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Abstract: This paper presents an analysis of the operational characteristics of three-phase AC–DC matrix
converters, which operate as rectifiers but possess a range of additional capabilities. These include the
ability to reverse the power flow, control the input power factor, and generate a multilevel output voltage.
The analysis yields a modulation strategy that minimizes switching losses. The proposed modulation
strategy is compared with seven well-known space vector modulation strategies in terms of efficiency
and distortion of input and output current. The performance is experimentally validated.
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1. Introduction

Passive rectifiers are a prevalent choice for interfacing power converters and the grid,
mainly due to their simple operation, high efficiency, resilience, and relatively low cost.
However, the total harmonic distortion (THD) of the input currents is relatively high.
Nevertheless, some improvements can be achieved by incorporating inductive filters. The
use of thyristor-based rectifiers results in a reduction in the input power factor as the output
voltage decreases. Furthermore, the reversal of power flow cannot be achieved through a
mere change in the current direction; instead, more complex bidirectional power conversion
structures are necessary.

It can thus be concluded that passive rectifiers are not suitable for emerging applica-
tions such as Vehicle-to-Grid (V2G) power exchange or smart grid applications, where the
current flow can be in both directions [1,2].

Three-phase pulse-modulated voltage- and current-source rectifiers demonstrate su-
perior performance in terms of input current harmonics and power factor control. Con-
sequently, some authors concur that they will replace the passive and silicon-controlled
rectifiers [3,4]. These converters are typically employed as an active front-end to the grid.
However, the DC-link voltage of voltage-source rectifiers is greater than the phase-to-phase
input voltage, rendering them unsuitable for low-voltage loads, such as batteries, due to
the necessity of an additional step-down power stage or a bulky input transformer. In
contrast, current source rectifiers have been used in contexts where the output voltage
is lower than the input voltage (step-down) and the reversal of the output power is not
required, such as in telecommunications and data centers, as well as in off-board DC fast
chargers [5]. This configuration is typically favored for high-power applications, whereas
in low-power applications, voltage source inverters offer simpler control, a wider range of
component options, and lower conduction losses.

For the sake of completeness, several additional possibilities for a rectifying stage
could be considered. Among them, the Vienna rectifier is a three-level ac–dc converter,
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which is widely used in many applications. The advantages of this converter include low
Total Harmonic Distortion (THD), high power density, and high efficiency. It should be
noted, however, that the power flow is unidirectional [6,7]. Moreover, multilevel rectifiers
may be employed in applications requiring high voltage or high power quality. Some
studies were conducted with the objective of reducing the switch count, i.e., namely the
removal of some power switches. This simplification reduces the number of gate drivers,
cost and complexity of the system [8]. Topologies derived from the conventional multilevel
configurations, such as Neutral Point Clamped, Cascaded H-Bridge, Flying Capacitor,
Modular Multilevel Converter and T-Type, were investigated. Finally, the possibility of a
dual-stage rectifier must be considered, where the input stage is a power factor corrector,
and the second stage is a dc–dc converter [9,10].

A topology that may be regarded as an extension of current-source rectifiers and can
act as a bidirectional active front end is the three-phase AC–DC matrix converter [11].
The three-phase AC–DC matrix converter is capable of adjusting the input power factor,
reversing the power flow, and reducing the harmonic content of input and output currents.
In addition, as it is inherently a step-down converter, it is well-suited to applications that
necessitate low DC voltages. These considerations collectively motivate a more profound
comprehension of the operational characteristics of the AC–DC matrix converter. While
the literature on AC–DC matrix converters is not as extensive as that on AC–AC matrix
converters, it has nevertheless initiated numerous research projects.

In [12,13], the authors proposed a four-quadrant rectifier based on a matrix converter
with high-frequency isolation and soft commutation. This configuration is the so-called
isolated matrix rectifier or isolated AC–DC matrix converter. It has received attention for
automotive applications and is the subject of some lively lines of research [14–16]. It should
be noted, however, that the matrix converter is employed to generate the intermediate
high-frequency AC voltage for the isolation stage rather than being used directly to produce
the output voltage for the converter. A simpler configuration without isolation but still
operated at high frequency and combined with a current-doubler rectifier was proposed to
achieve step-down AC–DC conversion at low DC voltages with greater efficiency than the
conventional buck converter for aerospace applications [17].

The number of research lines related to non-isolated converters is relatively lim-
ited; however, several technological developments were observed. In [18], an ultrasparse
AC–DC matrix converter was proposed as a battery charger with low output voltage. The
number of switches is notably reduced but the power flow is unidirectional. In [19], an
AC–DC matrix converter, derived from a three-phase direct AC–AC matrix converter by
the removal of one leg, was presented, along with a suitable space vector modulation.
The advantages of a matrix rectifier, including input power factor control, power flow
reversal and a reduction in the input filter size, were investigated and clearly motivated.
Subsequently, specific control techniques were developed for AC–DC matrix converters.
The direct power control method directly controls both the active and reactive power
components of the source while achieving sinusoidal input currents and the output DC
voltage/current [20–22]. A Space Vector Modulation (SVM) strategy with the optimization
of the duty cycle of the zero vector was developed for matrix rectifiers with the objective of
reducing the Total Harmonic Distortion (THD) and ripple in the output current [23].

Unbalanced grid voltage occurs frequently due to disturbances. Unbalanced voltage
conditions may cause voltage ripples on the DC side and low-order harmonics in the
grid current, so specific control strategies have been developed. Two independent control
schemes for active and reactive power can be used to control the instantaneous active
power and the average reactive power, respectively [24].

Over time, several Model Predictive Control (MPC) algorithms have been used as an
alternative approach to the control of AC–DC matrix converters [25,26]. MPC allows the
input power factor to be controlled while the output voltage is kept constant. Also, active
damping can be included. The input CL filter can cause resonance and lead to distorted
input currents. To suppress the resonance, instead of a physical damping resistor, which
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brings extra power loss, the active damping mimics the presence of a virtual resistor in
parallel to the input filter capacitor, thus damping the current harmonics without affecting
the fundamental component.

The present paper makes the following contributions:

(i) it defines a modulation technique for the AC–DC matrix converter as a derivation of
the traditional techniques used for AC–AC matrix converters;

(ii) it analyzes the modulation strategy in general terms by representing the switch states
as complex numbers;

(iii) it presents a modulation strategy with the theoretical minimum switching losses.

The paper is structured as follows. Section 2 illustrates the modulation theory, Sec-
tion 3 analyzes the operating range, Section 4 describes an SVM modulation strategy, and
Section 5 investigates the reduction in the switching losses and output current ripple. Fi-
nally, experimental results substantiate the feasibility and the performance of the proposed
modulation strategy, as detailed in Section 6.

2. Modulation Strategy for AC–DC Matrix Converters

The performance of matrix converters is contingent upon the modulation strategy
that is employed. A number of modulation strategies based on disparate mathematical
methodologies have been proposed in the past for traditional direct three-phase matrix
converters (MC) [27]. Each of these strategies exhibits distinct characteristics, including
the number of switch commutations per switching period and the degree of input voltage
utilization. SVM for MCs has been the subject of extensive research by the academic
community, due to its suitability for digital implementation, effective utilization of the input
voltage, and the reduction in the root-mean-square value of the load current ripple [28].
A comprehensive solution to the control problem of three-phase direct AC–AC matrix
converters is presented in [29]. This solution is based on the representation of the switch
states by means of space vectors, which were originally referred to as Duty-Cycle Space
Vectors (DCSVs). This method places particular emphasis on all the parameters that affect
the performance of the modulation strategy, and these can be freely chosen. In the next
section, the same method will be adapted for the analysis of AC–DC matrix converters.

2.1. Input–Output Equations of the AC/DC Matrix Converters

With reference to Figure 1, the expression of the output voltage vo is as follows:

vo = vo1 − vo2 =
3

∑
k=1

(m1,k − m2,k)vi,k (1)

where vi,1, vi,2, and vi,3 are the input pole voltages, i.e., the potentials of the input terminals,
and the signals mh,k (h = 1, 2 and k = 1, 2, 3) are the duty cycles of the switches Sh,k. Since
the converter does not include elements that can store energy, if the converter power losses
are neglected, the input power is equal to the output power:

3

∑
k=1

ii,kvi,k = voio =
3

∑
k=1

(m1,k − m2,k)vi,kio (2)

where io is the output current.
Equation (2) is verified for any value of vi,k, so it is possible to conclude that the input

currents are:
ii,k = (m1,k − m2,k)io. k = 1, 2, 3. (3)
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The duty cycles m1,k and m2,k must satisfy the constraints (4), which prevent short-
circuits of the source and over-voltages due to an abrupt interruption of the load current:

3

∑
k=1

mh,k = 1, h = 1, 2. (4)
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Figure 1. Basic scheme of a three-phase AC–DC matrix converter: (a) converter structure; (b)
simplified matrix representation.

2.2. Input–Output Equations in Terms of Space Vectors

Under the assumption that sums of the input pole voltages and the input currents are
zero, it is straightforward to express the input pole voltages and currents in terms of space
vectors vi and ii. For the kth input phase, the following relationships can be verified:

vi,k = vi · αk (5)

ii,k = ii · αk (6)

where “·” is the dot product, defined as the real part of the product between the first
operand and the complex conjugate of the second operand, and

αk = ej 2π
3 (k−1). (7)

The state of the converter legs can be represented by two complex numbers m1, m2
defined as follows:

mh =
2
3

3

∑
k=1

mh,kαk, h = 1, 2. (8)

By replacing (5) and (6) in (1) and (3), and considering (8), the input–output equations
of a three-phase AC–DC matrix converter can be written in terms of m1 and m2 as follows:

vo =
3
2

vi · (m1 − m2) (9)

ii = io(m1 − m2). (10)

Two new variables md and m0 can be introduced to simplify the mathematical formu-
lation of (9) and (10):

md = m1 − m2 (11)

m0 =
1
2
(m1 + m2). (12)

The complex number md is here referred to as “direct component”, whereas m0 is the
“zero-sequence component” of m1 and m2.
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As a result, the input and output relationships of the converter become:

vo =
3
2

vi · md (13)

ii = iomd. (14)

As can be observed, the output voltage and the input current are solely dependent on
md and are not influenced by the values of m0. This behavior is analogous to that observed
in pulse-width modulated three-phase inverters, wherein the output voltage vector is
independent of the zero-sequence of the modulating signals. In AC–DC matrix converters,
this role is fulfilled by a complex quantity, m0, due to the higher complexity of the converter
structure.

If the unit vector ψre f denotes the desired direction of the input current space vector,
and vo,re f is the desired output voltage, it can be demonstrated by solving (13) and (14) that
md has the following expression:

md,re f =
2
3

vo,re f ψre f

vi · ψre f
(15)

whereas m0 can be freely chosen to improve the performance of the modulation strategy.
Solving (11) and (12) for m1 and m2, one finds:

mh = (−1)h−1 md
2

+ m0, h = 1, 2. (16)

The quantity m0 is equivalent to two degrees of freedom that can be used to define
any modulation strategy. The significance of m1 and m2 lies in the fact that they facilitate
the calculation of the switch duty cycles. In practice, the duty cycles mh,k can be found by
solving the set of Equations (4) and (8), which yields the following result:

mh,k =
1
3
+ mh · αk, h = 1, 2, k = 1, 2, 3. (17)

The general solution presented in (15)–(17) encompasses all modulation strategies as
specific instances.

3. Control Range of the Output Voltage

The duty cycles are bounded between 0 and 1, i.e.,

0 ≤ mh,k ≤ 1, h = 1, 2, k = 1, 2, 3. (18)

By considering (16) and (17), (18) becomes as follows:

0 ≤ (−1)h−1

2
md · αk + m0,k ≤ 1, h = 1, 2 (19)

where
m0,k=

1
3
+ m0 · αk, k = 1, 2, 3. (20)

Equation (20) demonstrate that the quantities m0,1, m0,2 and m0,3 can be regarded as
the components of the vector m0, i.e., m0 can be expressed as:

m0 =
2
3

3

∑
k=1

m0,kαk (21)

and the sum of m0,k (k = 1, 2, 3) is 1.
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Inequalities (19) can be rewritten in a manner that emphasizes the upper and lower
bounds of m0,k.

(−1)h−1

2
md · αk ≤ m0,k ≤ 1 − (−1)h−1

2
md · αk. (22)

It can be demonstrated that the upper and lower bounds in (22), in the worst-case
scenario, can be rewritten as follows:

mmin
0,k ≤ m0,k ≤ mmax

0,k (23)

where
mmin

0,k =
1
2
|md·αk|, k = 1, 2, 3 (24)

mmax
0,k = 1 − 1

2
|md·αk|, k = 1, 2, 3. (25)

Given that the upper bound of m0,k must be greater than or equal to the lower bound,
it can be inferred from (24)–(25) that the following constraint applies to md:

0 ≤ |md·αk| ≤ 1. (26)

Substituting (15) into (26) yields the following result:

2
3

∣∣∣∣∣vo,re f
ψre f · αk

vi · ψre f

∣∣∣∣∣ ≤ 1, k = 1, 2, 3. (27)

It is possible to verify that the maximum voltage transfer ratio resulting from (27) is
when ψre f is aligned with one of the vectors αk (k = 1, 2, 3):∣∣∣vo,re f

∣∣∣
|vi|

≤ 3
2
|cosφi| (28)

where φi is the input power factor angle, assumed positive when the current lags the input
voltage vector.

If the constraint (28) is satisfied, the matrix rectifier operates within the linear modu-
lation range, and the modulation problem has at least one feasible solution. This implies
that there exists at least one value of the zero-sequence component m0 that allows all duty
cycles to remain within the interval [0, 1]. The optimal choice of m0 is not a straightforward
matter and is discussed in the following section.

4. Space Vector Modulation

A technique that is widely known for the voltage modulation of power converters
is SVM, which can also be developed for AC–DC matrix converters. According to this
technique, the average value of the desired output voltage over a switching period is
approximated with a sequence of different converter configurations.

Table 1 shows the possible states of an AC–DC matrix converter. The first column is
the identification number of each configuration, the second column shows the bidirectional
switches of Figure 1 that are turned on, and the third and fourth columns show the
instantaneous values of m1 and m2. Finally, the remaining columns are the values of md and
m0, calculated by means of (11) and (12). As can be seen, there are six active configurations,
which produce a non-zero output voltage, and three zero configurations.

Figure 2 shows that the admissible values of md divide the plane into six sectors. Since
the value of md,re f is known by means of (15), it is possible to identify two vectors, mL

d and
mR

d , which delimit the sector where md,re f is located. By definition, mL
d lags behind mR

d . For
example, if md,re f is in sector 1, mL

d is 2
3 (α1 − α2) and mR

d is 2
3 (α1 − α3).



Energies 2024, 17, 5320 7 of 23

Table 1. Configurations of the AC–DC matrix converter.

Conf. # Switches m1 m2 md m0

1 S1,1ON
S2,2ON

2
3 α1

2
3 α2

2
3 (α1 − α2)

1
3 (α1 + α2)

2 S1,1ON
S2,3ON

2
3 α1

2
3 α3

2
3 (α1 − α3)

1
3 (α1 + α3)

3 S1,2ON
S2,3ON

2
3 α2

2
3 α3

2
3 (α2 − α3)

1
3 (α2 + α3)

4 S1,2ON
S2,1ON

2
3 α2

2
3 α1

2
3 (α2 − α1)

1
3 (α1 + α2)

5 S1,3ON
S2,1ON

2
3 α3

2
3 α1

2
3 (α3 − α1)

1
3 (α1 + α3)

6 S1,3ON
S2,2ON

2
3 α3

2
3 α2

2
3 (α3 − α2)

1
3 (α2 + α3)

01
S1,1ON
S2,1ON

2
3 α1

2
3 α1 0 2

3 α1

02
S1,2ON
S2,2ON

2
3 α2

2
3 α2 0 2

3 α2

03
S1,3ON
S2,3ON

2
3 α3

2
3 α3 0 2

3 α3
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Figure 2. Admissible instantaneous values of md and repartition of the plane into six sectors.

The mean value of md over a switching period can be expressed as a linear combination
of mL

d and mR
d :

md, re f = δLmL
d + δRmR

d (29)

where δL and δR are numbers in the interval [0, 1], which must be interpreted as duty
cycles.

Solving (29) for δL and δR yields the following expressions:

δL = −
√

3
2

md,re f · jmR
d (30)

δR =

√
3

2
md,re f · jmL

d . (31)

Once the application times of mL
d and mR

d are known, the remaining part of the switch-
ing period can be filled with the three zero vectors. In this way, two degrees of freedom are
introduced. In fact, the three duty cycles δ0,1, δ0,2 and δ0,3 of the zero configurations 01, 02
and 03 must be chosen under the constraint that the sum of all duty cycles is equal to 1:

δ0,1 + δ0,2 + δ0,3 + δL + δR = 1. (32)
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Table 2 illustrates the sequence of vectors utilized in the SVM, organized according to
the sector number. It should be noted that there are only two distinct sequences of converter
states that minimize the number of switch commutations.

These two sequences are inverse of one another. Table 2 identifies the sequences as
c1-c2-c3-c4-c5 and c5-c4-c3-c2-c1, respectively. Both sequences include three zero configu-
rations interspersed with two active configurations. The configuration c3 is identical in
both patterns and depends on the sector number of md,re f . Given that md,re f has the same
direction as the input current vector, it can be concluded c3 can only be a zero vector, 01, 02
or 03, depending on which phase is conducting the maximum absolute value of the current.
For example, when the highest current (absolute value) is observed in input phase 1, the
current space vector is situated in sector 1, and configuration c3 is 01, as documented in
Table 2.

For the sake of completeness, Figure 3 depicts the typical single-sided and double-
sided switching patterns of the converter when md,re f is in sector 1. If the switching pattern
is double-sided, then the configuration sequence in the second half period is identical
to that of the first half period but in reverse order. In this generic example, all three
zero configurations are used. When the duty cycles of the zero vectors are equal, the
modulation strategy is referred to as SVM 3Z. Similarly, it is possible to define other
modulation strategies, such as SVM 2Z and SVM 1Z, that utilize a reduced number of
zero configurations (see Table 3). The letters “L”, “C” and “R” used in the names of the
modulation strategies identify the position of the zero vectors in the switching pattern,
namely, “Left”, “Center”, and “Right”.
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Table 2. Sequence of vectors for SVM (the reverse order is also possible).

Vector sequence

md 0 mL
d 0 mR

d 0

Duty cycles δL
0 δL δC

0 δR δR
0

Configurations c1 − c5 of the vector sequence

Sector
number c1 c2 c3 c4 c5

1 02 1 01 2 03

2 01 2 03 3 02

3 03 3 02 4 01

4 02 4 01 5 03

5 01 5 03 6 02

6 03 6 02 1 01

Table 3. Space vector modulation strategies.

Modulation Strategy Constraints Zero Configurations Used in
the Sequence

SVM 3Z δL
0 = δC

0 = δR
0 c1, c3, c5

SVM 2Zlc δL
0 = δC

0 , δR
0 = 0 c1, c3

SVM 2Zlr δL
0 = δR

0 , δC
0 = 0 c1, c5

SVM 2Zrc δC
0 = δR

0 , δL
0 = 0 c3, c5

SVM 1Zl δC
0 = δR

0 = 0 c1

SVM 1Zc δL
0 = δR

0 = 0 c3

SVM 1Zr δL
0 = δC

0 = 0 c5

5. Improvement in the Switching Losses
5.1. General Expression of the Switching Losses

The values (17) of the duty cycles of the switches are not sufficient to univocally
identify a modulation strategy because it is still possible to choose different switching
sequences, i.e., different turn-on and turn-off ordering of the switches.

In this paper, it is assumed that the same switching pattern is used for both output
phases. Furthermore, it is assumed that during the first half of the switching period, each
output phase is connected to the input phases in a predetermined order that depends on
the amplitude of the input voltages, i.e., each output phase is firstly connected to the input
terminal with the highest voltage, then to the one with the intermediate voltage, and finally
to the one with the lowest voltage. In the second half of the switching period, the sequence
is repeated in reverse order.

It is established that this switching pattern minimizes the switching losses of the
converter, although it may have a slight detrimental impact on the harmonic content
of the input and output currents. The following Section presents straightforward proof
for the first converter leg, assuming that a four-step commutation is employed. Let us
suppose that, in the first half of the switching period, the output pole voltage vo1 becomes
sequentially equal to vi,a, vi,b and vi,c. The pattern is reversed in the second half of the
switching period (double-sided switching pattern). The switching losses PSW,1 of the first
leg can be expressed as follows [30]:

PSW,1 = fSWτtot|io|
(∣∣vi,a − vi,b

∣∣+ ∣∣vi,b − vi,c
∣∣) (33)

τtot = τon + τo f f + τrec (34)
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where fSW is the switching frequency, and τtot is a coefficient (with the dimension of time)
that represents the energy loss due to switching action per unit of voltage and current. It
can be expressed as the sum of three terms. The coefficients τon and τo f f are related to the
energy loss process in the IGBTs during turn-on and turn-off, respectively. The coefficient
τrec is related to the energy loss process in the diodes due to the reverse recovery currents
during turn-off.

Applying the triangular inequality to (33) gives:

PSW,1 ≥ fSWτtot|io|(|vi,a − vi,c|). (35)

Inequality (35) becomes an equality only if vi,a ≥ vi,b ≥ vi,c, or vi,c ≥ vi,b ≥ vi,a,
so PSW1 is minimum only if the input voltages of the switching pattern are ordered in
descending or ascending order.

As can be seen from (35), the minimum power loss does not depend on the interme-
diate voltage under the assumption of an ordered pattern, so the switching losses do not
change if the intermediate voltage is not included in the switching pattern. If the switching
pattern does not contain the maximum or minimum voltages, the switching losses are
further reduced because the voltage gap |vi,a − vi,c| in (35) is replaced by

∣∣vi,b − vi,c
∣∣ or∣∣vi,a − vi,b

∣∣, respectively.
In general terms, if the indices of the input voltages in descending order (top, medium

and bottom) are given by the triplet (t, m, b), so that:

vi,t ≥ vi,m ≥ vi,b (36)

the switching losses of the whole converter can be expressed in the general case as follows:

PSW,tot = PSW,1 + PSW,2 =

fswτtot |io|
2
∑

h=1

(
|vi,t − vi,m|εtop,h +

∣∣vi,m − vi,b
∣∣εbot,h

) (37)

where the coefficient εtop,h is equal to 1 if the hth output pole voltage commutes from
the maximum input voltage to another (lower) voltage level in the switching period.
Conversely, if this transition does not exist, the coefficient is equal to 0. Similarly, the
coefficient εbot,h is 1 if the hth output pole voltage commutes to the minimum input voltage
from another (higher) voltage level in the switching period. The four coefficients εtop,h and
εbot,h (h = 1, 2) are normally equal to 1, but suitable choices of m0 may result in up to two of
them being set to zero. If all coefficients εtop,h and εbot,h are 1, (37) becomes:

PSW,tot = 2 fswτtot|io|(vi,t − vi,b). (38)

If the output pole voltages are synthesized without using all input voltages, the
switching losses decrease in comparison to (37), provided that the unused voltage is not
the intermediate one, whose absence is ineffective.

5.2. Optimal Zero Sequence Component for a Reduction in the Switching Losses

A reduction in the switching losses is possible only when an output pole voltage is
synthesized without using the maximum or the minimum input voltages vi,t and vi,b. This
occurs only when m0,t and m0,b are equal to the lower and upper bounds of the admissible
ranges (23). Table 4 summarizes the four possible combinations, which will be examined
subsequently.

In Case 1, m0,t is equal to mmin
0,t and m0,b is equal to mmin

0,b . When this happens, two
duty cycles, mhI ,t and mhI I ,b, become zero (consequently, εtop,hI and εbot,hI I are zero too).
The indexes hI and hI I can be found from (23) with k = t and k = b, as shown in Table 5.

In Case 2-A, m0,t is equal to mmax
0,t and a duty cycle, mhI I I ,t, becomes equal to 1.
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Table 4. Values of the zero-sequence components.

m0,t m0,b

Case 1 mmin
0,t = 0.5|md·αt| mmin

0,b = 0.5|md·αb|

Case 2-A mmax
0,t = 1 − 0.5|md·αt| mmin

0,b = 0.5|md·αb|

Case 2-B mmin
0,t = 0.5|md·αt| mmax

0,b = 1 − 0.5|md·αb|

Not applicable mmax
0,t = 1 − 0.5|md·αt| mmax

0,b = 1 − 0.5|md·αb|

Table 5. Coefficients for Case 1, 2-A and 2-B.

Case 1

hI =

{
2 i f sgn(md · αt) ≥ 0
1 otherwise hI I =

{
2 i f sgn(md · αb) ≥ 0
1 otherwise

Case 2-A Case 2-B

hI I I =

{
1 i f sgn(md · αt) ≥ 0
2 otherwise hIV =

{
1 i f sgn(md · αb) ≥ 0
2 otherwise

The index hI I I can be found from (23) with k = t (Table 5). Since mhI I I ,t is 1, necessarily,
the other duty cycles of the same output leg are forced to be zero, so the remaining condition
m0,b = mmin

0,b in Table 5 is automatically satisfied for Case 2-A. This case corresponds to the
conditions εtop,hI I I = εbot,hI I I = 0.

Similarly, in Case 2-B, m0,b is equal to mmax
0,b , and a duty cycle mhIV ,b becomes equal to

1. This case corresponds to the condition εtop,hIV = εbot,hIV = 0.
Finally, the case where m0,t and m0,b are both one is not considered because these two

constraints are usually incompatible with each other.
Once the values of m0,t and m0,b are known, the component m0,m can be calculated as

a difference.
m0,m = 1 − m0,t − m0,b. (39)

The value of m0,m resulting from (39) has to comply with (23). By using (21), the zero
sequence component m0 becomes

m0 =
2
3
(m0,tαt + m0,mαm + m0,bαb). (40)

It is simple to show that that Case 2-A and Case 2-B are mutually exclusive. The
explicit expression of m0,m deduced in Case 2-A is

m0,m =
1
2
(|md · αt| − |md · αb|) (41)

while in Case 2-B it is
m0,m =

1
2
(|md · αb| − |md · αt|). (42)

Since (41) and (42) are opposite to each other, one of them is definitely negative and
does not comply with the lower bounds given by (23), which are positive.

In addition, it is possible to verify that the solutions of Case 2 exist for any input
voltage only if the input current angle φi is in the range [−π

6 , π
6 ]. A qualitative analysis is

presented in Section 5.3.
In conclusion, only two modulation strategies in Table 4 reduce the switching losses.

The first one corresponds to the choice of m0 resulting from Case 1 and exists for any value
of the input power factor; the second one corresponds to the choice of m0 resulting from
either Case 2-A or Case 2-B, but it exists only if |φi| ≤ π

6 .
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5.3. Graphical Representation of the Switch State

If m1 (or m2) is plotted on the complex plane, it lies inside the triangular region
depicted in Figure 4, which can be identified by considering all the admissible values of m1.
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Equation (17) demonstrates that the distances of m1 from the triangle sides are numer-
ically equal to the duty cycles m1,1, m1,2 and m1,3. Figure 4a gives a visual representation
of this concept. Similarly, the distances of m2 from the triangle sides are the duty cycles
m2,1, m2,2 and m2,3. Consequently, when m1 (or m2) is situated on the triangle sides, at least
one duty cycle is equal to zero, thereby reducing the number of switch commutations per
period. Moreover, when m1 (or m2) is situated at a triangle vertex, one duty cycle is equal
to 1, and the remaining duty cycles are zero.

According to (16), m1 and m2 turn out to be the endpoints of a segment that can be
rigidly translated by changing m0, which is its midpoint. Figure 4b illustrates five different
positions of the aforementioned segment, designated by the letters (a), (b), (c), (d) and
(e). To draw Figure 4b, it is assumed that the phase angle of the input current φi and
voltage vectors ϑ are, respectively, 20◦ and 10◦. The maximum, intermediate and minimum
voltages are, respectively, vi,1, vi,2 and vi,3, i.e., (t, m, b) = (1, 2, 3).

In position (a), the segment does not come into contact with the triangle sides, and
thus no commutation is avoided. Position (b) corresponds to Case 1 in Table 4, as both m1,3
and m2,1 are equal to zero.

In position (c), m1 coincides with a triangle vertex. The duty cycle m1,1 is equal to 1,
whereas m1,2 and m1,3 are both zero. This position is classified as Case 2-A in Table 4.

Similarly, position (d) corresponds to Case 2-B, since m2,1 = 0 m2,2 = 0 and m2,3 = 1.
As anticipated, this operating condition is not feasible because m1 is not contained within
the triangle.

Ultimately, position (e) leads to a feasible solution to the modulation problem, char-
acterized by the fact that m2,1 and m1,2 are both zero. Nevertheless, this condition is not
considered in Table 4 because it is suboptimal since zeroing m1,2 means that the input
intermediate voltage is not used to synthesize the pole voltage of the first output phase,
and this does not lead to any reduction in the switching losses.

Figure 4c analyses the possible positions of segment m1 − m2 when the input power
factor angle φi is −60◦. While Case 1 still leads to a feasible configuration in position (a),
Case 2-A and Case 2-B, corresponding to positions (b) and (c), produce two configurations
that are not admissible. The other positions, (d) and (e), reduce the switching losses but as
much as in Case 1.



Energies 2024, 17, 5320 13 of 23

5.4. Optimal Expression of the Switching Losses

If the zero-sequence component is chosen in every switching period according to Cases
1 or 2 of Table 4, the expression of the total power losses (37) can be simplified because
some coefficients among εtop,h and εbot,h (h = 1, 2) are zero. Specifically, εtop,hI and εbot,hI I

are both zero in Case 1, εtop,hI I I and εbot,hI I I are zero In Case 2-A, and εtop,hIV and εbot,hIV are
zero in Case 2-B. It turns out that Case 1, 2-A or 2-B provide the same value of the switching
losses, which can be calculated by means of (37):

Psw,tot = fswτtot|io|
(
|vi,t − vi,m|+

∣∣vi,m − vi,b
∣∣) =

= f swτtot|io|(vi,t − vi,b)
(43)

Therefore, all cases theoretically produce the same amount of switching losses. The average
switching losses of the converter, calculated over a fundamental period of the input voltage,
are as follows:

Psw,avg =
3
√

3
π

τtot fsw|vi||io|. (44)

Consequently, it is not possible to identify an optimal modulation strategy among
Cases 1–2 in terms of switching losses. However, the solution corresponding to Case 1 is
viable for any value of the input power factor. In contrast, Case 2 does not produce feasible
solutions when the input power factor is lower than 0.866. For these reasons, Case 1 is
considered the optimal solution in experimental validation.

6. Experimental Results

Experimental tests were carried out to verify the performance of the proposed mod-
ulation strategy. The basic scheme of the experimental setup is described in Figure 5.
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of 600 V and a junction temperature of 25 °C. The rated power of the prototype is about 
12 kW. However, since the power module has never reached the commercialization stage, 
the converter is currently being used at about 20% of its rated power (2.5 kW). The effect 
of the commutations inevitably produces switching noise on the output voltage, and an 
output LC filter is commonly required in order to reduce the output current ripple (Ap-
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Figure 5. Basic scheme of AC–DC conversion system.

The converter is based on the IGBT module FM35E12KR3. The control algorithm
was implemented on a fixed-point digital signal processor produced by Texas Instruments,
Dallas, TX, USA (model TMS320F2812). The system parameters are shown in Table 6, and
the four-step commutation strategy is used. Also, Figure 6 illustrates the curve of switching
losses of IGBTs and diodes as a function of the direct current given a blocking voltage of
600 V and a junction temperature of 25 ◦C. The rated power of the prototype is about 12 kW.
However, since the power module has never reached the commercialization stage, the
converter is currently being used at about 20% of its rated power (2.5 kW). The effect of the
commutations inevitably produces switching noise on the output voltage, and an output
LC filter is commonly required in order to reduce the output current ripple (Appendix A).
However, in this paper, the converter load is an ohmic inductive impedance because using
a first-order low-pass filter allows one to accurately evaluate the effect of the modulation
strategies on the distortion of the output current without the influence of complex filters.

Figure 7a shows the path in the complex plane of m0 and m1 for Case 1 when the
voltage transfer ratio varies from 1.5 to 0.25. For a comparison, Figure 7b shows the path
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of m0 and m1 in the complex plane for the conventional modulation strategies when the
voltage transfer ratio is 1.5 and 0.75.

Table 6. Parameters of the experimental setup.

Supply Input Filter Converter Load

vi= 150 V
ωG = 2π 60 rad/s,

L f = 0.2 mH
C f = 25 µF (∆ )

fSW= 10 kHz,
Tdead = 2 µs

RLoad= 22.6 Ω
LLoad = 2.36 mH

DC collector current
Repetitive peak collector current

IC,nom = 35 A @ TCASE = 80 ◦C
ICRM = 70 A @ TCASE = 80 ◦C, tPULSE = 1 ms

Collector emitter saturation voltage VCEsat = 1.70 V @ TV J = 25 ◦C
IC = IC,nom, VGE = 15 V

Diode forward voltage VF = 1.65 V @ TV J = 25 ◦C,
IC = IC,nom, VGE = 15 V

Collector-emitter voltages VCES = 1200 V

Thermal resistance junction-to-case Rth,JC,trans = 0.60 K/W
Rth,JC,diode = 0.95 K/W
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At the maximum voltage transfer ratio (i.e., 1.5), the boundaries of linear modulation
are clearly visible. The vector m1 follows a path that coincides with the sides of an equi-
lateral triangle. In this situation, md reaches the maximum amplitude permitted for linear
modulation. As the voltage transfer ratio decreases, m1 partially continues to follow the
sides of the triangle. The position of m1 depends on the sequence of the switching states
and the input voltages whereas m0 follows a path based on the rules of Table 5.

Figure 8 shows the behavior of the converter when eight distinct modulation strategies
are employed with a voltage transfer ratio of 0.9 and a power factor of 1. The proposed
modulation strategy is compared with seven space vector modulation strategies with a
reduced number of commutations (Table 3). Figure 8 shows the waveforms of the input
current ii1, input voltage vi1, output current io, output voltage vo, and the waveforms
of modulating signals of the first output leg m1,1, m1,2, m1,3. As can be seen, the input
voltage is in close phase alignment with the input current. The presence of the input
filter capacitor results in a minimal phase lead in the line current, which is dependent on
the voltage transfer ratio. In fact, the line current is the sum of the current through the
capacitor C f (Figure 5), which is jωGC f vi at steady state, and the converter input current,
ii. As the voltage transfer ratio decreases, the input converter current decreases while the
capacitor current remains constant. Consequently, the phase lead of the line current tends
to increase, reaching a theoretical value of 90 degrees when the input current ii is zero
(Appendix B). According to Figure 8, the power supplied to the load is approximately
2400 W, in contrast to a power consumption of roughly 2500 W. The phase voltage at the
input filter is approximately 150 Vpeak, with an electrical current of around 11 Apeak. The
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capacitive current measures 4.5 Apeak, whereas the inductive current is approximately 12
Apeak. The reactive power consumed by the filter is approximately −1000 VAr. This causes
the current to lead the voltage, yielding a power factor of around 0.9 for the source. The
phase displacement of the input line current could be corrected by adjusting the phase angle
of ψre f directly or through a specific control loop for the input power factor, as proposed by
some authors [21,22]. However, this approach has not been adopted in this paper in order
to avoid introducing further complexity to the assessment of the modulation strategy.
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As illustrated in Figure 8, the modulation strategy corresponding to Case 1 consistently
sets two modulating signals to zero. For high power factors, the zeroed modulating signals
belong to two different output phases (Figure 4b). In contrast to the other modulation
strategies, the symmetrical space vector modulation (SVM3Z) does not avoid any commu-
tations. All other techniques reduce the number of commutations by alternatively clamping
some duty cycles to either 0 or 1.

The efficiency of the AC–DC matrix converter controlled by using the eight different
modulation strategies was experimentally measured by using a power meter Yokogawa
WT2030. Figure 9 illustrates the efficiency and the converter losses as a function of the
voltage transfer ratio under identical load conditions as those specified in Figure 8.
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m1,2, m1,3 (0.125/div). Time scale (5 ms/div).

As can be observed, the efficiency of the modulation strategy derived from Case 1
is markedly superior to that of the other SVM strategies, particularly in the context of a
low voltage transfer ratio. This finding is substantiated by the theoretical analysis. The
efficiencies of the SVM 1Zr and SVM 1Zl techniques are largely comparable due to the
symmetry inherent in these modulation techniques. Although the commutation losses
are not identical instantaneously, the average value of the losses evaluated over the input
voltage period is nearly identical. Similarly, the losses of SVM 2Zlc and SVM 2Zrc are
nearly identical. The minor discrepancies can be attributed to the input filter losses and the
disparate effects of dead times in the two scenarios.

An approximate estimation of the converter losses can be obtained by comparing
the input power and the efficiencies. If the proposed modulation strategy is compared
with the SVM3Z, there is a loss reduction by nearly 24% when the voltage transfer ratio is
maximum and by almost 44% when the voltage transfer ratio is 0.25. These losses include
the switching and conduction losses of the converter, the input filter losses, and the losses
related to the clamp circuit.

The efficiency of the converter depends on the switching and conduction losses of
its components. In order to minimize the switching losses, a modulation technique must
ensure that each output terminal is connected to the input terminals arranged in ascending
or descending order of input voltages. Conventional methodologies do not adhere to this
criterion, resulting in increased switching losses. In addition, the proposed theoretical
analysis entails the computation of duty cycles for the bidirectional switches. The developed
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modulation technique identifies the available degrees of freedom. For each output terminal,
either the switch connected to the highest input voltage or the one associated with the
lowest voltage does not commutate. This results in a further reduction in the switching
losses.
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Figure 9. Behavior of the AC–DC matrix converter for eight different modulation strategies when the
input power factor is 1: efficiency (a); power losses (b).

Figure 10 shows the converter efficiencies with the modulation strategies of Table 4
for different values of the input power factor. All these results are obtained with the
maximum possible voltage transfer ratio as defined by (28). The efficiency improvement of
the proposed modulation strategy is consistent across all values of the input power factor.

Figures 11 and 12 illustrate the total harmonic distortion (THD) of the load current
and the input current as a function of the voltage transfer ratio when the input power factor
is unitary. The THD of the output current is defined as follows:

THD(io) =

√
Io,RMS

Io,AVR
− 1 (45)

where Io,RMS and Io,AVR are the RMS and average values of the output current.
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Figure 10. Efficiency of the AC–DC matrix converter for eight different modulation strategies when
the voltage transfer ratio is maximum (1.5).
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Figure 11. Measured THD of the output current as a function of the voltage transfer ratio when the
input power factor is 1.
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The proposed modulation strategy demonstrates the lowest distortion of the output
and input current for high values of the voltage transfer ratio. Conversely, for values
of the voltage transfer ratio between 0.5 and 1.25, the distortion of the input current is
markedly elevated because of the reordering of the switching pattern. The trend of the
output current THD in Figure 11 was experimentally determined and lacks a definitive
theoretical rationale. The THD provides an integral representation of the current quality
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over a fundamental period, which makes it challenging to ascertain the factors contributing
to its reduction. However, it is worth noting that the proposed technique tends to reduce
the variations in the potentials of the output terminals. This action may have a generally
positive impact on the ripple of the load current.

Finally, the converter was tested in transient conditions. In Figure 13, the waveform of
the input and output voltages and currents is depicted following three-step changes in the
reference voltage transfer ratio, ranging from 0.75 to 1.5 in increments of 0.25. The figure
also presents details of two transients of the output voltage and current. After each step,
the current stabilizes within 1 ms. The output current is not regulated due to the deliberate
absence of a control loop in the converter, which could adjust the voltage transfer ratio
to account for noise and nonlinearity, potentially impacting the evaluation of modulation
techniques.
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7. Conclusions

This paper presents a comprehensive methodology for evaluating the performance of
three-phase AC–DC matrix converters. A modulation strategy that minimizes switching
losses was identified. This strategy reduces switching losses to approximately 24% in
comparison to the space vector modulation that employs three equally spaced zero vectors
at the maximum voltage transfer ratio. A substantial body of experimental evidence
substantiates the viability and efficacy of the proposed approach.
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Appendix A Design of the Output Filter

In practical applications, an LC filter is often used to improve the quality of the output
voltage. The inclusion of the capacitor significantly reduces the load current ripple, but
also introduces an additional variable in the problem.

To size an LC filter, it is essential to estimate the ripple of the output current and
voltage. For a preliminary calculation, it can be assumed that the filter requirements are
expressed in terms of the voltage distortion across the capacitor (load voltage) and the
peak-to-peak current ripple at the switching frequency through the filter inductance.

The transfer function H( f ) of the LC filter between the load voltage and the converter
output voltage is a second-order filter. Referring to Figure A1, assuming that the switching
frequency significantly exceeds the resonance frequency fR, the expression for H( f ) can be
estimated as follows:

H( f ) =
1√[[

1 −
(

f
fR

) 2
]2

+
(

2π f Lo
Rload

)2

∼=
(

fR
f

)2
(A1)

where Rload is the load resistance, Lo is the filter inductance, Co is the filter capacitance and
the resonant frequency fR is defined as follows:

fR =
1

2π
√

LoCo
. (A2)

The output voltage distortion squared can be written as a function of the voltage
harmonics Vload,k of vload (k ≥ 1), and the voltage harmonics Vo,k of vo (k ≥ 1):

D2 =
∑∞

k=1 V2
load,k

V2
load,0

=
∑∞

k=1 H2
k V2

o,k

V2
load,0

(A3)

where
Hk = H(2πk fSW). (A4)

An upper limit for the distortion can be determined with the following chain of
inequalities:

D2 =
∑∞

k=1 H2
k V2

o,k

V2
load,0

≤
H2

1 ∑∞
k=1 V2

o,k

V2
load,0

= H2
1

V2
o,rms − V2

load,0

V2
load,0

≤ H2
1

(
3V2

i
V2

load,0
− 1

)
(A5)

The last inequality is justified by the fact that the output voltage vo is either equal to
one of the input line-to-line voltages (

√
3Vi

)
or zero. Therefore, given a maximum value

for D, it is possible to estimate a lower bound for the product LoCo.

LoCo ≥
1

4π2 f 2
SW D2

max

(
3V2

i
V2

load,0
− 1

)
(A6)

To estimate the current ripple, it can be presumed that the voltage across the capacitor
remains nearly constant, so the inductor current is given by the following equation:

Lo
dio
dt

= vo − Vload,0 (A7)

An upper limit for the current fluctuation may be established under the assumption
that the voltage vo is constantly equal to the maximum input line-to-line voltage,

√
3Vi, for

the whole switching period TSW (worst case scenario):



Energies 2024, 17, 5320 21 of 23

∆io,max =

(√
3Vi − Vload,0

)
TSW

Lo
. (A8)

In order to prevent the current fluctuation from exceeding the limit, it is typically
necessary for ∆i0,max to be a given fraction ϵ of the permissible direct current through the
static switches.

Lo ≥

(√
3Vi − Vload,0

)
TSW

ϵIF,max
(A9)

The values of Lo and Co can be determined from commercial specifications by fulfilling
constraints (A6) and (A9).
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Appendix B. Design of the Input Filter
The matrix rectifier requires an LC input filter to smooth the input current. A simpli-

fied design procedure is reported hereafter with reference to Figure A2.
Given the desired output power 𝑃௢ and the converter efficiency 𝜂, the input power 𝑃௜ is as follows: 𝑃௜ = 𝑃௢𝜂 . (A10)
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The filter inductance must be chosen so that its voltage drop is a fraction ϵ′ of the 
input voltage. This poses an upper limit to the filter inductance.𝜔ீ𝐿௙𝐼௚ ≤ ϵᇱ𝑉௜ (A12)

The filter capacitor is chosen so that the resonance frequency is much smaller than 
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Finally, it is necessary to ensure that the reactive power of the LC filter does not re-
duce the power factor significantly:
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Appendix B Design of the Input Filter

The matrix rectifier requires an LC input filter to smooth the input current. A simplified
design procedure is reported hereafter with reference to Figure A2.

Given the desired output power Po and the converter efficiency η, the input power Pi
is as follows:

Pi =
Po

η
. (A10)

The inductor current Ig is a function of the lag angle φi of the input current and the
peak value of the input phase voltage Vi:

Ig = jωGC f Vi +
2
3

Pi
Vicos φi

e−jφ. (A11)

The filter inductance must be chosen so that its voltage drop is a fraction ϵ′ of the
input voltage. This poses an upper limit to the filter inductance.

ωGL f Ig ≤ ϵ′Vi (A12)

The filter capacitor is chosen so that the resonance frequency is much smaller than the
switching frequency. This poses an upper limit to the filter capacitance.

1

2π
√

L f C f

≪ 1
TSW

(A13)

Finally, it is necessary to ensure that the reactive power of the LC filter does not reduce
the power factor significantly:

Qg =
3
2

ωGL f I2
g +

3
2

ωGC f V2
i < tan φmaxPi (A14)

where φmax is the maximum displacement angle.
For the design of the prototype, whose parameters are reported in Table 6, the values

of ϵ′ is 1% and cos φmax is 0.9.
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