ Γ , 𝑥 ∶𝐴0 ⊕𝐴1
𝑖 ∈ {0, 1}

[𝜈]
𝑃 ⊢ Γ , 𝑥 ∶𝐴{𝜈𝑋.𝐴∕𝑋}

𝖼𝗈𝗋𝖾𝖼 𝑥.𝑃 ⊢ Γ , 𝑥 ∶ 𝜈𝑋.𝐴

[𝜇]

𝑃 ⊢ Γ , 𝑥 ∶𝐴{𝜇𝑋.𝐴∕𝑋}

𝗋𝖾𝖼 𝑥.𝑃 ⊢ Γ , 𝑥 ∶ 𝜇𝑋.𝐴

Table 4

Proof rules of 𝜇MALL∞ .

[CUT]
⊢ Γ , 𝐹 ⊢Δ, 𝐹 ⊥

⊢ Γ ,Δ

[⊤]

⊢ Γ ,⊤

[⊥]
⊢ Γ

⊢ Γ ,⊥

[𝟏]

⊢ 𝟏

[�]
⊢ Γ , 𝐹 ,𝐺

⊢ Γ , 𝐹 �𝐺

[⊗]
⊢ Γ , 𝐹 ⊢Δ,𝐺

⊢ Γ ,Δ, 𝐹 ⊗𝐺

[�]
⊢ Γ , 𝐹 ⊢ Γ ,𝐺

⊢ Γ , 𝐹 �𝐺

[⊕]
⊢ Γ ,𝐴𝑖

⊢ Γ ,𝐴0 ⊕𝐴1
𝑖 ∈ {0, 1}

[𝜈]
⊢ Γ , 𝐹{𝜈𝑋.𝐹∕𝑋}

⊢ Γ , 𝜈𝑋.𝐹

[𝜇]
⊢ Γ , 𝐹{𝜇𝑋.𝐹∕𝑋}

⊢ Γ , 𝜇𝑋.𝐹

The typing rules of 𝜇CP∞ are shown in Table 3 and, with the exception of [CALL], they correspond to the proof rules of
𝜇MALL∞ (Table 4) in which the context is the sequent being proved and the process is a syntactic representation of the proof.
The rules for the multiplicative constants and for the connectives are standard. The rule [⊤] allows every process (whose free names
are in the domain of the typing context) to be declared well typed if the context contains an association 𝑥 ∶ ⊤. As a special case, the
failed process 𝖿𝖺𝗂𝗅 𝑥 can be typed only by such rule. While 𝖿𝖺𝗂𝗅 𝑥 is somewhat redundant since any process can be used in its place,
it is a convenient normal form for dead code. The side condition is not strictly necessary insofar the soundness of the type system is
concerned, but it enforces the usual property that the channels occurring free in the process must be associated with a type in the
context.

There is no rule for 𝟎, as usual. The rules [𝜎] where 𝜎 ∈ {𝜇, 𝜈} simply unfold fixed points regardless of their nature. The rule
[CALL] unfolds a process invocation into its definition, checking that the invocation and the definition are well typed in the same
context. Finally, [CUT] checks that the composition (𝑥)(𝑃 |𝑄) is well typed provided that the behaviour of 𝑃 with respect to 𝑥 is
complementary to the behaviour of 𝑄 with respect to 𝑥.

For readers familiar with the literature notice that axioms with conclusion 𝐴, 𝐴⊥ are omitted; as is the corresponding “link”
construct in the calculus. This is for brevity, since the sequent 𝐴, 𝐴⊥ is provable for any type 𝐴. This axiom is perpendicular to this
study and its omission happens to make connections with 𝜇MALL∞ more immediate.

Like in 𝜇MALL∞, the rules are meant to be interpreted coinductively so that a judgement 𝑃 ⊢ Γ is deemed derivable if there is an
arbitrary (finite or infinite) typing derivation whose conclusion is 𝑃 ⊢ Γ .

Example 2. Let us show the typing derivations for the processes discussed in Example 1. To this aim, let 𝐴
def
= 𝜇𝑋.𝟎 ⊕ (𝜇𝑋.𝟏 ⊕ 𝟎) and
5

𝐵
def
= 𝜈𝑋.(⊥ �𝑋). Now we derive

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

[𝟏]
𝑥[] ⊢ 𝑥 ∶ 𝟏

[⊕]
𝑥[𝗂𝗇0].𝑥[] ⊢ 𝑥 ∶ 𝟏⊕ 𝟎

[𝜇]
𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇0].𝑥[] ⊢ 𝑥 ∶ 𝜇𝑋.𝟏⊕ 𝟎

[⊕]
𝑥[𝗂𝗇1].𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇0].𝑥[] ⊢ 𝑥 ∶ 𝟎⊕ (𝜇𝑋.𝟏⊕ 𝟎)

[𝜇]
𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇1].𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇0].𝑥[] ⊢ 𝑥 ∶𝐴

[CALL]
𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ ⊢ 𝑥 ∶𝐴

as well as

[𝟏]
𝑧[] ⊢ 𝑧 ∶ 𝟏

[⊥]
𝑥().𝑧[] ⊢ 𝑥 ∶ ⊥,𝑧 ∶ 𝟏

⋮

𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶ 𝐵,𝑧 ∶ 𝟏
[�]

𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩} ⊢ 𝑥 ∶ ⊥�𝐵,𝑧 ∶ 𝟏
[𝜈]

𝖼𝗈𝗋𝖾𝖼 𝑥.𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩} ⊢ 𝑥 ∶𝐵,𝑧 ∶ 𝟏
[CALL]

𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶𝐵,𝑧 ∶ 𝟏
Intuitively, these derivations assign 𝖢𝗅𝗂𝖾𝗇𝗍 and 𝖲𝖾𝗋𝗏𝖾𝗋 their most precise types. Yet, we cannot use these typing derivations to

connect 𝖢𝗅𝗂𝖾𝗇𝗍 and 𝖲𝖾𝗋𝗏𝖾𝗋 via a session 𝑥 by means of the rule [CUT] since 𝐴 ≠ 𝐵⊥. The idea is that it should be possible to exploit
the relation 𝐴 ⩽𝐵⊥ (or its dual 𝐵 ⩽𝐴⊥) to obtain a well-typed composition. We will explore this possibility in the next sections. ⌟

It is a known fact that not every 𝜇MALL∞ derivation is a valid one [15,16,20]. In order to characterize the valid derivations we
need some auxiliary notions which we recall below.

Definition 2 (Thread). Let 𝛾 = (𝑃𝑖 ⊢ Γ𝑖)𝑖∈ℕ be an infinite branch in a typing derivation and recall that 𝑃𝑖+1 ⊢ Γ𝑖+1 is a premise of
𝑃𝑖 ⊢ Γ𝑖. A thread of 𝛾 is a sequence (𝑥𝑖)𝑖≥𝑘 of channels such that 𝑥𝑖 ∈ 𝖽𝗈𝗆(Γ𝑖) and either 𝑥𝑖 = 𝑥𝑖+1 or 𝑃𝑖 = 𝑥𝑖[𝑥𝑖+1](𝑃𝑖+1 | 𝑄) or
𝑃𝑖 = 𝑥𝑖(𝑥𝑖+1).𝑃𝑖+1 for every 𝑖 ≥ 𝑘.

Intuitively, a thread is an infinite sequence of channel names (𝑥𝑖)𝑖≥𝑘 that are found starting from some position 𝑘 in an infinite
branch (𝑃𝑖 ⊢ Γ𝑖)𝑖∈ℕ and that pertain to the same session. For example, consider the derivation for 𝖲𝖾𝗋𝗏𝖾𝗋 in Example 2 and observe
that there is only one infinite branch, the rightmost one. The sequence (𝑥, 𝑥, 𝑥, …) is a thread that starts at the root of the derivation.
In general such threads need not start at the root of the derivation, hence the condition 𝑖 ≥ 𝑘 above. This is because, the channels
involved in a thread may begin with a channel created by a cut rule.

Definition 3 (𝜈-thread). Given a branch 𝛾 = (𝑃𝑖 ⊢ Γ𝑖)𝑖∈ℕ and a thread 𝑡 = (𝑥𝑖)𝑖≥𝑘 of 𝛾 , we write 𝗂𝗇𝖿(𝛾, 𝑡)
def
={𝐴 ∣ ∃∞𝑖 ≥ 𝑘 ∶ Γ𝑖(𝑥𝑖) = 𝐴}.

We say that 𝑡 is a 𝜈-thread of 𝛾 if min 𝗂𝗇𝖿(𝛾, 𝑡) is a 𝜈-type. Hereafter ∃∞𝑖 means the existence of infinitely many 𝑖’s with the stated
property.

Given an infinite branch 𝛾 = (𝑃𝑖 ⊢ Γ𝑖)𝑖∈ℕ and a thread 𝑡 = (𝑥𝑖)𝑖≥𝑘 of 𝛾 , the thread identifies an infinite sequence (Γ𝑖(𝑥𝑖))𝑖≥𝑘 of types.
The set 𝗂𝗇𝖿(𝛾, 𝑡) is the set of those types that occur infinitely often in this sequence and min 𝗂𝗇𝖿 (𝛾, 𝑡) is the ⪯-minimum among these
types (it can be shown that the minimum of any set 𝗂𝗇𝖿(𝛾, 𝑡) is always defined [16]). We say that 𝑡 is a 𝜈-thread if such minimum
type is a 𝜈-type. In Example 2, the thread 𝑡 = (𝑥, 𝑥, 𝑥, …) identifies the sequence (𝐵, 𝐵, ⊥ � 𝐵, 𝐵, …) of types in which both 𝐵 and
⊥ �𝐵 occur infinitely often. Since 𝐵 ⪯ ⊥ �𝐵 and 𝐵 is a 𝜈-type we conclude that 𝑡 is a 𝜈-thread.

Definition 4 (Valid branch). Let 𝛾 = (𝑃𝑖 ⊢ Γ𝑖)𝑖∈ℕ be an infinite branch of a typing derivation. We say that 𝛾 is valid if there is a
𝜈-thread (𝑥𝑖)𝑖≥𝑘 of 𝛾 such that [𝜈] is applied to infinitely many of the 𝑥𝑖.

Definition 4 establishes that a branch is valid if it contains a 𝜈-thread in which the 𝜈-type occurring infinitely often is also unfolded
infinitely often. This happens in Example 2, in which the [𝜈] rule is applied infinitely often to unfold the type of 𝑥. The reader familiar
with the 𝜇MALL∞ literature may have spotted a subtle difference between our notion of valid branch and the standard one [15,16].
In 𝜇MALL∞, a branch is valid only provided that the 𝜈-thread in it is not “eventually constant”, namely if the greatest fixed point
that defines the 𝜈-thread is unfolded infinitely many times. This condition is satisfied by our notion of valid branch because of the
requirement that there must be infinitely many applications of [𝜈] concerning the names in the 𝜈-thread. Now we can define the
notion of valid typing derivation.
6

Definition 5. A typing derivation is valid if so are all its infinite branches.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Example 3. Consider a client 𝖢𝗁𝖺𝗍𝗍𝖾𝗋(𝑥) ≜ 𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇1].𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ that engages into an infinite interaction with 𝖲𝖾𝗋𝗏𝖾𝗋 from Example 1

and let 𝐶
def
= 𝜈𝑋.(𝟏 ⊕𝑋). Note that 𝐶 = 𝐵⊥ where 𝐵 is the type used in Example 2. Now the derivation

⋮
[CALL]

𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ ⊢ 𝑥 ∶ 𝐶
[⊕]

𝑥[𝗂𝗇1].𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ ⊢ 𝑥 ∶ 𝟏⊕𝐶
[𝜇]

𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇1].𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ ⊢ 𝑥 ∶ 𝐶
[CALL]

𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ ⊢ 𝑥 ∶ 𝐶
is invalid since the only infinite branch does not contain a 𝜈-thread. If we allowed this derivation the composition (𝑥)(𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ |
𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩) would be well typed and it would no longer be the case that well-typed processes terminate, as the interaction between
𝖢𝗁𝖺𝗍𝗍𝖾𝗋 and 𝖲𝖾𝗋𝗏𝖾𝗋 goes on forever. ⌟

Example 4. Similarly to the above example, the following pre-proof is not a valid proof, where 𝖠 ≜ (𝑦)(𝑦[] | 𝑦().𝖠).
[𝟏]

𝑦[] ⊢ 𝑥 ∶ 𝟏

⋮

𝖠 ⊢ 𝑥 ∶ 𝟏
[⊥]

𝑦().𝖠 ⊢ 𝑦 ∶ ⊥,𝑥 ∶ 𝟏
[CUT]

𝖠 ⊢ 𝑥 ∶ 𝟏
The process clearly reduces forever. The typing is however not valid because there is an infinite branch of the proof with a thread

identifying only the type 𝟏 infinitely often. Clearly 𝟏 is not a 𝜈-type, nor can it be unfolded at all. The fact that the process does
reduce forever without demanding external interactions emphasises again the importance of validity. ⌟

Example 5. To understand better the implications of restricting 𝜈-threads to only minimal types along a path, consider the following
pre-proof. Let 𝖠(𝑥) ≜ 𝗋𝖾𝖼 𝑥.𝖼𝗈𝗋𝖾𝖼 𝑥.𝖠⟨𝑥⟩ and 𝖡(𝑥) ≜ 𝖼𝗈𝗋𝖾𝖼 𝑥.𝗋𝖾𝖼 𝑥.𝖡⟨𝑥⟩. We have:

⋮

𝖠⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜇𝑋.𝜈𝑌 .𝑋
[𝜈]

𝖼𝗈𝗋𝖾𝖼 𝑥.𝖠⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜈𝑌 .𝜇𝑋.𝜈𝑌 .𝑋
=============================

𝖠⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜇𝑋.𝜈𝑌 .𝑋

⋮

𝖡⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜈𝑋.𝜇𝑌 .𝑋, Γ
[𝜇]

𝗋𝖾𝖼 𝑥.𝖡⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜇𝑌 .𝜈𝑋.𝜇𝑌 .𝑋, Γ
=============================

𝖡⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜈𝑋.𝜇𝑌 .𝑋, Γ
[CUT]

(𝑥)(𝖠⟨𝑥⟩ | 𝖡⟨𝑥⟩) ⊢ Γ

If the above pre-proof were a proof, then 𝜇CP∞ would be inconsistent, since any context Γ , even the empty one, types the given
process. The above pre-proof is however not valid since there is a thread along the left branch of the cut such that, although there
are infinitely many unfoldings of a greatest fixed point, the type 𝜈𝑌 .𝜇𝑋.𝜈𝑌 .𝑋 that is unfolded is not ⪯-minimal along that branch,
since 𝜇𝑋.𝜈𝑌 .𝑋 also occurs infinitely often and 𝜇𝑋.𝜈𝑌 .𝑋 ⪯ 𝜈𝑌 .𝜇𝑋.𝜈𝑌 .𝑋. ⌟

4. Behavioural properties of 𝝁CP∞

We explain here some behavioural properties of 𝜇CP∞ that are guaranteed by its relationship with 𝜇MALL∞. We focus on
termination, which can be guaranteed in certain typing contexts. In particular, processes that are well typed in a singleton context
of the form 𝑥 ∶ 𝟏 eventually reduce to 𝑥[] in a finite number of steps. Formally, the above observation can be stated as follows.

Theorem 1. If 𝑃 ⊢ 𝑥 ∶ 𝟏 then 𝑃 is terminating.

The essence of the proof is easy to see once we note a few things. Firstly, there is a straightforward correspondence between 𝜇CP∞

proofs and 𝜇MALL∞ proofs, hence a valid typing derivation for 𝑃 ⊢ 𝑥 ∶ 𝟏 corresponds to a valid 𝜇MALL∞ proof with conclusion
⊢ 𝟏. Next, we appeal to a Curry-Howard correspondence to ensure that any maximal reduction sequence in 𝜇CP∞ corresponds to a
maximal reduction sequence in 𝜇MALL∞ (of a particular form that we will clarify next). In 𝜇MALL∞ cut elimination [15,16] means
that any initial part of a cut-free proof is produced in finitely many steps by cut reductions (of another particular form). Since there
is exactly one cut-free proof of ⊢ 𝟏 in 𝜇MALL∞ where only the axiom [𝟏] is applied, and since no cut may appear above an axiom,
this procedure must erase all cuts.

The devil-in-the-details of the above proof sketch appears inside the brackets. Specifically, cut elimination in 𝜇MALL∞ is reliant
on reduction sequences of a particular form and it is not quite immediate from the definitions that the obvious Curry-Howard
correspondence with reduction sequences in 𝜇CP∞ yields an appropriate reduction sequence. Indeed, in many contexts an arbitrary
reduction in 𝜇CP∞ does not guarantee an appropriate reduction sequence, hence the restriction to the 𝑥 ∶ 𝟏 typing context. For
7

example, even a simple finite process such as (𝑥)(𝑧().𝑥().𝑦[] | 𝑥[]), which is well typed in the context 𝑧 ∶ ⊥, 𝑦 ∶ 𝟏, deadlocks with

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

a cut that cannot be reduced – a deadlock which is to be expected for the Caires-Pfenning-Wadler tradition (even when there are
commuting conversations). For the infinite processes introduced by 𝜇MALL∞, termination has additional nuances. We explain next
the nuances of reduction sequences in 𝜇MALL∞, so that we may expand the above proof sketch to a proof of termination.

4.1. Basic notions on labelled transition systems and their properties

In this section, we develop in greater detail the proof of Theorem 1. Although our proof will rely on an established cut elimination
property of 𝜇MALL∞, it takes some work to prove the existence of a correspondence between the calculi from which the desired
termination property follows for 𝜇CP∞. Proving cut elimination and proving the results required to establish a correspondence are
separate endeavours. The established cut elimination result in 𝜇MALL∞, which we rely on within the termination proof, and which
our correspondence results then harness, is quite complex to prove and is detailed elsewhere [16]. Thus we do not reproduce the
established proof of cut elimination for 𝜇MALL∞ here. In what follows in this section, what we do provide is the details required to
establish a correspondence that accounts for the differing reduction strategies of 𝜇MALL∞ and 𝜇CP∞. We then go on to put together
the established cut elimination result and details of the correspondence to establish our termination result. The following generic
definitions will be used.

A labelled transition system is a triple ( , , ←←←←←←←←←←←→) consisting of a set of states  , a set of transition labels  and a transition relation
←←←←←←←←←←←→ ⊆  × ×  . Hereafter, once we have fixed a labelled transition system ( , , ←←←←←←←←←←←→), for every 𝑆, 𝑇 ∈  and 𝓁 ∈  we will write

𝑆
𝓁

←←←←←←←←←←←←←→ 𝑇 if (𝑆, 𝓁, 𝑇) ∈ ←←←←←←←←←←←→, we will write 𝑆
𝓁

←←←←←←←←←←←←←→ if 𝑆
𝓁

←←←←←←←←←←←←←→ 𝑇 for some 𝑇 and we will write 𝑆 �
𝓁

←←←←←←←←←←←←←→ if not 𝑆
𝓁

←←←←←←←←←←←←←→. This definition is generic;
labels will be instantiated shortly so that they identify instances of formulas involved in a cut.

A reduction sequence is a finite or infinite sequence 𝑆1𝓁1𝑆2𝓁2⋯ of alternated states and labels not ending with a label and such

that 𝑆𝑖

𝓁𝑖
←←←←←←←←←←←←←←←→ 𝑆𝑖+1 whenever 𝑖 +1 is a valid index of the sequence. Given a reduction sequence 𝑆1𝓁1𝑆2𝓁2⋯ and a label 𝓁, we say that

𝓁 is enabled (respectively performed) in the sequence if 𝑆𝑖

𝓁
←←←←←←←←←←←←←→ (respectively 𝓁𝑖 = 𝓁) for some valid index 𝑖. Note that a performed

transition is necessarily enabled, while an enabled transition is not necessarily performed. We say that a labelled transition system
( , , ←←←←←←←←←←←→) is event labelled whenever, if a 𝓁-labelled transition is enabled in two states then an 𝓁-labelled transition is enabled in all
states between yet is never performed except perhaps after the later of the two states. A consequence of this is that every reduction
sequence does not contain duplicate labels, and hence in an event-labelled transition system each transition may be performed at
most once in the evolution of a state.

We say that a reduction sequence 𝑆1𝓁1𝑆2𝓁2⋯ is fair if, for every valid index 𝑖 with 𝑆𝑖

𝓁
←←←←←←←←←←←←←→, there exists 𝑗 > 𝑖 such that 𝑆𝑗 �

𝓁
←←←←←←←←←←←←←→.

That is, in a fair reduction sequence no transition can remain enabled forever. This also means that every finite fair transition
sequence ends in a state that has no outgoing transitions. Note that this notion of “fairness” is formulated in a slightly non-standard
way, but is aligned with the definition of fairness used in the proof of cut elimination for 𝜇MALL∞ [16], which is why we choose it.
Besides, for event-labelled transition systems, all reasonable notions of fairness collapse (cf. assumption (8) in [21]).

Given a labelled transition system ( , , ←←←←←←←←←←←→), we say that 𝑆 ∈  is (fairly) terminating if every (fair) reduction sequence starting
with 𝑆 is finite. Note that termination implies fair termination, but not vice versa.

We say that a labelled transition system ( , , ←←←←←←←←←←←→) has the Church-Rosser property if, for every 𝑆, 𝑆1, 𝑆2 ∈  and 𝓁1, 𝓁2 ∈  with

𝓁1 ≠ 𝓁2, we have that 𝑆
𝓁𝑖

←←←←←←←←←←←←←←←→ 𝑆𝑖 for every 𝑖 = 1, 2 implies 𝑆𝑖

𝓁3−𝑖
←←←←←←←←←←←←←←←←←←←←←←←→ 𝑇 for every 𝑖 = 1, 2 and some 𝑇 ∈  . In a fair reduction sequence

of a labelled transition system with the Church-Rosser property, every enabled transition is also performed.

Proposition 1. Let ( , , ) be an event-labelled transition system such that each state is Church-Rosser. If 𝑆 ∈  is fairly terminating, then
𝑆 is terminating.

Proof. Suppose that 𝑆 is not terminating. Then there exists an infinite reduction sequence 𝑆𝓁1𝑆1𝓁2𝑆2⋯. Since the transition system
is event labelled, the 𝓁𝑖 are all distinct and there are infinitely many of them. From the hypothesis that 𝑆 is fairly terminating we
deduce that every fair reduction sequence starting from 𝑆 is finite. Moreover, since the transition system is Church-Rosser, every fair
reduction sequence starting from 𝑆 enables and performs the same finite set of transitions, in possibly different orders. Therefore,
the set of transitions that are enabled and performed from 𝑆 is finite. This contradicts the assumption that there exists an infinite
reduction sequence starting from 𝑆 . □

4.2. 𝜇MALL∞ as an event-labelled transition system

In this section we recall the main elements of the 𝜇MALL∞ logical system, tailored so as to make it easier to relate them with
𝜇CP∞.

Formulas. Formulas in 𝜇MALL∞ are pairs 𝐴𝛼 consisting of a type 𝐴 (Section 3) and an address 𝛼 that identifies the occurrence of
the formula (and of its dual) within a proof derivation. We let 𝐹 and 𝐺 range over formulas. Addresses, ranged over by 𝛼 and 𝛽, are
strings from the alphabet {𝑖, 𝑙, 𝑟}. We say that two addresses are disjoint if neither is a prefix of the other.

The dual of a formula is obtained by dualizing the type, that is (𝐴𝛼)⊥
def
= 𝐴⊥

𝛼
. It is convenient to define operators on formulas
8

which are named after the connectives and fixed points of the logic and that behave thus:

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

(𝐴𝛼𝑙 ⋆ 𝐵𝛼𝑟)
def
=(𝐴⋆𝐵)𝛼 𝜎𝑋.(𝐴𝛼𝑖)

def
=(𝜎𝑋.𝐴)𝛼

Also, we postulate that 𝐹 {𝐴𝛼∕𝑋} substitutes the free occurrences of 𝑋 within 𝐹 with 𝐴, ignoring 𝛼.

Proofs. 𝜇MALL∞ proofs are built using the rules in Table 4, where we use the metavariables Γ and Δ to denote 𝜇MALL∞ sequents.
The context will allow us to disambiguate the interpretation of these metavariables as typing contexts or as sequents. The correspon-

dence between proof rules of 𝜇MALL∞ and typing rules of 𝜇CP∞ is obvious and for this reason we use the same labels to name
them. The only differences between the two systems is the use of formulas instead of types, the absence of proof terms (processes),
and the absence of the rule [CALL].

We draw from a stream of disjoint addresses in order to label the formulas in the conclusion of the proof and also to label each
occurrence of a cut in that proof. Note that we can always obtain an infinite stream of disjoint addresses by considering families of
addresses that begin with a prefix of the form 𝑙𝑛𝑟 for arbitrary 𝑛 ∈ ℕ. The labelling of all other formulas in a proof follows from the
labelling of formulas in the conclusion and those introduced by cut rules in a deterministic fashion following from the structure of
rules. This labelling convention ensures the following property.

Proposition 2. If the addresses of formulas introduced by cuts and the addresses of formulas in the conclusion of a 𝜇MALL∞ proof are all
disjoint, then every formula in each sequent of a proof has disjoint labels.

The above follows immediately by inspection of the rules in Table 4.

Proof congruence. In general, the cut elimination procedure for 𝜇MALL∞ requires some rearrangements in the structure of cuts. To
enable such rearrangements, we introduce a structural pre-congruence relation ≼ for proofs analogous to the one we have defined
for 𝜇CP∞ processes. Since 𝜇MALL∞ proofs do not contain process invocations, the ≼ relation for 𝜇MALL∞ proofs only concerns the
commutativity and associativity of cuts.

⊢ Γ , 𝐹 ⊢ Δ, 𝐹 ⊥

⊢ Γ ,Δ
≼
⊢ Δ, 𝐹 ⊥ ⊢ Γ , 𝐹

⊢ Γ ,Δ

⊢ Γ , 𝐹
⊢ Δ, 𝐹 ⊥,𝐺 ⊢Θ,𝐺⊥

⊢ Δ,Θ, 𝐹 ⊥

⊢ Γ ,Δ,Θ
≼

⊢ Γ , 𝐹 ⊢ Δ, 𝐹 ⊥,𝐺

⊢ Γ ,Δ,𝐺
⊢Θ,𝐺⊥

⊢ Γ ,Δ,Θ

In the literature on 𝜇MALL∞, the problem of rearranging cuts is addressed in a different way by considering a logical system
called 𝜇MALL∞m that conservatively extends 𝜇MALL∞ with a multicut rule.4 Multicuts collapse a finite number of nested cuts into a
single rule. It is easy to see that ≼ relates 𝜇MALL∞ proofs represented by the same multicut in 𝜇MALL∞m . Using ≼ instead of multicuts
allows us to draw a closer relationship between 𝜇CP∞ and 𝜇MALL∞ both at the level of operational semantics and at the level of
inference rules.

Internal reductions. Table 5 defines the internal reductions of 𝜇MALL∞ (also called principal reductions in the proof-theory literature),
which are those cut reduction steps in which a cut reduction eliminates dual constants, dual connectives or dual fixed points that
are introduced right above the cut. Note that 𝜇MALL∞ reductions are labelled with the address 𝛼 that identifies the dual formulas
being eliminated by the cut. The origin of this address from the proof is made explicit for example in the cut reduction of 𝟏 and ⊥
by indicating the address assigned with each unit. In the other rules, observe that the labels in the sequents appearing after the cut
reflect the labels of the immediate subformulas of the principal connectives involved in the cut reduction step. The

𝛼
←←←←←←←←←←←←→ relation is

closed under ≼, so that structurally pre-congruent proofs give raise to the same reductions (cf. [R-CONG]).

Also note that reductions preserve disjointness of labels. This follows by inspecting the form of addresses removed and created by
internal cut reductions.

Proposition 3. Both the disjointness of the every formula in each sequent of a proof and also the disjointness of each formula involved in a
cut throughout a proof are preserved by internal reductions.

Remark 2 (external reductions). In this paper we present only the internal reductions that correspond to reduction step in 𝜇CP∞, and
exclude the external reductions that feature in 𝜇MALL∞. External reductions occur when the rule immediately above either branch of a
cut does not interact at all with the formula being cut. In such cases, the rule passes through the cut and becomes a rule below the cut.
The design decision to exclude such external reductions is so as to align strongly with 𝜇CP∞. In turn, the design decision to exclude
rules corresponding to external reductions in 𝜇CP∞ originates in the work of Wadler [4], where he argues that external reductions
should be excluded since they allow prefixes to move around in a way that does not mimic synchronous process calculi. This
assumption has been challenged in work that allows external reductions, where the movement of outputs prefixes is used to model
asynchrony to different degrees [23,24]. External reductions that propagate rules below the bottom-most cuts may alternatively be
9

4 Not to be confused with the multicut rule used to cut multiple “coherent” parties [22].

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 5

Internal reductions in 𝜇MALL∞ .

⊢ 𝟏𝛼
[𝟏]

⊢ Γ

⊢ Γ ,⊥𝛼

[⊥]

⊢ Γ
[CUT]

𝛼
←←←←←←←←←←←←→ ⊢ Γ

⊢ Γ ,𝐴𝛼𝑙 ⊢Δ,𝐵𝛼𝑟

⊢ Γ ,Δ, (𝐴⊗𝐵)𝛼
[⊗]

⊢Θ,𝐴⊥
𝛼𝑙
,𝐵⊥

𝛼𝑟

⊢Θ, (𝐴⊥
�𝐵⊥)𝛼

[�]

⊢ Γ ,Δ,Θ
[CUT]

𝛼
←←←←←←←←←←←←→

⊢ Γ ,𝐴𝛼𝑙

⊢Δ,𝐵𝛼𝑟 ⊢Θ,𝐴⊥
𝛼𝑙
,𝐵⊥

𝛼𝑟

⊢Δ,Θ,𝐴⊥
𝛼𝑙

[CUT]

⊢ Γ ,Δ,Θ
[CUT]

⊢ Γ ,𝐴𝛼𝑙

⊢ Γ , (𝐴⊕𝐵)𝛼
[⊕]

⊢Δ,𝐴⊥
𝛼𝑙

⊢Δ,𝐵⊥
𝛼𝑟

⊢Δ, (𝐴⊥
�𝐵⊥)𝛼

[�]

⊢ Γ ,Δ
[CUT]

𝛼
←←←←←←←←←←←←→

⊢ Γ ,𝐴𝛼𝑙 ⊢Δ,𝐴⊥
𝛼𝑙

⊢ Γ ,Δ
[CUT]

⊢ Γ , (𝐴{𝜇𝑋.𝐴∕𝑋})𝛼𝑖
⊢ Γ , (𝜇𝑋.𝐴)𝛼

[𝜇]
⊢Δ, (𝐴⊥{𝜈𝑋.𝐴⊥∕𝑋})𝛼𝑖

⊢Δ, (𝜈𝑋.𝐴⊥)𝛼
[𝜈]

⊢ Γ ,Δ
[CUT]

𝛼
←←←←←←←←←←←←→

⊢ Γ , (𝐴{𝜇𝑋.𝐴∕𝑋})𝛼𝑖 ⊢Δ, (𝐴⊥{𝜈𝑋.𝐴⊥∕𝑋})𝛼𝑖
⊢ Γ ,Δ

[CUT]

interpreted as interactions with an external environment, much like “catalysers” in dynamically interleaved sessions [25]. Indeed,
there is a line of work that interprets the rules produced by external reductions, which opens up a whole world where we start to
consider richer behavioural properties guaranteed by provable external actions of a session calculus [7]. Thus a crucial difference
between the logical interpretation in the current paper and that prior work is whether we interpret only internal reductions or
whether we interpret also the rules produced by external reductions in our behavioural properties, and since the latter allows us
to interpret infinite reduction sequences, then behavioural properties beyond termination become significant. There remains much
unexplored territory in that direction; hence our decision to consider a calculus where external reductions are excluded and rules on
external channels are not interpreted is a political choice, fixing a minimal setting that is more widely adopted [26,6]. ⌟

4.3. Reduction strategies and termination

Cut elimination procedures in infinitary proof calculi depend on being able to reduce a proof such that any initial part of a cut-free
proof may be produced. Cuts may be reduced by a number of strategies, and not all strategies yield a proof. Obviously, if there are
infinitely many cuts that can be reduced, then if we allow cuts to be reduced anywhere in any order then there exists an infinite
reduction sequence that never reduces the bottom-most cut and hence never produces a cut-free proof (cf. Example 6).

There are two reduction strategies that appear in our termination argument. Firstly, there is the head reduction strategy which,
for internal reductions, corresponds tightly to reductions in 𝜇CP∞.

Head reductions. We say that a cut in a proof derivation is unguarded if the path from the root of the derivation to the cut only goes
through other cuts. A head reduction strategy arises when we restrict

𝛼
←←←←←←←←←←←←→ to unguarded cuts. This closely mimics the reduction strategy

of 𝜇CP∞, where reductions are not allowed to occur under prefixes.

When we consider internal head reductions only, that is, unguarded cut reduction steps following Table 5, we obtain a Church-

Rosser property.

Proposition 4. Assuming cuts are assigned disjoint labels, internal head reductions are Church-Rosser.

Proof. Since all cuts have disjoint addresses and are replaced by longer labels, they are disabled once they are reduced. Because a
head reduction strategy allows only reductions on unguarded cuts, no rule can disable another cut. □

We also need to reason about the following reduction strategy, since, in our correspondence results, there is a need to bridge the
10

gap between the reduction strategy in 𝜇MALL∞ and 𝜇CP∞.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Bottom-most reductions. In this strategy a head reduction can be applied to any subtree of a proof where no cut rule appears along
the path from the root to that sub-tree. This has the effect of reducing cuts deep inside the tree as long as they are in the bottom-most
multicut along a branch of a tree. This bottom-most reduction strategy (which appears only implicitly in the text in established
cut-elimination results for 𝜇MALL∞ [15,16]), ensures cut elimination.

Example 6. Consider the following proof, which is valid since the left branch unfolds 𝜈𝑋.𝑋 repeatedly, while the right branch
loops back to the beginning thereby applying cuts repeatedly (as suggested by the corresponding process term 𝖠(𝑥, 𝑦) ≜ (𝑧)(𝖡⟨𝑥, 𝑧⟩ |
𝗋𝖾𝖼 𝑧.𝖼𝗈𝗋𝖾𝖼 𝑦.𝖠⟨𝑧, 𝑦⟩), where 𝖡(𝑥, 𝑧) ≜ 𝖼𝗈𝗋𝖾𝖼 𝑧.𝖡⟨𝑥, 𝑧⟩).

⋮

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[𝜈]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋

⋮

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[𝜈]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋

⋮

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[𝜈]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[𝜇]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[CUT]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[𝜈]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[𝜇]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋
[CUT]

⊢ 𝜇𝑋.𝑋, 𝜈𝑋.𝑋

The above proof has infinitely many nested cuts that are ready to reduce. We use this example next to illustrate differences between
a head reduction strategy and a bottom-most reduction strategy.

In a head reduction strategy only the bottom-most cut will reduce by one step and then the cut reduction sequence will block
due to the absence of external rules. In contrast, in a bottom-most reduction strategy consisting of internal and external reductions,
an external rule would permute the unfolding of the greatest fixed point on the right past the cut. The cut would then form a
larger multicut at the bottom of the proof and the reduction procedure would continue to produce [𝜈] rules above the new rule
that is produced. That bottom-most reduction strategy therefore can produce any initial part of the cut-free proof of the conclusion
where 𝜈𝑋.𝑋 is unfolded repeatedly (that is 𝖡⟨𝑥, 𝑧⟩ above). This productivity is despite the size of the bottom-most multicut growing
indefinitely. ⌟

We are now ready to appeal to cut elimination as established already for 𝜇MALL∞ [15,16] in order to argue about behavioural
properties of cut reductions with respect to particular reduction strategies. Under a fair bottom-most reduction strategy in the
environment 𝑥 ∶ 𝟏, all unguarded cuts are eventually erased. Cut elimination guarantees that the bottom-most cut eventually produces
a rule, which can only be achieved when an external cut reduction step is encountered or all bottom-most cuts are erased. We can
argue that an external rule is never applied and hence all unguarded cuts must be erased.

Proposition 5. If 𝜋 is a proof of ⊢ 𝟏 in 𝜇MALL∞, then every maximal fair sequence of internal and external bottom-most reductions
applied to 𝜋 (that is, according to the established strategy for 𝜇MALL∞) is finite and yields the unique cut-free proof of ⊢ 𝟏 in 𝜇MALL∞.
Furthermore, that fair reduction sequence consists only of internal head reductions.

Proof. Due to cut elimination in 𝜇MALL∞ [15,16], under a fair bottom-most cut reduction strategy, any cuts at the head of a proof
will eventually produce a rule. There can be no rule at the bottom of the proof other than a cut or the rule [𝟏], since no cut reduction
can modify rules below the bottom-most cuts. Furthermore, since any external reductions applied at the bottom of a proof produces
a rule other than [𝟏] or cut, then no external rule may appear in the sequence of cut reductions. Since no rule can appear above [𝟏]

once it is produced, and internal rules may be applied only to the bottom-most rule, all internal reductions must be applied before the
rule [𝟏] is produced and hence must be applied to unguarded cuts. Furthermore, no rule other than [𝟏] may appear in the resulting
proof and hence the resulting sequence of internal head reductions must terminate. □

Since we know that the reduction sequence for the proofs of ⊢ 𝟏 must consist of only internal reductions applied at the head
of a proof, we know we can restrict our analysis to unguarded cuts following the reduction system in Table 5. Since internal head
reductions have the Church-Rosser property (Proposition 4), we can apply Proposition 1 to eliminate the fairness assumption from
the above proof to obtain the following result.

Proposition 6. If 𝜋 is a proof of ⊢ 𝟏 in 𝜇MALL∞, then every sequence of internal head reductions applied to 𝜋 eventually terminates yielding
the unique cut-free proof of ⊢ 𝟏.

Proof. Assume that 𝜋 is a proof of ⊢ 𝟏 in 𝜇MALL∞. Suppose that there is an infinite sequence of internal head reductions applied to
𝜋. By Proposition 5, every bottom-most sequence of fair internal and external reductions applied to 𝜋:
11

• eventually terminates yielding the unique cut-free proof of ⊢ 𝟏;

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

• consists only of internal head reductions.

The problem at this point is that we want to observe that since all these fair reduction sequence are terminating we can apply
Proposition 1 to conclude that all reduction sequences are terminating independently of fairness. Yet this argument relies on every

fair sequence of internal head reduction being covered by the above construction. The above does not (yet) exclude the possibility
there is an infinite reduction sequence that is fair w.r.t. only the sub-system of 𝜇MALL∞ that does not occur if we were to consider
fair sequences for the whole of 𝜇MALL∞, including all external bottom-most reductions of 𝜇MALL∞.

Now suppose that, for 𝜋, there is a fair reduction sequence 𝜎 of head reduction using only the internal reductions in Table 5. We
now aim to establish that, if such a 𝜎 were to exist, then 𝜎 would also be a fair bottom-most reduction sequence with respect to all
internal and external reductions in 𝜇MALL∞ [15,16]. Suppose, for contradiction, that 𝜎 were not fair in 𝜇MALL∞ with respect to all
bottom-most reductions. We break this failure of fairness with respect to all rules down into two possibilities:

1. there exists an external cut reductions step 𝑒𝑟 that is perpetually enabled just above the bottom-most cuts (but never occurs nor
is disabled);

2. there exists an internal cut reduction step 𝑖𝑟 that is perpetually enabled at the bottom of the proof (but never occurs nor is
disabled).

In the first case above, since there is no external reduction in 𝜎, clearly 𝑒𝑟 never occurs in 𝜎. Yet, since we assumed that it is
perpetually enabled, this would mean that any prefix of 𝜎 can be extended to a fair bottom-most reduction sequence (not necessarily
infinite) in 𝜇MALL∞ in which 𝑒𝑟 occurs. Thus by cut elimination for 𝜇MALL∞ [15,16] that reduction sequence would produce the
unique cut-free proof of ⊢ 𝟏. Now, observe that every external cut reduction step applied at the bottom of a proof, such as 𝑒𝑟,
produces a new rule that appears below the bottom-most cuts in the proof. Yet ⊢ 𝟏 has only one cut-free proof consisting of a rule
that cannot be produced by any external reduction of 𝜇MALL∞, yielding a contraction. Hence there can be no external cut reduction
step in 𝜎 that is perpetually enabled.

Now consider the second case above. We have assumed that the internal reduction step 𝑖𝑟 is enabled perpetually along 𝜎. The
enabled reduction step must therefore be the reduction of an unguarded cut at the bottom of the proof, and hence is a reduction
following the rules in Table 5. Therefore, by fairness of 𝜎 with respect to internal head reductions, that reduction rule must eventually
occur or be disabled, and hence cannot be perpetual.

Thereby we can conclude that 𝜎 must be fair in 𝜇MALL∞ also with respect to all internal and external reductions (by construction,
we already knew it consists only of internal reductions). Thus 𝜎 must therefore be finite, by cut elimination. Since 𝜎 is an arbitrary
fair internal head sequence of 𝜋 and it is finite, we can say that 𝜋 is fairly terminating with respect to internal head reductions. Since
internal head reductions form an event-labelled transition system the initial addresses labelling cuts are disjoint (Proposition 2),
disjointness is preserved by internal reductions (Proposition 3), and proof for which labels are disjoint are Church-Rosser (Proposi-

tion 4), all proofs in 𝜎 are Church-Rosser. Therefore, we can apply Proposition 1, to conclude that 𝜋 is terminating with respect to
internal head reductions. □

4.4. Translation of 𝜇CP∞ typing derivations into 𝜇MALL∞ proofs

The previous section concerns only internal head reduction sequences applied to 𝜇MALL∞ proof. To link these results to 𝜇CP∞

we rely on some properties that relate these calculi. The mapping here makes precise the Curry-Howard correspondence at play in
this work.

The translation of 𝜇CP∞ typing contexts into 𝜇MALL∞ sequents is defined by a function ⌊⋅⌋Σ parametrised by a partial map Σ
from channel names to addresses and defined as

⌊𝑥1 ∶𝐴1,… , 𝑥𝑛 ∶𝐴𝑛⌋Σ = (𝐴1)Σ(𝑥1),… , (𝐴𝑛)Σ(𝑥𝑛)

Assuming that the addresses in the range of Σ are disjoint, the formulas in ⌊Γ⌋Σ have disjoint addresses as required by the notion of
𝜇MALL∞ sequent.

The translation of 𝜇CP∞ typing derivations into 𝜇MALL∞ proof derivations is given by a function ⌊⋅⌋𝜎
Σ

parametrized by an
infinite stream 𝜎 of addresses and by a partial map Σ from channel names to addresses. The function is corecursively defined by
the equations in Table 6, where we write 𝜋 ∶∶ 𝑃 ⊢ Γ to name 𝜋 the derivation that concludes 𝑃 ⊢ Γ . This way, we can refer to such
derivation on the right hand side of the translation wherever necessary. The translation is quite straightforward, the only necessary
remarks concern the notation used to consume the stream 𝜎 and to extend the map Σ. We model a stream as a function from natural
numbers to addresses and write 𝛼 ∶∶ 𝜎 for the stream that begins with 𝛼 and continues as 𝜎. We write 𝜎′ and 𝜎′′ for the streams
respectively defined by

(𝜎′)(𝑛)
def
= 𝜎(2𝑛+ 1) (𝜎′′)(𝑛)

def
= 𝜎(2𝑛)

so that 𝜎′ (respectively 𝜎′′) is the stream consisting of the addresses of 𝜎 in odd (respectively even) position. These operators allow
us to split a stream into two disjoint streams, which we do whenever we translate a typing rule with two premises. We write 𝑥 ↦ 𝛼

for the (partial) map from channel names to addresses that maps 𝑥 to 𝛼 and we write Σ, Σ′ for the union of Σ and Σ′ when they
12

have disjoint domains. Note that in Table 6 we only show the case for 𝗂𝗇0 in the translation of ⊕, the other case being analogous.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 6

Translation of 𝜇CP∞ typing derivations into 𝜇MALL∞ proofs.⌊
𝖿𝖺𝗂𝗅 𝑥 ⊢ Γ , 𝑥 ∶ ⊤

[⊤]

⌋𝜎

Σ,𝑥↦𝛼

=
⊢ ⌊Γ⌋Σ,⊤𝛼

[⊤]

⌊
𝑥[] ⊢ 𝑥 ∶ 𝟏

[𝟏]

⌋𝜎

Σ,𝑥↦𝛼

=
⊢ 𝟏𝛼

[𝟏]

⌊
𝜋 ∶∶ 𝑃 ⊢ Γ

𝑥().𝑃 ⊢ Γ , 𝑥 ∶ ⊥
[⊥]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋⌋𝜎

Σ

⊢ ⌊Γ⌋Σ ,⊥𝛼

[⊥]

⌊
𝜋1 ∶∶ 𝑃 ⊢ Γ , 𝑦 ∶𝐴 𝜋2 ∶∶𝑄⊢Δ, 𝑥 ∶𝐵

𝑥[𝑦](𝑃 |𝑄) ⊢ Γ ,Δ, 𝑥 ∶𝐴⊗𝐵
[⊗]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋1⌋𝜎′

Σ,𝑦↦𝛼𝑙
⌊𝜋2⌋𝜎′′

Σ,𝑥↦𝛼𝑟

⊢ ⌊Γ⌋Σ ,⌊Δ⌋Σ, (𝐴⊗𝐵)𝛼
[⊗]

⌊
𝜋 ∶∶ 𝑃 ⊢ Γ , 𝑦 ∶𝐴,𝑥 ∶𝐵

𝑥(𝑦).𝑃 ⊢ Γ , 𝑥 ∶𝐴�𝐵
[�]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋⌋𝜎

Σ,𝑦↦𝛼𝑙,𝑥↦𝛼𝑟

⊢ ⌊Γ⌋Σ , (𝐴�𝐵)𝛼
[�]

⌊
𝜋 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴

𝑥[𝗂𝗇0].𝑃 ⊢ Γ , 𝑥 ∶𝐴⊕𝐵
[⊕]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋⌋𝜎

Σ,𝑥↦𝛼𝑙

⊢ ⌊Γ⌋Σ , (𝐴⊕𝐵)𝛼
[⊕]

⌊
𝜋1 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴 𝜋2 ∶∶𝑄⊢ Γ , 𝑥 ∶𝐵

𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} ⊢ Γ , 𝑥 ∶𝐴�𝐵
[�]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋1⌋𝜎′

Σ,𝑥↦𝛼𝑙
⌊𝜋2⌋𝜎′′

Σ,𝑥↦𝛼𝑟

⊢ ⌊Γ⌋Σ , (𝐴�𝐵)𝛼
[�]

⌊
𝜋 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴{𝜈𝑋.𝐴∕𝑋}

𝖼𝗈𝗋𝖾𝖼 𝑥.𝑃 ⊢ Γ , 𝑥 ∶ 𝜈𝑋.𝐴
[𝜈]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋⌋𝜎

Σ,𝑥↦𝛼𝑖

⊢ ⌊Γ⌋Σ , (𝜈𝑋.𝐴)𝛼
[𝜈]

⌊
𝜋 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴{𝜇𝑋.𝐴∕𝑋}

𝗋𝖾𝖼 𝑥.𝑃 ⊢ Γ , 𝑥 ∶ 𝜇𝑋.𝐴
[𝜇]

⌋𝜎

Σ,𝑥↦𝛼

=
⌊𝜋⌋𝜎

Σ,𝑥↦𝛼𝑖

⊢ ⌊Γ⌋Σ , (𝜇𝑋.𝐴)𝛼
[𝜇]

⌊
𝜋1 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴 𝜋2 ∶∶𝑄⊢Δ, 𝑥 ∶𝐴⊥

(𝑥)(𝑃 |𝑄) ⊢ Γ ,Δ
[CUT]

⌋𝛼∶∶𝜎

Σ

=
⌊𝜋1⌋𝜎′

Σ,𝑥↦𝛼
⌊𝜋2⌋𝜎′′

Σ,𝑥↦𝛼

⊢ ⌊Γ⌋Σ ,⌊Δ⌋Σ [CUT]

⌊
𝜋 ∶∶ 𝑃 ⊢ 𝑥 ∶𝐴

𝐴⟨𝑥⟩ ⊢ 𝑥 ∶𝐴
[CALL]

⌋𝜎

Σ

= ⌊𝜋⌋𝜎
Σ

if 𝐴(𝑥) ≜ 𝑃

Hereafter we always assume that streams consist of pairwise disjoint addresses. Similarly to Proposition 2, the choice of labelling
preserves disjointness throughout a proof without the need to generate fresh addresses.

Now we have:

Proposition 7. If 𝛼 ∶∶ 𝜎 is a stream of disjoint addresses and 𝜋 ∶∶ 𝑃 ⊢ 𝑥 ∶ 𝟏 is a valid typing derivation, then ⌊𝜋⌋𝜎
𝑥↦𝛼

is a valid 𝜇MALL∞

proof with conclusion ⊢ 𝟏.

Proof. The validity condition for 𝜇CP∞ typing derivations is modelled after that for 𝜇MALL∞ proofs. □

Proposition 8. Let 𝜋𝑖 ∶∶ 𝑃𝑖 ⊢ 𝑥 ∶𝐴 for 𝑖 = 1, 2 and 𝛼 ∶∶ 𝜎1 be a stream of disjoint addresses and 𝑃1 → 𝑃2. Then ⌊𝜋1⌋𝜎1𝑥↦𝛼

𝛽
←←←←←←←←←←←←→ ⌊𝜋2⌋𝜎2𝑥↦𝛼

for some 𝜎2 such that 𝛼 ∶∶ 𝜎2 is a stream of disjoint addresses and some 𝛽 ∈ 𝜎1 ⧵ 𝜎2. Furthermore the given reduction is an internal head
reduction.

Proposition 9. Let 𝜋1 ∶∶ 𝑃1 ⊢ 𝑥 ∶𝐴 and 𝛼 ∶∶ 𝜎1 be a stream of disjoint addresses and ⌊𝜋2⌋𝜎2𝑥↦𝛼

𝛽
←←←←←←←←←←←←→ 𝜋. Then there exist 𝑃2, 𝜋2 and 𝜎2 such

that 𝜋2 ∶∶ 𝑃2 ⊢ 𝑥 ∶𝐴 and 𝜋 = ⌊𝜋2⌋𝜎2𝑥↦𝛼
and 𝑃1 → 𝑃2 and 𝛼 ∶∶ 𝜎2 is a stream of disjoint addresses and 𝛽 ∈ 𝜎1 ⧵ 𝜎2.

In Proposition 9, the address 𝛽 uniquely identifies the two (dual) formulas in the cut being reduced. Depending on the shape of
these formulas, in the proof tree after the reduction either 𝛽 disappears completely (in case of a [𝟏]/[⊥] reduction) or it is replaced
by 𝛽𝑖 (in case of a [𝜇]/[𝜈] reduction) or it is replaced by either 𝛽𝑙 or 𝛽𝑟 (in case of a [⊕]/[�] reduction) or it is replaced by the two
addresses 𝛽𝑙 and 𝛽𝑟 (in case of a [⊗]/[�] reduction). This is the reason why the translation of 𝜋2 requires in general a stream of
addresses 𝜎2 that is different from 𝜎1 used for the encoding of 𝜋1.

4.5. Proof of Theorem 1

We are now ready to establish the main termination result of this work.
13

Theorem 1. If 𝑃 ⊢ 𝑥 ∶ 𝟏 then 𝑃 is terminating.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 7

Iso-recursive subtyping for session types.

[BOT]

𝟎 ⩽𝗂𝗌𝗈 𝐴

[TOP]

𝐴 ⩽𝗂𝗌𝗈 ⊤

[REFL]

𝜅 ⩽𝗂𝗌𝗈 𝜅

[CONG]
𝐴 ⩽𝗂𝗌𝗈 𝐴

′ 𝐵 ⩽𝗂𝗌𝗈 𝐵
′

𝐴⋆𝐵 ⩽𝗂𝗌𝗈 𝐴
′ ⋆𝐵′

[FIX]
𝐴{𝜎𝑋.𝐴∕𝑋}⩽𝗂𝗌𝗈 𝐵{𝜎𝑋.𝐵∕𝑋}

𝜎𝑋.𝐴⩽𝗂𝗌𝗈 𝜎𝑋.𝐵

Proof. We aim to establish that any process of 𝜇CP∞, say 𝑃0, is terminating whenever 𝜛0 ∶∶ 𝑃0 ⊢ 𝑥 ∶ 𝟏 is a valid typing derivation.
By Proposition 7, for some stream of disjoint addresses 𝛼0 ∶∶ 𝜎, then 𝜋0 = ⌊𝜛0⌋𝜎𝑥↦𝛼0

is a valid 𝜇MALL∞ proof with conclusion ⊢ 𝟏.

Now consider any maximal reduction sequence of 𝑃0, say 𝜃, such that 𝑃0 → 𝑃1 →⋯. By Proposition 8, there is a sequence of
internal head reductions 𝜎 such that 𝜋0

𝛼0
←←←←←←←←←←←←←←←←→ 𝜋1

𝛼1
←←←←←←←←←←←←←←←←→⋯ where 𝜛𝑖 ∶∶ 𝑃𝑖 ⊢ 𝑥 ∶ 𝟏 and ⌊𝜛𝑖⌋𝜎𝑥↦𝛼𝑖

= 𝜋𝑖. That is, we have a correspondence
between reductions of 𝜇CP∞ and internal head reductions of 𝜇MALL∞. Suppose this sequence were not a maximal sequence of
internal head reductions, then there exists 𝑛 such that 𝑃𝑛 is deadlocked but 𝜋𝑛

𝛼𝑛
←←←←←←←←←←←←←←←←→ 𝜋𝑛+1. If that were so, then by Proposition 9 there

exists a process 𝑄 such that 𝑃𝑛 →𝑄 contradicting the fact that 𝑃𝑛 is deadlocked. Therefore, 𝜎 is maximal.

Now by Proposition 6, we have that 𝜎 is of finite length 𝑛 and 𝜋𝑛 is a cut-free proof of ⊢ 𝟏. Thus 𝜃 is finite and furthermore
𝑃𝑛 = 𝑥[]. Since 𝜃 was arbitrary, we can conclude that 𝑃0 is terminating, as required. □

5. Iso-recursive subtyping

We introduce here an iso-recursive subtype system [27]. It is iso-recursive in the sense that fixed points are handled as explicit
operators that are part of the types, and the structure of the fixed points must align on each side of a subtype judgement. When
treating types iso-recursively, a term with fixed points and its infinite unfolding are not considered to be equivalent, since the way
that a type is unfolded is taken into account.

Table 7 shows the inference rules for iso-recursive subtyping judgements. The rules are meant to be interpreted coinductively
so that a judgement 𝐴 ⩽𝗂𝗌𝗈 𝐵 is derivable if it is the conclusion of any (finite or infinite) derivation. The rules [BOT] and [TOP]

establish that 𝟎 and ⊤ are respectively the least and the greatest session type; the rules [REFL] and [CONG] establish reflexivity and
pre-congruence of ⩽𝗂𝗌𝗈 with respect to all the constants and connectives; finally, the rule [FIX] shows that we adopt an iso-recursive
formulation of subtyping [27] whereby two (recursive) session types are related provided that fixed points of the same kind are
found in the same locations.

Example 7. Consider the types 𝐴
def
= 𝜇𝑋.𝟎 ⊕ (𝜇𝑋.𝟏 ⊕ 𝟎) and 𝐵

def
= 𝜈𝑋.(⊥ � 𝑋) which, as we have seen in Example 2, describe the

behaviour of 𝖢𝗅𝗂𝖾𝗇𝗍 and 𝖲𝖾𝗋𝗏𝖾𝗋 in Example 1. We can derive 𝐴 ⩽𝗂𝗌𝗈 𝐵
⊥ by means of the derivation

[BOT]
𝟎 ⩽𝗂𝗌𝗈 𝟏

[REFL]
𝟏 ⩽𝗂𝗌𝗈 𝟏

[BOT]
𝟎 ⩽𝗂𝗌𝗈 𝐵

⊥

[CONG]
𝟏⊕ 𝟎 ⩽𝗂𝗌𝗈 𝟏⊕𝐵⊥

[FIX]
𝜇𝑋.𝟏⊕ 𝟎 ⩽𝗂𝗌𝗈 𝐵

⊥

[CONG]
𝟎⊕ (𝜇𝑋.𝟏⊕ 𝟎) ⩽𝗂𝗌𝗈 𝟏⊕𝐵⊥

[FIX]
𝐴 ⩽𝗂𝗌𝗈 𝐵

⊥

as well as 𝐵 ⩽𝗂𝗌𝗈 𝐴
⊥ by means of the derivation

[TOP]
⊥ ⩽𝗂𝗌𝗈 ⊤

[REFL]
⊥ ⩽𝗂𝗌𝗈 ⊥

[TOP]
𝐵 ⩽𝗂𝗌𝗈 ⊤

[CONG]
⊥�𝐵 ⩽𝗂𝗌𝗈 ⊥�⊤

[FIX]
𝐵 ⩽𝗂𝗌𝗈 𝜈𝑋.⊥�⊤

[CONG]
⊥�𝐵 ⩽𝗂𝗌𝗈 ⊤� (𝜈𝑋.⊥�⊤)

[FIX] ⌟
𝐵 ⩽𝗂𝗌𝗈 𝐴

⊥

It is easy to show that ⩽𝗂𝗌𝗈 is a preorder and that 𝐴 ⩽𝗂𝗌𝗈 𝐵 implies 𝐵⊥ ⩽𝗂𝗌𝗈 𝐴
⊥ in general. Indeed, as illustrated in Example 7,

we obtain a derivation of 𝐵⊥ ⩽𝗂𝗌𝗈 𝐴
⊥ from that of 𝐴 ⩽𝗂𝗌𝗈 𝐵 by dualizing every judgement and by turning every application of [BOT]

(respectively [TOP]) into an application of [TOP] (respectively [BOT]).

We now show that our notion of subtyping is sound by proving the standard safe substitution principle: if “𝑃 has type 𝐴” and 𝐴
14

is a subtype of 𝐵, then “𝑃 also has type 𝐵”. We quote such informal statements since in general 𝑃 may use more than one channel,

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

in which case the “type” of 𝑃 is better described by the whole typing context in which 𝑃 is well typed rather than by the type of a
particular channel used by 𝑃 .

Theorem 2. If 𝑃 ⊢ Γ , 𝑥 ∶𝐴 and 𝐴 ⩽𝗂𝗌𝗈 𝐵, then 𝑃 ⊢ Γ , 𝑥 ∶ 𝐵.

Proof. We corecursively define a function ⌈⋅⌉𝐵
𝑥

that maps typing derivations for the judgement 𝑃 ⊢ Γ , 𝑥 ∶ 𝐴 into typing derivations
for the judgement 𝑃 ⊢ Γ , 𝑥 ∶ 𝐵 under the hypothesis 𝐴 ⩽𝗂𝗌𝗈 𝐵. This function is defined by cases on the last rule applied to derive
𝑃 ⊢ Γ , 𝑥 ∶𝐴 as well as on the shape of 𝐵. We only illustrate a few representative cases, the others being analogous.

When we encounter the application of a typing rule that concerns the channel 𝑥 and 𝐵 happens to be ⊤, the derivation can be
truncated by an application of [⊤]:⌈

…

𝑃 ⊢ Γ , 𝑥 ∶𝐴
[*]

⌉⊤

𝑥

=
𝑃 ⊢ Γ , 𝑥 ∶ ⊤

[⊤]

This truncation is safe because, by using ⊤ as a type for 𝑥, we know that there cannot be another process at the other end of the
session (which is typed with 𝟎). In other words, 𝑃 is dead code that will never be executed.

When we encounter the application of a typing rule that concerns the channel 𝑥 and 𝐵 is not ⊤, we propagate the transformation
upwards using the fact that ⩽𝗂𝗌𝗈 is a congruence for all the connectives and fixed points. For example, in the particular case of [�]

we have⌈
𝜋1 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴1 𝜋2 ∶∶𝑄⊢ Γ , 𝑥 ∶𝐴2

𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} ⊢ Γ , 𝑥 ∶𝐴1 �𝐴2
[�]

⌉𝐵1�𝐵2

𝑥

=
⌈𝜋1⌉𝐵1

𝑥 ⌈𝜋2⌉𝐵2
𝑥

𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} ⊢ Γ , 𝑥 ∶ 𝐵1 �𝐵2
[�]

where we use the notation 𝜋 ∶∶ 𝑃 ⊢ Γ to give name 𝜋 to the derivation for the judgement 𝑃 ⊢ Γ . Note that from the hypothesis 𝐴1 �

𝐴2 ⩽𝗂𝗌𝗈 𝐵1 � 𝐵2 we deduce 𝐴𝑖 ⩽𝗂𝗌𝗈 𝐵𝑖 for every 𝑖 = 1, 2, thereby satisfying the requirements of the transformation in its corecursive
applications.

When we encounter the application of a typing rule that concerns a channel 𝑦 different from 𝑥, we simply propagate the trans-

formation upwards while updating the type of 𝑥. Considering again the case of [�] we have:⌈
𝜋1 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴,𝑦 ∶ 𝐶1 𝜋2 ∶∶𝑄⊢ Γ , 𝑥 ∶𝐴,𝑦 ∶ 𝐶2

𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} ⊢ Γ , 𝑥 ∶𝐴,𝑦 ∶ 𝐶1 �𝐶2
[�]

⌉𝐵

𝑥

=
⌈𝜋1⌉𝐵𝑥 ⌈𝜋2⌉𝐵𝑥

𝖼𝖺𝗌𝖾 𝑥{𝑃 ,𝑄} ⊢ Γ , 𝑥 ∶𝐵,𝑦 ∶ 𝐶1 �𝐶2
[�]

The typing derivation for 𝑃 ⊢ Γ , 𝑥 ∶ 𝐵 resulting from the transformation is valid because every infinite branch in it corresponds
to an infinite branch in the original typing derivation for 𝑃 ⊢ Γ , 𝑥 ∶ 𝐴 and contains the same rule applications. It may happen that
the transformation truncates an infinite branch in the original derivation (see the first case discussed above), but then this branch
becomes finite and requires no special attention. □

Example 8. From the derivations in Example 2 and Theorem 2 we deduce that the typing judgements 𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ ⊢ 𝑥 ∶ 𝐵⊥ and
𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶𝐴⊥, 𝑧 ∶ 𝟏 are both derivable and that their derivations are valid. In particular, if we call 𝜋 the typing derivation for
𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶ 𝐵, 𝑧 ∶ 𝟏 and we let 𝐶

def
= 𝜈𝑋.⊥ �⊤, we have that ⌈𝜋⌉𝐴⊥

𝑥
is the following derivation

[⊤]
𝑥().𝑧[] ⊢ 𝑥 ∶ ⊤,𝑧 ∶ 𝟏

[𝟏]
𝑧[] ⊢ 𝑧 ∶ 𝟏

[⊥]
𝑥().𝑧[] ⊢ 𝑥 ∶ ⊥,𝑧 ∶ 𝟏

branch truncated here
[⊤]

𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶ ⊤,𝑧 ∶ 𝟏
[�]

𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩} ⊢ 𝑥 ∶ ⊥�⊤,𝑧 ∶ 𝟏
[𝜈]

𝖼𝗈𝗋𝖾𝖼 𝑥.𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩} ⊢ 𝑥 ∶ 𝐶,𝑧 ∶ 𝟏
[CALL]

𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶ 𝐶,𝑧 ∶ 𝟏
[�]

𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩} ⊢ 𝑥 ∶ ⊤�𝐶,𝑧 ∶ 𝟏
[𝜈]

𝖼𝗈𝗋𝖾𝖼 𝑥.𝖼𝖺𝗌𝖾 𝑥{𝑥().𝑧[],𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩} ⊢ 𝑥 ∶𝐴⊥,𝑧 ∶ 𝟏
[CALL]

𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ ⊢ 𝑥 ∶𝐴⊥,𝑧 ∶ 𝟏
which truncates the behaviour of 𝖲𝖾𝗋𝗏𝖾𝗋 so that it barely covers what is needed by 𝖢𝗅𝗂𝖾𝗇𝗍. In the end we can build (at least) two
different typing derivations showing that the composition (𝑥)(𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ | 𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩) is well typed. ⌟

In our presentation the safe substitution principle is only a meta-theoretic property of the type system, but Theorem 2 can be
used to justify the extension of the type system with an explicit subsumption rule like the following

[ISO-SUB]

𝜋 ∶∶ 𝑃 ⊢ Γ , 𝑥 ∶𝐴
𝐵

15

𝑃 ⊢ Γ , 𝑥 ∶ 𝐵
𝐴 ⩽𝗂𝗌𝗈 𝐵 ⇝ ⌈𝜋⌉

𝑥

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 8

Equi-recursive subtyping for session types.

[BOT]

𝟎 ⩽𝖾𝗊𝗎𝗂 𝐴

[TOP]

𝐴 ⩽𝖾𝗊𝗎𝗂 ⊤

[REFL]

𝜅 ⩽𝖾𝗊𝗎𝗂 𝜅

[CONG]
𝐴 ⩽𝖾𝗊𝗎𝗂 𝐴

′ 𝐵 ⩽𝖾𝗊𝗎𝗂 𝐵
′

𝐴⋆𝐵 ⩽𝖾𝗊𝗎𝗂 𝐴
′ ⋆𝐵′

[LEFT-𝜎]
𝐴{𝜎𝑋.𝐴∕𝑋}⩽𝖾𝗊𝗎𝗂 𝐵

𝜎𝑋.𝐴⩽𝖾𝗊𝗎𝗂 𝐵

[RIGHT-𝜎]
𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵{𝜎𝑋.𝐵∕𝑋}

𝐴 ⩽𝖾𝗊𝗎𝗂 𝜎𝑋.𝐵

which is interpreted as the derivation ⌈𝜋⌉𝐵
𝑥

.

6. Equi-recursive subtyping

In this section we develop an equi-recursive subtyping relation ⩽𝖾𝗊𝗎𝗂 which is more general than ⩽𝗂𝗌𝗈 and closer to the standard
formulations of subtyping for recursive session types [8], but that does not satisfy the safe substitution principle (Theorem 2) in
a strict sense: since processes include forms 𝗋𝖾𝖼 𝑥 and 𝖼𝗈𝗋𝖾𝖼 𝑥 that explicitly indicate the points in a typing derivation where a
fixed point is unfolded, it is clear that a recursive session type and its unfolding cannot be treated as equivalent without breaking
typeability. As we will see, we can still explain this coarser subtyping relation in our type system by resorting to a coercion semantics.

Equi-recursive subtyping is coinductively defined by the rules in Table 8. The rules [BOT], [TOP], [REFL] and [CONG] are the
same as for ⩽𝗂𝗌𝗈. The difference is that in equi-recursive subtyping, fixed points can be unfolded independently by [LEFT-𝜎] and
[RIGHT-𝜎]. These rules may look suspicious since they are applicable to either side of ⩽𝖾𝗊𝗎𝗂 regardless of the intuitive interpretation
of 𝜇 and 𝜈 as least and greatest fixed points. In fact, if equi-recursive subtyping were solely defined by the derivability according
to the rules in Table 8, the two fixed point operators would be equivalent. For example, both 𝜇𝑋.(𝟏 ⊕𝑋) ⩽𝖾𝗊𝗎𝗂 𝜈𝑋.(𝟏 ⊕𝑋) and
𝜈𝑋.(𝟏 ⊕𝑋) ⩽𝖾𝗊𝗎𝗂 𝜇𝑋.(𝟏 ⊕𝑋) are derivable even though only the first relation seems reasonable. We will see in Example 10 that
allowing the second relation is actually unsound, in the sense that it compromises the termination property enjoyed by well-typed
processes.

We obtain a sound equi-recursive subtyping relation by ruling out some infinite derivations as per the following (and final)
definition.

Definition 6 (Equi-recursive subtyping). We say that 𝐴 is an equi-recursive subtype of 𝐵 if 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 is derivable and, for every infinite
branch (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ of the derivation, either (1) min{𝐶 ∣ ∃∞𝑖 ∶𝐴𝑖 = 𝐶} is a 𝜇-type or (2) min{𝐶 ∣ ∃∞𝑖 ∶ 𝐵𝑖 = 𝐶} is a 𝜈-type.

The clauses (1) and (2) of Definition 6 make sure that 𝜇 and 𝜈 are correctly interpreted as least and greatest fixed points. In
particular, we expect the least fixed point to be subsumed by a greatest fixed point, but not vice versa in general. For example,
consider once again the (straightforward) derivations for the aforementioned subtyping judgements 𝜇𝑋.(𝟏 ⊕𝑋) ⩽𝖾𝗊𝗎𝗂 𝜈𝑋.(𝟏 ⊕𝑋)
and 𝜈𝑋.(𝟏 ⊕𝑋) ⩽𝖾𝗊𝗎𝗂 𝜇𝑋.(𝟏 ⊕𝑋). The first derivation satisfies both clauses (there is only one infinite branch, along which a 𝜇-type
is unfolded infinitely many times on the left hand side of ⩽𝖾𝗊𝗎𝗂 and a 𝜈-type is unfolded infinitely many times on the right hand side
of ⩽𝖾𝗊𝗎𝗂). The second derivation satisfies neither clause. Therefore, 𝜇𝑋.(𝟏 ⊕𝑋) is an equi-recursive subtype of 𝜈𝑋.(𝟏 ⊕𝑋) but not
vice versa.

In both clauses of Definition 6 there is a requirement that the type of the fixed point on each side of the relation is determined by
the ⪯-minimum of the types that appear infinitely often. This is needed to handle correctly alternating fixed points, by determining
which one is actively contributing to the infinite path. To see what effect this has consider the types 𝐴

def
= 𝜇𝑋.𝜈𝑌 .(𝟏 ⊕𝑋), 𝐴′ def

= 𝜈𝑌 .(𝟏 ⊕
𝐴), 𝐵

def
= 𝜇𝑋.𝜇𝑌 .(𝟏 ⊕𝑋) and 𝐵′ def

= 𝜇𝑌 .(𝟏 ⊕𝐵). Observe that 𝐴 unfolds to 𝐴′, 𝐴′ unfolds to 𝟏 ⊕𝐴, 𝐵 unfolds to 𝐵′ and 𝐵′ unfolds to
𝟏 ⊕𝐵. We have 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 despite 𝑌 is bound by a greatest fixed point on the left and by a least fixed point on the right. Indeed, both
𝐴 and 𝐴′ occur infinitely often in the (only) infinite branch of the derivation for 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵, but 𝐴 ⪯𝐴′ according to the intuition that
the ⪯-minimum type that occurs infinitely often is the one corresponding to the outermost fixed point. In this case, the outermost
fixed point is 𝜇𝑋 which “overrides” the contribution of the inner fixed point 𝜈𝑌 . The interested reader may refer to the literature on
𝜇MALL∞ [15,16] for details.

Hereafter, unless otherwise specified, we write 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 to imply that 𝐴 is an equi-recursive subtype of 𝐵 (according to Defini-

tion 6) and not simply that the judgement 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 is derivable.

Just like ⩽𝗂𝗌𝗈, also ⩽𝖾𝗊𝗎𝗂 is a preorder and 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 implies 𝐵⊥ ⩽𝖾𝗊𝗎𝗂 𝐴
⊥ in general. The proof of this latter property relies on the

fact that the clauses in Definition 6 are dual to each other. The fact that ⩽𝖾𝗊𝗎𝗂 is a preorder is not as obvious as in the case of ⩽𝗂𝗌𝗈. In
particular, if 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 and 𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵, it is relatively easy to build a derivation for 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵, but then we also have to make sure that
the two clauses of Definition 6 are satisfied. The following result (proved in Appendix A) shows that this is the case.
16

Theorem 3. ⩽𝖾𝗊𝗎𝗂 is transitive.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Table 9

Coercion semantics of equi-recursive subtyping (selected equations).⌊
𝟎 ⩽𝐴

⌋
𝑥,𝑦

≜ 𝖿𝖺𝗂𝗅 𝑥

⌊
𝐴 ⩽ ⊤

⌋
𝑥,𝑦

≜ 𝖿𝖺𝗂𝗅 𝑦

⌊
𝟏 ⩽ 𝟏

⌋
𝑥,𝑦

≜ 𝑥().𝑦[]

⌊
𝜋1 ∶∶𝐴 ⩽𝐴′ 𝜋2 ∶∶𝐵 ⩽𝐵′

𝐴⊕𝐵 ⩽𝐴′ ⊕𝐵′

⌋
𝑥,𝑦

≜ 𝖼𝖺𝗌𝖾 𝑥{𝑦[𝗂𝗇0]. ⌊𝜋1⌋𝑥,𝑦 , 𝑦[𝗂𝗇1]. ⌊𝜋2⌋𝑥,𝑦}
⌊
𝜋1 ∶∶𝐴 ⩽𝐴′ 𝜋2 ∶∶𝐵 ⩽ 𝐵′

𝐴⊗𝐵 ⩽𝐴′ ⊗𝐵′

⌋
𝑥,𝑦

≜ 𝑥(𝑢).𝑦[𝑣](⌊𝜋1⌋𝑢,𝑣 | ⌊𝜋2⌋𝑥,𝑦)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑢 and 𝑣 are fresh⌊
𝜋 ∶∶𝐴{𝜇𝑋.𝐴∕𝑋} ⩽𝐵

𝜇𝑋.𝐴 ⩽𝐵

⌋
𝑥,𝑦

≜ 𝖼𝗈𝗋𝖾𝖼 𝑥. ⌊𝜋⌋𝑥,𝑦
⌊
𝜋 ∶∶𝐴 ⩽𝐵{𝜇𝑋.𝐵∕𝑋}

𝐴 ⩽ 𝜇𝑋.𝐵

⌋
𝑥,𝑦

≜ 𝗋𝖾𝖼 𝑦. ⌊𝜋⌋𝑥,𝑦

There are two more properties of ⩽𝖾𝗊𝗎𝗂 that is worth pointing out, namely that 𝜇𝑋.𝑋 ⩽𝖾𝗊𝗎𝗂 𝐴 and 𝐴 ⩽𝖾𝗊𝗎𝗂 𝜈𝑋.𝑋 hold for every
𝐴. In other words, 𝜇𝑋.𝑋 is equivalent to 𝟎 and 𝜈𝑋.𝑋 is equivalent to ⊤. This is consistent with the intuition that the smallest least
fixed point 𝜇𝑋.𝑋 is smaller than any type and the largest greatest fixed point 𝜈𝑋.𝑋 is larger than any type.

We now establish the soundness of ⩽𝖾𝗊𝗎𝗂 by means of a coercion semantics [27], that is a translation function that takes a derivation
𝜋 of a subtyping relation 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 and generates a (well-typed) process ⌊𝜋⌋𝑥,𝑦 that transforms (the protocol described by) 𝐴 into
(the protocol described by) 𝐵. The translation is parametrized by the two channels 𝑥 and 𝑦 on which the transformation takes place:
the protocol 𝐴 is “consumed” from 𝑥 and “reissued” on 𝑦 as a protocol 𝐵. In Table 9 we show a selection of representative cases, the
remaining ones being obvious variations. Note that in general ⌊𝜋⌋𝑥,𝑦 is (the invocation of) a recursive process.

We can now prove the following result.

Theorem 4. If 𝜋 ∶∶𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵, then ⌊𝜋⌋𝑥,𝑦 ⊢ 𝑥 ∶𝐴⊥, 𝑦 ∶ 𝐵.

Proof. The derivability of the judgement ⌊𝜋⌋𝑥,𝑦 ⊢ 𝑥 ∶ 𝐴⊥, 𝑦 ∶ 𝐵 follows immediately from the equations in Table 9. Concerning

the validity of the resulting derivation, consider an infinite branch 𝛾
def
=(⌊𝜋𝑖⌋𝑥𝑖,𝑦𝑖 ⊢ 𝑥𝑖 ∶ 𝐴⊥

𝑖
, 𝑦 ∶ 𝐵𝑖)𝑖∈ℕ in the typing derivation of the

coercion where 𝐴0 = 𝐴 and 𝐵0 = 𝐵. This branch corresponds to an infinite branch (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ in 𝜋 ∶∶ 𝐴 ⩽ 𝐵. According to
Definition 6, either clause (1) or clause (2) holds for this branch. Suppose, without loss of generality, that clause (1) holds. Then
min{𝐶 ∣ ∃∞𝑖 ∈ℕ ∶𝐴𝑖 = 𝐶} is a 𝜇-type. According to Table 9 we have that (𝑥𝑖)𝑖∈ℕ is a 𝜈-thread of 𝛾 , hence 𝛾 is a valid branch. □

Theorem 4 justifies the extension of the type system with a subsumption rule [EQUI-SUB] that is translated into an explicit appli-

cation of the coercion corresponding to the subtyping relation being applied:

[EQUI-SUB]

𝑃 ⊢ Γ , 𝑥 ∶𝐴

𝑃 ⊢ Γ , 𝑥 ∶𝐵
𝜋 ∶∶𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 ⇝

[CUT]

𝑃 {𝑦∕𝑥} ⊢ Γ , 𝑦 ∶𝐴 ⌊𝜋⌋𝑦,𝑥 ⊢ 𝑦 ∶𝐴⊥,𝑥 ∶𝐵

(𝑦)(𝑃 | ⌊𝜋⌋𝑦,𝑥) ⊢ Γ , 𝑥 ∶𝐵

This translation introduces a cut that combines 𝑃 with type 𝐴 and the coercion corresponding to the derivation 𝜋 ∶∶𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 to
yield a version of 𝑃 with type 𝐵. The original 𝑃 and the coercion are connected by a fresh channel 𝑦.

Example 9. Let 𝖤𝗊𝗎𝗂𝖢𝗅𝗂𝖾𝗇𝗍(𝑥) ≜ 𝑥[𝗂𝗇1].𝑥[𝗂𝗇0].𝑥[] be the same as 𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ from Example 1 except for the missing 𝗋𝖾𝖼 𝑥 actions. Also,
let 𝐴

def
= 𝟎 ⊕ (𝟏 ⊕ 𝟎) and recall the type 𝐵

def
= 𝜈𝑋.(⊥ � 𝑋) from Example 2 which describes the behaviour of 𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ on 𝑥. It is

easy to see that 𝖤𝗊𝗎𝗂𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ ⊢ 𝑥 ∶𝐴, but we also have 𝐴 𝗂𝗌𝗈 𝐵
⊥ and indeed 𝖤𝗊𝗎𝗂𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ would not be able to safely interact with

𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥⟩ because of the missing 𝗋𝖾𝖼 𝑥 actions. The following derivation

[BOT]
𝟎 ⩽𝖾𝗊𝗎𝗂 𝟏

[REFL]
𝟏 ⩽𝖾𝗊𝗎𝗂 𝟏

[BOT]
𝟎 ⩽𝐵⊥

[CONG]
𝟏⊕ 𝟎 ⩽𝖾𝗊𝗎𝗂 𝟏⊕𝐵⊥

[𝜇]
𝟏⊕ 𝟎 ⩽𝖾𝗊𝗎𝗂 𝐵

⊥

[CONG]
𝐴 ⩽𝖾𝗊𝗎𝗂 𝟏⊕𝐵⊥
17

[𝜇]
𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵

⊥

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

is valid since it is finite, hence 𝐴 is an equi-recursive subtype of 𝐵⊥. This means 𝖤𝗊𝗎𝗂𝖢𝗅𝗂𝖾𝗇𝗍⟨𝑥⟩ and 𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩ can be connected by
a cut through an application of [EQUI-SUB]. ⌟

Example 10. Let 𝖢𝗈𝖢𝗁𝖺𝗍𝗍𝖾𝗋(𝑥) ≜ 𝖼𝗈𝗋𝖾𝖼 𝑥.𝑥[𝗂𝗇1].𝖢𝗈𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ be a variation of 𝖢𝗁𝖺𝗍𝗍𝖾𝗋 in Example 3 that unfolds the type of 𝑥 by
means of 𝖼𝗈𝗋𝖾𝖼 𝑥 instead of 𝗋𝖾𝖼 𝑥. Now 𝖢𝗈𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ ⊢ 𝑥 ∶ 𝜈𝑋.(𝟏 ⊕ 𝑋) is derivable and the derivation is a valid one, since the
infinite branch in it contains a 𝜈-thread. If we allowed the relation 𝜈𝑋.(𝟏 ⊕𝑋) ⩽𝖾𝗊𝗎𝗂 𝜇𝑋.(𝟏 ⊕𝑋) then it would be possible to obtain a
well-typed composition of 𝖢𝗈𝖢𝗁𝖺𝗍𝗍𝖾𝗋⟨𝑥⟩ and 𝖲𝖾𝗋𝗏𝖾𝗋⟨𝑥, 𝑧⟩, which is stuck and therefore not terminating in the sense of Definition 1. ⌟

7. Concluding remarks

We have studied iso-recursive and equi-recursive subtyping relations for session types in which 𝟎 and ⊤ act as least and greatest
elements. Despite the minimalistic look of the relations and the apparent rigidity in the syntax of types, in which the arity of internal
and external choices is fixed, both relations capture the usual co/contra variance of labels thanks to the interpretation given to 𝟎
and ⊤. Other refinement relations for session types with least and greatest elements have been studied in the past [28,12], although
without an explicit correspondence with logic.

Unlike subtyping relations for session types [8,9,11,13] that only preserve safety properties of sessions (communication safety,
protocol fidelity and deadlock freedom), our subtyping relations ⩽𝗂𝗌𝗈 and ⩽𝖾𝗊𝗎𝗂 also preserve termination, which is a liveness property.
For this reason, ⩽𝗂𝗌𝗈 and ⩽𝖾𝗊𝗎𝗂 are somewhat related to fair subtyping [10,12], which preserves fair termination [29,30]. It appears
that ⩽𝖾𝗊𝗎𝗂 is coarser than fair subtyping, although the exact relationship between the two relations is difficult to characterize because
of the fundamentally different ways in which recursive behaviours are represented in the syntax of types. The relation ⩽𝖾𝗊𝗎𝗂 inherits
least and greatest fixed points from 𝜇MALL∞ [15,16], whereas fair subtyping has been studied on session type languages that either
make use of general recursion [10] or that use regular trees directly [12]. A more conclusive comparison is left for future work.

Having conducted this investigation which follows closely the Caires-Pfenning-Wadler approach to session calculi and linear
logic, it would be interesting to reconcile this work with established logical approaches to multi-party session types that also have
a logical notion of subtyping and an infinitary proof calculus [7]. There are some obvious differences, notably the use of extensions
of linear logic featuring a non-commutative connective which allows sequentiality to be treated in a manner that: (A) is more in
line with traditional session calculi (see Remark 1); (B) makes use of all linear implications for subtyping; (C) restricts to a calculus
where fixed-points can be equi-recursive and circularity is preserved by cut elimination. Notice that the difference (B) is as opposed
to the restricted subset of implication in Sections 5 and 6, where the fragment of linear implication used for subtyping is chosen due
to the fact that behavioural properties are not invariant with respect to all logical equivalences in interpretations following closely
Caires-Pfenning-Wadler (e.g., neither isomorphism of types 𝐴 ⊗ 𝟏 ⊸ 𝐴 and 𝐴 ⊸ 𝐴 ⊗ 𝟏, nor 𝐴 ⊗𝐵 ⊸ 𝐵 ⊗ 𝐴 preserve behaviours,
while all logical equivalences do in related work mainly thanks to using a non-commutative connective to model sequentiality). The
difference (C) is an independent design choice that may be lifted or imposed in either line of work.

On reflection, however, what was not obvious to the authors before conducting this detailed investigation, is that (A), (B) and (C)
above are little more than stylistic differences leading to different calculi that may be appropriate for different applications. The real
difference between these systems is not really Caires-Pfenning-Wadler v.s. non-commutative logic; more so, the difference is that the
current paper interprets only processes typable in environment 𝑥 ∶ 𝟏 and avoids entirely external cut reductions and cut reductions
that are not applied at the head of a proof. In contrast, in the related logical approach [7] arbitrary type environments are taken fully
into account (as long as they are provable) and both internal and external bottom-most cut reductions are taken into consideration.
This means that behaviours in that related work are not necessarily terminating, and instead we are concerned with interpreting
richer behavioural properties (see Remark 2). In this sense, these two perspective on infinitary proof theory for session calculi via
extensions of linear logic are complementary parts of a bigger picture: where this work emphasises that internal channels should not
block “external communications” (hence any sequence of internal reduction will be finite before some external interaction occurs);
and the related work ensures those external communications form a “good” protocol in a sense aligning strongly with the literature
on multi-party session types.

Insight gleaned concerning the design of infinitary proof calculi for session calculi should be exportable to other session calculi,
perhaps even independently from any logical interpretation. In particular, it would be interesting to study subtyping for asynchronous
session types [11,13]. This can be done by adopting a suitable coercion semantics to enable buffering of messages as in simple
orchestrators [31,24].

CRediT authorship contribution statement

Ross Horne: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Conceptualization.

Luca Padovani: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
18

influence the work reported in this paper.

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

Appendix A. Transitivity of equi-recursive subtyping

Lemma 1. If 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 and 𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵 then there exists 𝐷 such that 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐷 and 𝐷 ⩽𝖾𝗊𝗎𝗂 𝐵 and either the derivation of 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐷 does
not end with an application of [RIGHT-𝜎] or the derivation of 𝐷 ⩽𝖾𝗊𝗎𝗂 𝐵 does not end with an application of [LEFT-𝜎].

Proof. Let 𝑚 be the largest number of consecutive applications of [RIGHT-𝜎] from the root of the derivation for 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 and 𝑛
be the largest number of consecutive applications of [LEFT-𝜎] from the root of the derivation for 𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵, where 𝑚, 𝑛 ∈ ℕ ∪ {∞}.
Suppose that 𝑚 = 𝑛 =∞. Then we can define a family {𝐶𝑖}𝑖∈ℕ of types such that 𝐶 = 𝐶0 and 𝐶𝑖 = 𝜎𝑋.𝐶 ′

𝑖
and 𝐶𝑖+1 = 𝐶 ′

𝑖
{𝐶𝑖∕𝑋}. Now

(𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶𝑖)𝑖∈ℕ and (𝐶𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵)𝑖∈ℕ are infinite branches of the derivations for 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 and 𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵. From Definition 6 we deduce

that min{𝐷 ∣ ∃∞𝑖 ∶ 𝐶𝑖 =𝐷} must simultaneously be a 𝜇-type and a 𝜈-type, which is impossible. Let 𝑘
def
= min{𝑚, 𝑛} ∈ ℕ. Then we can

find the desired 𝐷 by unfolding 𝐶 exactly 𝑘 times. □

Theorem 3. ⩽𝖾𝗊𝗎𝗂 is transitive.

Proof. Let 
def
={(𝐴, 𝐵) ∣ ∃𝐶 ∶𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 ∧𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵}. We apply the coinduction principle to show that  ⊆ ⩽𝖾𝗊𝗎𝗂. Using the coinduc-

tion principle, it suffices to show that if (𝐴, 𝐵) ∈  , then 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 is the conclusion of a rule in Table 7 whose premises are all in
 . Consider an arbitrary pair (𝐴, 𝐵) ∈  . By definition of  there exists 𝐶 such that 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 and 𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵. From Lemma 1 we
deduce that there exists 𝐷 such that 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐷 and 𝐷 ⩽𝖾𝗊𝗎𝗂 𝐵 and either the derivation of 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐷 does not end with an application
of [RIGHT-𝜎] or the derivation of 𝐷 ⩽𝖾𝗊𝗎𝗂 𝐵 does not end with an application of [LEFT-𝜎]. We reason by cases on the last rules applied
in the derivations of 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐷 and 𝐷 ⩽𝖾𝗊𝗎𝗂 𝐵, only considering the possible ones.

• ([BOT], any rule) Then 𝐴 = 𝟎. We conclude by observing that 𝟎 ⩽𝖾𝗊𝗎𝗂 𝐵 is the conclusion of [BOT] which has no premises.

• (any rule, [TOP]) Dual of the previous case.

• ([LEFT-𝜎], any rule) Then 𝐴 = 𝜎𝑋.𝐴′. From [LEFT-𝜎] we deduce 𝐴′{𝐴∕𝑋} ⩽𝖾𝗊𝗎𝗂 𝐷. We conclude by observing that 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 is
the conclusion of [LEFT-𝜎] and that (𝐴′{𝐴∕𝑋}, 𝐵) ∈  by definition of  .

• (any rule, [RIGHT-𝜎]) Dual of the previous case.

• ([REFL], [REFL]) Then 𝐴 = 𝐷 = 𝐵 = 𝜅 and we conclude by observing that 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 is the conclusion of [REFL], which has no
premises.

• ([CONG], [CONG]) Then 𝐴 =𝐴1 ⋆𝐴2 and 𝐷 =𝐷1 ⋆𝐷2 and 𝐵 = 𝐵1 ⋆𝐵2. From [CONG] we deduce 𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐷𝑖 and 𝐷𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖 for
𝑖 = 1, 2. We conclude by observing that 𝐴1 ⋆𝐴2 ⩽𝖾𝗊𝗎𝗂 𝐵1 ⋆𝐵2 is the conclusion of [CONG] and that (𝐴𝑖, 𝐵𝑖) ∈  by definition of
 .

To conclude the proof we have to show that the subtyping derivation 𝜋 ∶∶ 𝐴 ⩽𝖾𝗊𝗎𝗂 𝐵 that we obtain with the above construction
is a valid one. To this aim, consider two valid derivations 𝜋1 ∶∶𝐴 ⩽𝖾𝗊𝗎𝗂 𝐶 and 𝜋2 ∶∶ 𝐶 ⩽𝖾𝗊𝗎𝗂 𝐵 and an infinite branch (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ
of 𝜋. Then there exist two infinite branches (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐶𝑖)𝑖∈ℕ of 𝜋1 and (𝐶𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ of 𝜋2. Since 𝜋1 and 𝜋2 are valid derivations,
they must satisfy at least one of clauses of Definition 6. We observe that if (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐶𝑖)𝑖∈ℕ satisfies clause (1) of Definition 6, then
(𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ satisfies the same clause as well. Dually, if (𝐶𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ satisfies clause (2) of Definition 6, then (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ
satisfies the same clause as well. So, the only remaining case is when (𝐴𝑖 ⩽𝖾𝗊𝗎𝗂 𝐶𝑖)𝑖∈ℕ satisfies clause (2) and (𝐶𝑖 ⩽𝖾𝗊𝗎𝗂 𝐵𝑖)𝑖∈ℕ satisfies
clause (1) of Definition 6. But then min{𝐷 ∣ ∃∞𝑖 ∶ 𝐶𝑖 = 𝐷} must be a 𝜇-type and a 𝜈-type at the same time, hence this case is
impossible. □

References

[1] K. Honda, Types for dyadic interaction, in: E. Best (Ed.), CONCUR ’93, 4th International Conference on Concurrency Theory, Proceedings, Hildesheim, Germany,
August 23–26, 1993, in: Lecture Notes in Computer Science, vol. 715, Springer, 1993, pp. 509–523.

[2] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based programming, in: C. Hankin (Ed.), Pro-

gramming Languages and Systems - ESOP’98, 7th European Symposium on Programming, Lisbon, Portugal, March 28 – April 4, in: Lecture Notes in Computer
Science, vol. 1381, Springer, 1998, pp. 122–138.

[3] H. Hüttel, I. Lanese, V.T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou, D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H.T. Vieira, G. Zavattaro, Foundations
of session types and behavioural contracts, ACM Comput. Surv. 49 (2016) 3:1–3:36, https://doi .org /10 .1145 /2873052.

[4] P. Wadler, Propositions as sessions, J. Funct. Program. 24 (2014) 384–418, https://doi .org /10 .1017 /S095679681400001X.

[5] L. Caires, F. Pfenning, B. Toninho, Linear logic propositions as session types, Math. Struct. Comput. Sci. 26 (2016) 367–423, https://doi .org /10 .1017 /
S0960129514000218.

[6] S. Lindley, J.G. Morris, Talking bananas: structural recursion for session types, in: J. Garrigue, G. Keller, E. Sumii (Eds.), Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18–22, 2016, ACM, 2016, pp. 434–447.

[7] R. Horne, Session subtyping and multiparty compatibility using circular sequents, in: I. Konnov, L. Kovács (Eds.), 31st International Conference on Concurrency
Theory, CONCUR 2020, September 1–4, 2020, Vienna, Austria (Virtual Conference), in: LIPIcs, vol. 171, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 12.

[8] S.J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta Inform. 42 (2005) 191–225, https://doi .org /10 .1007 /s00236 -005 -0177 -z.

[9] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, L. Padovani, Foundations of session types, in: A. Porto, F.J. López-Fraguas (Eds.), Proceedings of the 11th Inter-

national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, Coimbra, Portugal, ACM, September 7–9, 2009, 2009, pp. 219–230.

[10] L. Padovani, Fair subtyping for open session types, in: F.V. Fomin, R. Freivalds, M.Z. Kwiatkowska, D. Peleg (Eds.), Automata, Languages, and Programming
- 40th International Colloquium, ICALP 2013, Proceedings, Part II, Riga, Latvia, July 8–12, 2013, in: Lecture Notes in Computer Science, vol. 7966, Springer,
19

2013, pp. 373–384.

http://refhub.elsevier.com/S2352-2208(24)00040-3/bibB6C0154E16F4F6F744B66EE64FA0914Es1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibB6C0154E16F4F6F744B66EE64FA0914Es1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib826E68833EF5D3A045939647767BFCADs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib826E68833EF5D3A045939647767BFCADs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib826E68833EF5D3A045939647767BFCADs1
https://doi.org/10.1145/2873052
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib2DB0A3D491C685403B10290D54919244s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib2DB0A3D491C685403B10290D54919244s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibA47D93B43CE11858D45C74EAD876CD74s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibA47D93B43CE11858D45C74EAD876CD74s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibA47D93B43CE11858D45C74EAD876CD74s1
https://doi.org/10.1007/s00236-005-0177-z
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibE3C4B09883F360E7FD8AC53EB24BC005s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibE3C4B09883F360E7FD8AC53EB24BC005s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib25CEBDC84780F7BB2D41A89073140891s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib25CEBDC84780F7BB2D41A89073140891s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib25CEBDC84780F7BB2D41A89073140891s1

Journal of Logical and Algebraic Methods in Programming 141 (2024) 100986R. Horne and L. Padovani

[11] D. Mostrous, N. Yoshida, Session typing and asynchronous subtyping for the higher-order 𝜋-calculus, Inf. Comput. 241 (2015) 227–263, https://doi .org /10 .
1016 /j .ic .2015 .02 .002.

[12] L. Padovani, Fair subtyping for multi-party session types, Math. Struct. Comput. Sci. 26 (2016) 424–464, https://doi .org /10 .1017 /S096012951400022X.

[13] S. Ghilezan, J. Pantović, I. Prokić, A. Scalas, N. Yoshida, Precise subtyping for asynchronous multiparty sessions, ACM Trans. Comput. Log. 24 (2023) 1–73,
https://doi .org /10 .1145 /3568422.

[14] S.J. Gay, Subtyping supports safe session substitution, in: S. Lindley, C. McBride, P.W. Trinder, D. Sannella (Eds.), A List of Successes That Can Change the World
- Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, in: Lecture Notes in Computer Science, vol. 9600, Springer, 2016, pp. 95–108.

[15] D. Baelde, A. Doumane, A. Saurin, Infinitary proof theory: the multiplicative additive case, in: J. Talbot, L. Regnier (Eds.), 25th EACSL Annual Conference on
Computer Science Logic, CSL 2016, August 29 – September 1, 2016, in: LIPIcs, vol. 62, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Marseille, France,
2016, 42.

[16] A. Doumane, On the infinitary proof theory of logics with fixed points (Théorie de la démonstration infinitaire pour les logiques à points fixes), Ph.D. thesis,
Paris Diderot University, France, 2017, https://tel .archives -ouvertes .fr /tel -01676953.

[17] R. Horne, L. Padovani, A logical account of subtyping for session types, in: I. Castellani, A. Scalas (Eds.), Proceedings 14th Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software, PLACES@ETAPS 2023, Paris, France, 22 April 2023, in: EPTCS, vol. 378, 2023, pp. 26–37.

[18] N. Kobayashi, A type system for lock-free processes, Inf. Comput. 177 (2002) 122–159, https://doi .org /10 .1006 /inco .2002 .3171.

[19] L. Padovani, Deadlock and lock freedom in the linear 𝜋-calculus, in: T.A. Henzinger, D. Miller (Eds.), Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14–18, 2014, ACM, 2014, 72.

[20] D. Baelde, A. Doumane, D. Kuperberg, A. Saurin, Bouncing threads for circular and non-wellfounded proofs: towards compositionality with circular proofs, in:
C. Baier, D. Fisman (Eds.), LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, ACM, 2022, 63.

[21] R. van Glabbeek, P. Höfner, Progress, justness, and fairness, ACM Comput. Surv. 52 (2019) 69, https://doi .org /10 .1145 /3329125.

[22] M. Carbone, F. Montesi, C. Schürmann, N. Yoshida, Multiparty session types as coherence proofs, Acta Inform. 54 (2017) 243–269, https://doi .org /10 .1007 /
s00236 -016 -0285 -y.

[23] F. Aschieri, F.A. Genco, Par means parallel: multiplicative linear logic proofs as concurrent functional programs, Proc. ACM Program. Lang. 4 (2019), https://

doi .org /10 .1145 /3371086.

[24] C.S. Marco Carbone, Sonia Marin, A Logical Interpretation of Asynchronous Multiparty Compatibility, 2023.

[25] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani, Global progress for dynamically interleaved multiparty sessions, Math. Struct. Comput. Sci. 26 (2016)
238–302, https://doi .org /10 .1017 /S0960129514000188.

[26] F. Derakhshan, F. Pfenning, Circular proofs as session-typed processes: a local validity condition, Log. Methods Comput. Sci. 18 (2) (2022), https://doi .org /10 .
46298 /lmcs -18(2 :8)2022.

[27] B.C. Pierce, Types and Programming Languages, MIT Press, 2002.

[28] L. Padovani, Session types = intersection types + union types, in: E. Pimentel, B. Venneri, J.B. Wells (Eds.), Proceedings Fifth Workshop on Intersection Types
and Related Systems, ITRS 2010, Edinburgh, U.K., 9th July 2010, in: EPTCS, vol. 45, 2010, pp. 71–89.

[29] O. Grumberg, N. Francez, S. Katz, Fair termination of communicating processes, in: Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’84, Association for Computing Machinery, New York, NY, USA, 1984, pp. 254–265.

[30] N. Francez, Fairness, Monographs in Comp. Sci., Springer, 1986.

[31] L. Padovani, Contract-based discovery of web services modulo simple orchestrators, Theor. Comput. Sci. 411 (2010) 3328–3347, https://doi .org /10 .1016 /j .tcs .
20

2010 .05 .002.

https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1017/S096012951400022X
https://doi.org/10.1145/3568422
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib8EA370D60BCB0F20E40E425968CB6002s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib8EA370D60BCB0F20E40E425968CB6002s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibB30DA64CE0EDBD7CF34982FF7EA0486Bs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibB30DA64CE0EDBD7CF34982FF7EA0486Bs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibB30DA64CE0EDBD7CF34982FF7EA0486Bs1
https://tel.archives-ouvertes.fr/tel-01676953
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibC3477F2FD7F98B5FFFF65784EEDC10ABs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibC3477F2FD7F98B5FFFF65784EEDC10ABs1
https://doi.org/10.1006/inco.2002.3171
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib8623EB73ACEADDB716C51BDDF947667Cs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib8623EB73ACEADDB716C51BDDF947667Cs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib8623EB73ACEADDB716C51BDDF947667Cs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibAFF631F74A95BD3FDF8C20B3905DC763s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibAFF631F74A95BD3FDF8C20B3905DC763s1
https://doi.org/10.1145/3329125
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1145/3371086
https://doi.org/10.1145/3371086
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib921743C94661E11A3705E08AA1654C97s1
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.46298/lmcs-18(2:8)2022
https://doi.org/10.46298/lmcs-18(2:8)2022
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib0588339A4964A1CFDA04A06B73554A81s1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibEC87BB6D739CB216448FB44D3C2086BAs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibEC87BB6D739CB216448FB44D3C2086BAs1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibD1782ED58518FECE8E7E6514EE79F74As1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bibD1782ED58518FECE8E7E6514EE79F74As1
http://refhub.elsevier.com/S2352-2208(24)00040-3/bib48A4FB3726E711BF1789DADBBFDC31E1s1
https://doi.org/10.1016/j.tcs.2010.05.002
https://doi.org/10.1016/j.tcs.2010.05.002

	A logical account of subtyping for session types
	1 Introduction
	2 Syntax and semantics of μCP∞
	3 Type system
	4 Behavioural properties of muCP
	4.1 Basic notions on labelled transition systems and their properties
	4.2 μMALL∞ as an event-labelled transition system
	4.3 Reduction strategies and termination
	4.4 Translation of muCP typing derivations into μMALL∞ proofs
	4.5 Proof of Theorem 1

	5 Iso-recursive subtyping
	6 Equi-recursive subtyping
	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Transitivity of equi-recursive subtyping
	References

