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Abstract: The integration of analytical functions into machine learning-based engine models repre-

sents a significant advancement in predictive performance and operational efficiency. This paper

focuses on the development of hybrid approaches to model engine combustion and temperature in-

dices and on the synergistic effects of combining traditional analytical methods with modern machine

learning techniques (such as artificial neural networks) to enhance the accuracy and robustness of

such models. The main innovative contribution of this paper is the integration of analytical functions

to improve the extrapolation capabilities of the data-driven models. In this work, it is demonstrated

that the integrated models achieve superior predictive accuracy and generalization performance

across dynamic engine operating conditions, with respect to purely neural network-based models.

Furthermore, the analytical corrective functions force the output of the complete model to follow

a physical trend and to assume consistent values also outside the domain of values assumed by

the input features during the training procedure of the neural networks. This study highlights

the potential of this integrative approach based on the implementation of the effects superposition

principle. Such an approach also allows us to solve one of the intrinsic issues of data-driven modeling,

without increasing the complexity of the training data’s collection and pre-processing.

Keywords: machine learning; neural networks; engine modeling; effect superposition; analytical

functions; generalization; fault prediction

1. Introduction

The rapid evolution of automotive technology, driven by increasingly stringent emis-
sions regulations and the demand for higher fuel efficiency, has necessitated significant
advancements in engine design and calibration. Modern internal combustion engines
must meet a complex set of requirements, balancing performance, efficiency, and emissions
within a highly constrained operational framework [1]. This balance is particularly chal-
lenging due to the diverse conditions under which engines must operate, from low-load
urban driving to high-load highway cruising [2,3].

To address these challenges, engine design and calibration processes have evolved
to incorporate a variety of advanced techniques and technologies. Among these, the
integration of model-based design (MBD) and optimization algorithms stands out as a
transformative approach. By leveraging detailed simulations and robust optimization
frameworks, engineers can explore a vast design space more effectively than ever before,
identifying optimal configurations that would be impractical to evaluate experimentally.
Machine learning (ML) techniques are being increasingly introduced into all engine devel-
opment phases to meet the following objectives.

1. Model-Based Design: Utilizing high-fidelity engine models to simulate performance
and emissions under various operating conditions, providing a detailed understand-
ing of engine behavior [4–6]
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2. Optimization Algorithms: Implementing multi-objective optimization techniques to
identify the best trade-offs between conflicting goals, such as those related to power
output, fuel consumption, and pollutant emissions [7,8]

3. Control Strategies: Developing and applying advanced control strategies, including
feedback and feedforward mechanisms, to ensure optimal engine performance across
the entire operating range [9,10]

4. Data Analytics: Employing real-time data analytics to continuously refine and validate
models, ensuring that the optimization process remains aligned with the real-world
engine performance [11].

In the field of engine modeling, the integration of analytical functions with ML-based
models marks a significant step forward in enhancing the predictive performance and
operational efficiency. Traditional engine models, often rooted in complex physical laws and
empirical data, face challenges in the identification and calibration of analytical functions,
especially when the number of independent variables starts to increase [12]. Conversely,
purely data-driven models, particularly those based on artificial neural networks (ANNs),
excel in learning complex patterns from data but can struggle with extrapolation beyond
their training domain and in maintaining consistency with physical laws [13].

This paper explores the development of hybrid approaches that combine the strengths
of traditional analytical methods with modern ML techniques to model engine combus-
tion and temperature indices more effectively [14–16]. By integrating analytical corrective
functions into ML-based engine models, we aim to leverage the precision and robust-
ness of physical models alongside the adaptability and learning capabilities of ANNs.
This hybridization seeks to address key limitations in the current modeling approaches,
such as feature extrapolation, parameter estimation, and the ability to capture physical
dynamics [17,18].

The core objective of this study is to demonstrate that integrated models, which
blend analytical functions with neural networks, achieve superior predictive accuracy
and generalization performance compared to models relying solely on neural networks.
The effects superposition principle lies thus at the base of the methodology presented in
this work, and this means that each input variable brings a specific contribution to the
combustion process. Such a principle has been already implemented in the literature and
demonstrated by the authors to include the effects of inert species for the combustion
process, like water [19,20]. The innovative contribution of this work is the extension of
the methodology previously presented to model complex physical problems, even with a
larger number of independent variables. In other words, the main benefit of the proposed
approach is the disaggregation of the complex system into simpler problems that depend
on a single independent variable, and it can be synthetized as follows:

- The multi-dimensional phenomenon is divided into simpler problems;
- Artificial neural networks are used to capture the effects of variables for which the

operating range is well defined (such as the engine speed and load), and it cannot be
exceeded during the engine’s operation;

- Analytical functions are applied to describe and extend the trend of the output variable
(such as combustion, knock, and exhaust gas temperature indices) with respect to
those independent variables that could assume values that differ from the calibrated
ones; this allows us to increase the extrapolation capabilities of a standard data-
driven model;

- The contributions of the artificial neural network and corrective functions are then
determined to calculate the final output value.

Through this integrative approach, the enhanced models not only improve the ac-
curacy and robustness of predictions but also maintain consistency with physical trends,
even in scenarios where the input features extend beyond the values encountered during
training. Such a capability allows us to maintain the good accuracy of the model’s pre-
dictions, including in the case of anomalous engine operation, and this particular feature
makes the models also suitable for failure prediction. Moreover, the improvement does



Energies 2024, 17, 5398 3 of 26

not impact the effort required for data collection, which relies on standard mapping and
calibration activity for a new engine. Additionally, the application of analytical functions
for the description of simple physical trends requires fewer engine points for the definition
of the calibratable coefficients, with respect to a purely data-driven approach. Indeed,
although, for this work, a dedicated dataset has been collected, this is due to the need to
also train neural networks and to have a training dataset suitable for a robust comparison
between the two methods. Once the hybrid approach is identified as the most robust for
this application, a portion of the dataset collected for the engine mapping procedure can be
used for model calibration.

The analytical corrective functions play a critical role in ensuring that the output of the
complete model adheres to the expected physical behavior, providing a safeguard against
unrealistic predictions. This capability is especially crucial when the model is exposed to
operating conditions that significantly deviate from the training data, thereby extending
the practical applicability and reliability of the engine simulator. The availability of a
robust and reliable engine simulator, with the capability to extrapolate the values of the
combustion, knock, and exhaust gas temperature indices for values of the input features
that differ from the calibrated ones, represents a useful tool for the development of new
control strategies [20,21] and the offline adjustment of engine calibrations. Indeed, one
of the main targets of such activity is to define a method that can be extended to other
indices to develop a complete engine simulator for the prediction of combustion, knock,
and exhaust gas temperature indices to achieve the offline design of new driving cycles or
to implement new calibration sets.

In the first part of this work, the experimental campaign conducted to collect the
data needed for the development of the analytical corrective functions is presented. The
description of the complete engine simulator and the indices that have to be modeled are
presented, highlighting the types of input variables that can be used to feed the models. The
two main approaches considered for the development of the engine models are described
and compared in particular for a specific combustion index (50% of the mass fraction burnt,
MFB50). Such an index is generally used to develop the methodologies described in this
work, and the most accurate approach is then applied to other indices. The methodology
utilized to identify the analytical corrective functions used to enhance the performance
of the ANNs is described. The accuracy of a purely ANN-based method is compared
with that of the hybrid approach when the calibration of the models is performed with
steady-state data, while validation is carried out with recordings of driving cycles and
dynamic on-track profiles.

This study underscores the potential of hybrid modeling approaches to significantly
extend the extrapolation capabilities of engine simulators, offering a more accurate and
reliable tool for the prediction of engine performance across a wide range of operating
conditions. While it is not discussed in this study, the application of the hybrid approach
could also follow a reversed approach, where the main model for the reference conditions
is represented by a look-up table (LUT) or an analytical function and the machine learning
algorithm works to adjust the main output for dynamic conditions (for example, to include
the effect of the sensor dynamics) or to adjust the first value when an additional influencing
parameter deviates from the reference conditions. Variables that have a major impact on the
combustion process are included as input features of the hybrid model. The engine speed
and load, the spark advance, the target lambda value, the temperature of the air at the
inlet of the intake valves, and the phases of the intake and exhaust valves are considered
as input features, since such variables are also affected by the engine control unit (ECU)
strategies that are initiated when particular environmental or vehicle conditions occur. In
this way, a wide range of possible conditions that can affect the combustion process are
predicted by the model.

In the second part, the development of the complete engine simulator based on the
hybrid approach is described, and the results achieved by simulating different types of
driving cycles and steady-state conditions are presented. Moreover, some proposals to
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further improve the accuracy and robustness of the data-driven models are presented in
the last section of this work.

2. Experimental Setup

In this section, the engine used for the experimental campaign and the layout of the
testing environment used to control such an engine and to collect data are introduced.
Furthermore, a detailed description and critical considerations regarding the experimental
campaign conducted are presented.

2.1. Testing Environment

The experimental setup is composed of a high-performance, gasoline-powered internal
combustion engine, whose main characteristics are described in Table 1. It is installed in
the engine test cell by connecting it to an eddy current passive dynamometer by Borghi &
Saveri (Italy).

Table 1. Eight-cylinder engine characteristics.

Displaced volume [cc] 3990
Number of cylinders [#] 8

Stroke [mm] 82
Bore [mm] 88

Connecting rod [mm] 143
Compression ratio [-] 9.5:1

Number of valves per cylinder [#] 4
Combustion system Spark-ignited gasoline direct injection

Charging system Single turbocharger for each bank

Each cylinder is equipped with a piezoelectric pressure transducer, in order to collect
in-cylinder pressure data, with a sampling frequency of 100 kHz. The pressure sensor used
is from Kistler, and its main features are reported in Table 2. Indicating signal conditioning
and acquisition is carried out with MASTRO charge amplifiers and the OBI-M2 indicating
system provided by Alma Automotive (Italy). The calculations of the MFB50, indicated
mean effective pressure (IMEP), and maximum in-cylinder pressure (Pmax) combustion
indices use low-pass-filtered signals, with a cut-off frequency of 3 kHz, and a windowed
in-cylinder pressure trace, while the same signal is band-pass-filtered in order to calculate
the maximum amplitude pressure oscillation (MAPO) index for the knock intensity.

Table 2. In-cylinder pressure sensor characteristics.

Pressure Range [bar] 0 to 250

Overload [bar] 300
Sensitivity [pC/bar] −37.0

Natural frequency [kHz] >215

The main temperatures of the system (air temperature inside intake manifold, ex-
haust gas temperature in exhaust runners and at turbine inlet section) are acquired with
thermocouples connected to the test bench management system, whose characteristics are
summarized in Table 3.

Table 3. Thermocouple characteristics.

Type K

Diameter [mm] 3.3
Accuracy [◦C] ±2.2
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The thermocouple measurement chain is composed of a National Instruments (Austin,
TX, USA) Compact-Rio 9024, with module 9213, which has a sample frequency of 100
Hz. The actual value of the temperature measured for each stationary engine point and
condition is acquired after the end of the transient phase, to obtain the characteristic
temperature at a given working condition.

The fuel used to feed the engine is gasoline with research octane number (RON) 98 for
the whole experimental procedure, as it is not required that the engine model is sensitive
to different fuel properties. Furthermore, all data available from the industrial partner
of this project that can be used for validation, testing, and analysis are collected using
the same type of gasoline. The thermodynamic conditions of the air inside the intake
manifold are controlled thanks to the turbocharging system, for the air pressure, and to the
water-to-water heat exchange system of the intercooler for the air temperature.

As seen in Figure 1, an engine control unit (ECU) for each bank controls the engine,
equipped with ETAS hardware and software tools to manage different working conditions
and impose the actuations required by each specific test. Furthermore, real-time communi-
cation between the ETAS tools and the test bench acquisition system allows the collection
of iso-frequency and phased data between the actuations and the data sensed by the engine
test bench.

ff

ff

 
Figure 1. Functional layout of communication loop.

2.2. Experimental Campaign

To highlight the advantages of the hybrid approach followed by the authors, and
the reasons for which this path is chosen, in the following sections, a comparison will
be presented between this one and a pure ANN methodology. To perform a consistent
comparison, a dataset obtained from standard calibration activities is used to train the
purely ANN-based model (1200 points are used for this task), given its ability to manage a
large amount of data. A portion of this dataset can be also used to perform model validation
and testing. Meanwhile, to calibrate the whole hybrid model, specific custom-made tests are
required to ensure a robust comparison between the two approaches, as mentioned earlier.

The experimental tests conducted have the main goal of building a consistent dataset
that is able to successfully train the ANN and calibrate the analytical corrective functions.

The neural network must be capable of modeling the value of the MFB50 at different
engine working points, with standard calibrations of the main actuations and reference
inlet air conditions. Thus, it must be sensitive to the variations in the combustion phasing
with different engine speeds and loads. For this purpose, a wide grid of engine operating
points is collected to avoid the risk of extrapolation during the model’s inference. This goal
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is fulfilled by testing the engine up to its physical minimum and maximum values for both
the engine speed and load, avoiding the possibility of simulating maneuvers or operating
conditions outside of these boundaries. As visible in Figure 2, which shows the steady-state
data recorded for the ANN training, the operating points of the grid are quite narrow to
ensure good interpolation capabilities, avoiding being too well fitted, which could lead to a
risk of overfitting (a total amount of 89 engine points are collected). The engine speed and
load are normalized with respect to the maximum value and then converted to percentages.
This normalization process for the engine speed and load is followed throughout this paper.

ff

ff

tt
tt

ff

λ

ff

Figure 2. Engine points of data collected for ANN training.

Furthermore, different testing activities are conducted to collect a dataset that is useful
to calibrate the analytical corrective functions. Keeping in mind that the core idea of the
model is to leverage the use of the superposition principle, each test consists of a sweep of
each independent variable that acts as input for the model: the spark advance (SA), lambda
(λ), variable valve timing (VVT), and intake manifold temperature (Tans). Considering
all these elements, fewer engine points are considered necessary with respect to the first
dataset, as seen in Figure 3. The selection of these points is based on the goal of covering
the whole engine speed and load map, while isolating the effect of each variable through
their sweeping. In particular, the engine map can be divided into four zones to be explored:
a low load and low speed, a high load and low speed, a low load and high speed, and a
high load and high speed. These cover both aspirated and boosted zones of the engine’s
working areas, from low to high speeds. As another challenge in the current work, a small
number of engine operating points are chosen, ensuring that a reasonable number of total
points is tested, considering that, for each engine point, a certain number of sweep tests is
performed. To ensure the robustness of the corrective functions (a total of 615 points are
collected), 19 engine points are used for each number of sweeps performed for each engine
point and independent variable.

An important characteristic of these tests is that, during the variation in each input,
all other independent variables are kept as constant as possible, as visible in Figures 4
and 5. If it is an actuated variable, it is fixed at the same value as for standard calibration;
meanwhile, if it is a sensed parameter, it must be close to the reference value. This element
is very important to isolate each input’s effect on the combustion phasing. The numerical
values of the variables are omitted for confidentiality; thus, it is important to highlight that
the maximum value of oscillation accepted is ±5%, especially for those parameters that are
difficult to control (e.g., the intake manifold temperature).
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ff
tt

ffi

Figure 3. Engine points of data collected for corrective function calibration.

ff

ff

ff

ff

Figure 4. Spark sweep effect on MFB50 isolated for a specific engine point.

Additionally, some tests are carried out to build a proper validation dataset for the
model: both steady-state engine points with a simultaneous change in multiple inputs, in
order to stress the combined effect of all variables involved in the combustion process, and
transient on-road profiles replicated at the engine test bench from standard homologation
cycles to track their profiles.

Figure 6 shows an example of a standard homologation cycle on the left and a track
test profile on the right side, represented both by the normalized driver pedal position
and normalized engine speed. It is also important to highlight that, throughout the whole
validation process, transient tests with both standard calibration and different control
strategies are performed. This is crucial to fully explore the capability of the developed
model to reproduce combustion metrics in transient conditions and non-conventional
control srategies.
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ff

ff

ff

ff

Figure 5. Lambda sweep effect on MFB50 isolated for a specific engine point.

ff

Figure 6. Transient engine profiles.

3. Comparison and Description of Approaches

The two approaches compared in this work are as follows: the first relies solely on pure
ANN models, while the second, referred to as the hybrid approach, combines ANNs with
analytical corrective functions to account for the effects of various variables and actuations.
The accuracy of both approaches is compared by evaluating the error under steady-state
conditions, and the hybrid one is demonstrated to be the most accurate, especially due
to its stronger extrapolation capabilities. The complete research workflow is reported in
Figure 7.
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ff

 

Figure 7. Research flowchart.

3.1. Pure ANN Approach

The purely ANN-based approach has been developed in our previous work [22],
in which an automatic calibration algorithm was developed to calibrate/train the ANN
for the given index. This algorithm uses both steady-state and transient data to find the
optimal configuration of the network. Sufficiently accurate results have been obtained in
different steady-state and transient tests. However, as is well known, these ANN models
do not have a strong extrapolation capacity and, in some cases, could lead to an unphysical
result. For example, the physical relationship between SA and MFB50 is well known, i.e.,
for an anticipated SA, the resulting MFB50 is also anticipated and vice versa. An ANN,
being a black box model, does not learn this physical relationship, and, when the inputs
being tested are outside the dataset used for training (in the extrapolation zone), the model
for a retarded SA predicts an anticipated MFB50, leading to an unphysical result. This
behavior can be seen in Figure 8. In the left-hand plot, the pure ANN model predicts
a very retarded MFB50 (MFB50 = 10–12), whereas the experimental value is much more
anticipated (MFB50 = 7–8). Furthermore, as shown in the right-hand plot, during a dynamic
test, the variable valve timing changes at a certain time (due to certain ECU strategies), and
the pure ANN model (red line) predicts an anticipated MFB50 instead of a retarded one.

ffi

 

λ
λ

ff

Figure 8. MFB50 calculation block chain.
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3.2. Hybrid Approach

The need to extrapolate is one of the driving factors in the development of the second
approach, i.e., the hybrid approach. This approach tries to exploit the superposition
principle by combining the ANN approach with analytical corrective functions. To explain
the methodology, the combustion index, the MFB50, is used, and a similar approach is
applied to the other indices. This approach is composed of two parts, i.e., the first part is an
ANN, and the second part consists of the analytical corrective functions.

The ANN is trained with steady-state data across a wide engine operating range, which
are recorded with the reference condition of Tans and the standard/mapped calibrations
for all actuations, such as the SA, λ, and VVT. The inputs to this ANN are the engine speed
and load, the SA, and the λ. This model is trained by using 100% training data, because
its sole purpose is to predict the MFB50 under standard calibrations. The calibration of
the ANN is performed using the same, previously developed algorithm [22], with a slight
modification due to using 100% training data.

For the analytical corrective functions, various sweep tests, as mentioned in the
previous sections, are carried out. An individual corrective function for each of these
actuations is developed (as explained in the model development section, i.e., Section 4),
which captures the effect of the variation in the given actuation. At the end, all of the
corrective functions, along with the output of the ANN, are summed to give the final
calculated MFB50. Figure 8 shows the general block scheme of this calculation chain.

Figure 9 shows some results to demonstrate that the hybrid approach has superior
extrapolation capabilities with respect to the purely ANN-based approach and why it is
chosen as the final approach. The graph on the left in Figure 9 illustrates a steady-state
test, named Test 1, where multiple actuations have been changed at the same time, i.e., the
SA, injection, VVT, etc. Meanwhile, the graph on the right refers to a dynamic test where
there was a change in the VVT (both intake and exhaust) following certain strategies of the
ECU. The results are compared using the root mean square error (RMSE) index. As seen
from the results, the hybrid approach captures these changes with higher accuracy with
respect to the ANN-based model and can also follow the physical trend of the phenomenon.
Following these results, the hybrid approach is selected for subsequent analysis. The
values of the MFB50 are normalized and one unit equals 10 ◦CA; this criterion for the
normalization of this index is implemented throughout this paper. The Y axis of the VVT
graph is obscured for confidentiality reasons.

λ

Figure 9. MFB50 results comparison between pure ANN and hybrid approaches.

4. Models’ Development

As mentioned earlier, the hybrid approach is composed of two parts. The first part
is composed of an ANN that has been trained on the data shown in Figure 2. These data
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actuate the standard calibrations for various variables and at the reference Tans. The
second part consists of the analytical corrective functions developed from the data shown
in Figure 3. It must be highlighted that all models developed in this work refer to the
mean cylinder.

4.1. MFB50 Model

4.1.1. ANN

The ANN for the MFB50 is trained using 100% of the steady-state data recorded, as
shown in Figure 2, and the inputs to this model are the engine speed, the load, the SA,
and the λ. Since this model must predict the value of the MFB50 only under the reference
conditions and the standard calibrations, 100% training data are used to avoid extrapolation
problems in the ANN. The calibration of the ANN itself is achieved with the self-developed
algorithm [22], with a slight modification. The final configuration of this ANN is as shown
in Table 4.

Table 4. MFB50 ANN configuration.

Training algorithm Bayesian regularization
Activation function Logsig
Number of neurons 15
Number of epochs 3000

Training dataset size 89 engine points

4.1.2. SA Correction

As is well known from the literature, the relationship between the SA and the MFB50
is characterized by a parabolic trend, which can be described by a second-order poly-
nomial [21]. Taking advantage of this relationship, the SA corrective function has been
developed, where the function outputs the ∆MFB50, which is a function of the ∆SA. Starting
from the spark sweep data shown in Figure 3, the MFB50 and the SA axis are normalized
following Equations (1) and (2).

∆SA = SAActuated − SAStdMap (1)

∆MFB50 = MFB50SAActuated − MFB50SAStdMap (2)

As seen in Figure 10, the normalized data collapse well into a single curve representing
the entire operating range of the engine. A single curve, a second-order polynomial, is fitted
over these normalized data. A single curve representing the entire engine domain also
allows us to simplify the calculation chain, without the need to have further maps/look-up
tables, etc. For the coefficients, this reduces the error in the calculation. This relationship is
characterized by Equation (3):

∆MFB50 = A·∆SA2 + B·∆SA + C (3)

where A, B, and C are the equation parameters.

4.1.3. λ Correction

Starting from the experimental data of the λ sweeps, it has been observed that λ has
a parabolic relationship with the MFB50, as shown in Figure 11. First, the experimental
data are fitted with a second-order polynomial for each engine point test. This is carried
out to find the value that λ has when the minimum MFB50 has been reached for the given
engine load and speed, and a map of this minimum value is created as a function of
the engine speed and load. This is performed because, while developing the corrective
function, the data have been normalized with respect to the λ value that has the minimum
MFB50, instead of the standard mapped value of λ. Furthermore, due to the normalization
performed with respect to the minimum value, there is a need to introduce this corrective
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function twice in an algebraic subtraction manner to avoid erroneous corrections being
applied, especially when the standard mapped calibrations are actuated. Then, these data,
fitted with a second-order polynomial, are normalized using Equations (4) and (5).

∆λ = λrange − λmin (4)

∆MFB50 = MFB50λrange − MFB50min (5)

where

• λrange = the range of λ that covers values between rich and slightly lean;
• λmin = the value where the MFB50 is the minimum for the given engine point.

Δ Δ

Δ𝑆𝐴  =  𝑆𝐴௧௨௧ௗ   −  𝑆𝐴ௌ௧ௗெΔ𝑀𝐹𝐵50  =  𝑀𝐹𝐵50ௌ௧௨௧ௗ   −  𝑀𝐹𝐵50ௌௌ௧ௗெ
tt

ffi

Δ𝑀𝐹𝐵50  =  𝐴 ⋅ Δ𝑆𝐴ଶ  +  𝐵 ⋅ Δ𝑆𝐴  + 𝐶

λ
λ λ

tt
λ

Figure 10. SA sweep and corrective function for MFB50. Each colored line in the left graph represents

an engine point (as a couple of the engine speed and engine load).

Once the data have been normalized, a single curve, namely a second-order polyno-
mial as given by Equation (6), is fitted, which represents the relationship of ∆MFB50 with
respect to ∆λ over the entire operating range of the engine, as shown in Figure 10.

∆MFB50 = D·∆λ2 + E·∆λ + F (6)

where D, E, and F are the equation parameters.

4.1.4. VVT Correction

As is well known, variable valve timing systems are being increasingly used in modern
engines as they help with emissions and performance. These essentially affect the flow
through the intake and exhaust valves, thereby affecting the combustion itself. Therefore,
it is necessary to incorporate this effect when evaluating the MFB50. As seen from the
VVT sweeps in Figure 12, the data have similar behavior to λ; hence, a similar approach is
followed to develop the corrective function for the VVT. This figure shows the results for
the intake side; similar curves have been obtained for the exhaust side. The equations used
to normalize the data and fit a second-order polynomial are as shown in Equations (7)–(9).

∆VVT = VVTrange − VVTmin (7)

∆MFB50 = MFB50VVTrange − MFB50MFB50min (8)

∆MFB50 = G·∆VVT2 + H·∆VVT + I (9)
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where

• VVTrange = the range of the VVT that covers values between anticipating and retarding
VVTs;

• VVTmin = the value where the MFB50 is the minimum for the given engine point;
• G, H, and I are the equation parameters.

λ
λ

tt Δ𝜆  =  𝜆  −  𝜆Δ𝑀𝐹𝐵50 = 𝑀𝐹𝐵50ఒ   −  𝑀𝐹𝐵50
 λ λ
 λ

tt Δ
Δλ Δ𝑀𝐹𝐵50 = 𝐷 ⋅ Δ𝜆ଶ  +  𝐸 ⋅ Δ𝜆  +  𝐹 

ff
ff

ff
λ

Figure 11. Lambda sweep and corrective function for MFB50. Each colored line in the left graph

represents an engine point (as a couple of the engine speed and engine load).
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Figure 12. VVT sweep and corrective function for MFB50. Each colored line in the left graph

represents an engine point (as a couple of the engine speed and engine load).
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4.1.5. Tans Correction

For a given engine speed and load, SA, λ, and VVT, the intake manifold air temperature
affects the combustion, i.e., if this temperature is higher, it anticipates the combustion, and,
if it is lower, it retards the combustion. A corrective function has been developed to capture
this effect, and the experimental data have been normalized following Equations (10)
and (11). A single curve is fitted over these points, as shown in Figure 13, which is a
second-order polynomial given by Equations (10)–(12).

∆Tans = TansActuated − TansRe f erence (10)

∆MFB50 = MFB50TansActuated − MFB50TansRe f erence (11)

∆MFB50 = J·∆Tans2 + K·∆Tans + L (12)

where D, E, and F are the equation parameters.

Figure 13. Tans sweep and corrective function for MFB50. Each colored line in the left graph

represents an engine point (as a couple of the engine speed and engine load).

The complete and detailed calculation block chain for the MFB50 model is shown in
Figure 14. In the figure, the VVT block is shown once, but it represents the calculation for
both the intake and exhaust sides.

4.2. Pmax Model

The Pmax model is based on a 2D LUT that describes the trend of the maximum
in-cylinder pressure as a function of the engine load and the MFB50. Since the Pmax can be
described using only two inputs, and to obtain a robust model that is able to capture the
physical trend of the index, it is decided to use a look-up table instead of an ANN.

As is well known, for a highly retarded combustion, i.e., in the expansion phase, the
maximum pressure value becomes independent of the MFB50, and it corresponds to the
maximum pressure in the motoring condition. This is taken into consideration when fitting
the data and then estimating the Pmax through the model.

The fitting function is selected to evaluate the model’s performance in terms of the
RMSE and R2. The best results are found when the data are fitted with a “thin-plate
spline” function. To avoid the unphysical calculation of the Pmax when the combustion is
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very retarded, the Pmax value chosen is the motoring Pmax, which can be estimated by
considering the process as polytropic compression, using Equation (13):

pVn = Const (13)

where

• p = pressure;
• V = volume;
• n = polytropic index.

Figure 14. Complete and detailed calculation chain for evaluation of MFB50.

The Pmax is therefore evaluated using the engine load and the MFB50 derived from
the MFB50 model. Figure 15 shows the calculation block chain and the final fitted surface
of the Pmax as a function of the engine load and MFB50. It must be highlighted that the
MFB50 model shown in Figure 15 is the complete model as explained in the previous
section; here, it is simplified due to space constraints. The values of the Pmax have been
normalized with respect to the maximum and then converted into percentages, and the
criterion for the normalization of this index is applied throughout this paper.

4.3. IMEP Model

The approach used to evaluate the IMEP is similar to that for the Pmax. The model is
again a 2D LUT as a function of the engine load and the MFB50. The experimental data are
fitted with the poly22 function, which allows us to maintain the well-known bell-shaped
efficiency curve and has high accuracy. Equation (14) represents the IMEP analytical model.

IMEP = p00 + p10·Load + p01·MFB50 + p20·Load2 + p11·Load·MFB50 + p20·MFB502 (14)

where
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• Load = engine load;
• pxy = coefficients of the poly22 function.
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Figure 15. Pmax model block scheme and fitted surface.

Figure 16 shows the calculation block chain and the fitted surface for the IMEP. The
values of the IMEP have been normalized with respect to the maximum and then converted
into percentages, and the criterion for the normalization of this index is applied throughout
this paper.

tt
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 σ

σ
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σ

σ

Figure 16. IMEP model block scheme and fitted surface.

4.4. Knock Model

Knock is widely recognized as a stochastic phenomenon, and its behavior is most
effectively analyzed through statistical methods. For a given engine speed, load, SA, and
λ, the cyclic MAPO statistical distribution can be modeled using either a gamma or a
log-normal distribution probability density function (PDF). However, the log-normal PDF
shares key characteristics with the Gaussian distribution, enabling the characterization of
the distribution with just two parameters, the mean value µ and the standard deviation σ,
which can be computed using the following equations [23]:

µ = log(MAPO50) (15)

σ =
log(MAPO98.5)− µ

2.1725
(16)

where

• MAPO50 corresponds to the 50th percentile of MAPO;
• MAPO98.5 represents the 98.5th percentile of MAPO;
• µ is the mean value;
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• σ is the standard deviation.

Following Equations (15) and (16), two separate ANNs have been trained to model µ
and σ following the algorithm developed previously [22]. The inputs to these models are the
Pmax as calculated with the Pmax model, the MFB50 as calculated with the MFB50 model,
the engine speed and load, and the λ. In total, 70% of the data, as represented in Figures 2
and 3, is used for the training of these two ANNs. The ANN approach is used for the knock
model because it takes as input the calculated MFB50 (calculated by the hybrid approach)
and the calculated Pmax, which consider the effects of various actuations/variables. The
configurations of both of these ANNs are shown in Table 5, and the calculation block chain
is shown in Figure 17.

Table 5. The µ and σ ANN configuration.

µ σ

Training algorithm Bayesian regularization Bayesian regularization
Activation function Elliotsig Elliotsig
Number of neurons 20 26
Number of epochs 3000 3000

Training data 564 engine points 564 engine points

 

Δ
Δ
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Figure 17. MAPO model block scheme.

4.5. Exhaust Gas Temperature Model

The exhaust gas temperature model, measured immediately after the exhaust valves,
has been developed following a similar approach to that used for the MFB50, i.e., following
the hybrid approach with individual corrective functions for all of the variables/actuations.
The values of the exhaust gas temperature have been normalized with respect to the
maximum value and converted to percentages, and this method of normalization for this
index is applied throughout this paper.

4.5.1. SA Correction

The SA correction for the exhaust gas temperature has been developed similarly to the
MFB50 SA correction, with the exception that the corrective function is a 2D LUT instead of
a 1D table, as for the MFB50. This 2D LUT outputs the ∆TExh (exhaust gas temperature),
which is a function of ∆SA and the engine load. To develop the corrective function, the
experimental data have been normalized following Equations (17) and (18):

∆SA = SAActuated − SAStdMap (17)

∆TExh = TExhSAActuated
− TExhSAStdMap

(18)
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Once the data have been normalized, a surface is fitted using the ‘poly12’ function,
which gives an R2 of 0.97. The equation for this polynomial is given in Equation (19).
Figure 18 shows the experimental data and the map of the corrective function. The value
of the exhaust gas temperature has been normalized with respect to the maximum and con-
verted to a percentage value. This criterion is applied throughout this paper for this index.

∆TExh = p00 + p10·Load + p01·∆SA + p11·Load·∆SA + p02·∆SA2 (19)

where

• Load = engine load;
• pxy = coefficients of poly12 function.

λ
ff λ

λ

ff

λ
λ

λ

Δ𝜆  =  𝜆   −  𝜆௦௧Δ𝑇ா௫  =  𝑇ா௫ഊೝೌ   −  𝑇ா௫ഊೄ
 λ λ
 λ λ
 λ λ
 λ λ

Figure 18. SA sweep and corrective function for exhaust gas temperature. Each colored line in the

left graph represents a engine point (as a couple of the engine speed and engine load).

4.5.2. λ Correction

A slightly different approach has been followed for the λ correction. As seen in
Figure 19 (an example of one engine point), the experimental data show that the λ trend for
the exhaust gas temperature cannot be captured by a single curve/function. For the rich
zone, the line has a different slope with respect to the lean zone. Therefore, two separate
functions have been developed, i.e., one for the zone between the rich and stoichiometric
zones and another for the stoichiometric and lean zones of λ. The function is a 2D LUT
as a function of the engine load and λ. The value of the exhaust gas temperature is the
maximum when λ is stoichiometric; hence, this is used to normalize the data to develop
the corrective function, given by Equations (20) and (21).

∆λ = λrange − λstoich (20)

∆TExh = TExhλrange
− TExhλStoic

(21)

where

• λrange = the range of λ that covers values between rich and slightly lean;
• λstoic = the stoichiometric value of λ;
• TExhλrange = the exhaust temperature for the tested value of λ;

• TExhλstoic = the exhaust temperature for the stoichiometric value of λ.

Once the data have been normalized, a surface is fitted over these data with a ‘thin-
plate spline’ function for each of the two zones, as shown in Figure 20.
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Figure 19. Lambda sweep experimental data for exhaust gas temperature for one engine point.
tt

 

ff
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Figure 20. Lambda corrective function for exhaust gas temperature.

4.5.3. VVT and Tans Correction

It can be observed from the experimental data shown in Figure 21 that, for a given
engine point (with each curve representing the coupling of the engine speed and load), there
is a negligible effect (less than 2%) of the VVT and Tans on the exhaust gas temperature.
Hence, the effects of these actuations are eliminated from the calculation chain.

tt

ff
ff

 

Figure 21. VVT and Tans sweep experimental data. Each colored line in the left graph represents a

engine point (as a couple of the engine speed and engine load).
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Figure 22 shows the complete calculation chain for the evaluation of the exhaust
gas temperature.

τ τ
τ ff

ff

Figure 22. Exhaust gas temperature calculation block chain.

4.5.4. Thermocouple Model

The developed exhaust gas temperature model described above was developed and
validated using steady-state data. Nevertheless, to validate the model in transient condi-
tions, it is necessary to model the behavior of the thermocouple itself. The model for the
thermocouple has been developed in our previous work [9]. It works as a first-order system
with a time constant τ. This τ has been calibrated using a self-developed optimization
algorithm that outputs the optimal value τ of under different driving cycles/transient tests.

5. Simulations and Results

All of the models developed above have been validated under steady-state conditions
and then under transient conditions. The simulations were performed in the Simulink envi-
ronment, and the results are compared for the hybrid and purely ANN-based approaches.

Firstly, the models were validated using sweep tests, as shown in Figure 3. For further
validation and to ensure the generalization of the models, they were tested on other steady-
state data and transient data that were not used during model calibration. ‘Test 1’ in this
section refers to steady-state tests that included multiple variables/actuations changing at
the same time, following certain ECU strategies. In the following, figures of the results are
presented, for synthesis reasons, for some tests only, but the numerical results are shown
for all validation tests.

5.1. MFB50

Table 6 shows the results achieved for the MFB50 in various steady-state and dynamic
tests. As seen from the results, the hybrid approach has similar/higher accuracy with
respect to the purely ANN-based approach. It must be highlighted that, even if the results
in terms of the RMSE between the two approaches, as seen in Table 6, are not significantly
different, the hybrid approach guarantees the physical trend of the MFB50, which the ANN
model is not always able to follow. Furthermore, the size of the dataset used to develop
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the hybrid approach (704 points) was smaller than that used for the purely ANN-based
approach (1200 points), thereby reducing the time and effort required for the experimental
tests. Regarding the trade-off between the accuracy/ability to capture the physical trend of
the phenomenon and the size of the data required, the hybrid approach has an advantage
with respect to the purely ANN-based one and therefore is preferred in this work. Only for
the case of the homologation cycle does the ANN have slightly better accuracy, and this is
because the engine points included during the cycle are within the domain of the data used
to train the ANN. It is well known that, for a given dataset, ANNs have higher accuracy
than other approaches. At the same time, the advantage of the hybrid approach can be
further highlighted through the results of Test 1, which include data with changes in many
variables, and this approach is able to better capture these effects.

Table 6. Results for MFB50.

Type of Test Pure ANN RMSE [◦CA] Hybrid Approach RMSE [◦CA]

Spark Sweep 1.74 1.43
λ Sweep 2.30 1.72

VVT Sweep 3.19 2.38
Tans Sweep 0.92 0.50

Test 1 9.91 7.07
Homologation Cycle 4.51 5.27

Track Cycle 2.46 2.47

Figure 23 shows some results achieved for steady-state and transient conditions. The
upper part of the figure refers to the steady-state result, which shows that the hybrid
approach has slightly higher accuracy than the pure ANN model. Meanwhile, the lower
part of the graph refers to the results obtained for the MFB50 during a homologation cycle,
as represented in Figure 6. The lower-left plot in Figure 21 refers to the results during the
complete cycle, whereas the lower-right plot is a magnified version of this complete cycle.
As can be seen, the yellow line (referring to the hybrid approach) is almost always able to
closely follow the experimental signal (blue line), which is not the case with the pure ANN
model (red line).

5.2. Pmax, IMEP, and Knock

The Pmax and IMEP models take one of the inputs as the simulated MFB50, which
captures the effects of different actuations/variables, and the engine load. Meanwhile, the
MAPO takes as input the simulated Pmax and MFB50, along with other inputs, such as
the engine speed, load, and λ. Table 7 shows the results achieved for various steady-state
and dynamic/transient tests. As seen in this table, the results achieved show accuracy with
an acceptable level of error, with the RMSE being within 5% with respect to the maximum
value of each index.

Table 7. Results for Pmax and IMEP.

Type of Test Pmax RMSE [Bar] IMEP RMSE [Bar] MAPO RMSE [Bar]

Spark Sweep 3.03 0.84 0.89
λ Sweep 3.11 0.73 0.96

VVT Sweep 5.31 1.19 0.71
Tans Sweep 2.73 0.55 1.70

Homologation Cycle 2.02 0.24 0.08
Track Cycle 4.55 1.14 1.10

Figure 24 shows a visual representation of some results obtained under the steady-
state tests. For the steady-state tests, the knock model evaluated the MAPO98.5 following
the model explained in the Knock Model section (Section 4.4).
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λ
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Figure 23. Results for MFB50 both under steady-state and transient conditions.

σ

ff

Figure 24. Pmax, IMEP, and MAPO results under steady-state tests.

Meanwhile, Figure 25 shows the results achieved for a homologation cycle; the left
graph shows the complete cycle, while the right graph shows the magnified version. For
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these dynamic/transient tests, the knock model evaluated the cyclic MAPO by extracting
the logarithmic random values using the µ and σ simulated by the ANN model, which
reflected the same probability distribution as the measured values of the MAPO.

σ

ff

Figure 25. Pmax, IMEP, and MAPO results under transient tests.

5.3. Exhaust Gas Temperature

The exhaust gas temperature model does not consider the effect of the thermocouple
behavior under steady-state tests. The thermocouple model intervenes only in the case of
transient tests. Table 8 shows the results achieved for this index for both the ANN-based
and hybrid approaches under both steady-state and dynamic tests. As seen in the table,
the results achieved when using the hybrid approach are similar to and/or better than
those for the ANN-based approach and guarantee the capture of the physical trend of
the phenomenon.

Table 8. Results for exhaust gas temperature.

Type of Test Pure ANN RMSE [◦C] Hybrid Approach RMSE [◦C]

Spark Sweep 11.40 19.18
λ Sweep 10.47 14.19

VVT Sweep 8.55 30.74
Tans Sweep 9.96 12.47

Test 1 74.36 62.46
Homologation Cycle 55.66 32.11

Track Cycle 15.81 11.62

The upper plots in Figure 26 show the results achieved for the exhaust gas temperature
during a steady-state test. During these tests, the thermocouple model did not intervene,
and the results shown are the outputs of the models (the hybrid approach, Figure 22,
and the purely ANN-based model). Meanwhile, the lower plots in Figure 26 refer to the
simulations carried out on a homologation cycle (represented in Figure 6), where the output
of the exhaust gas temperature models became the input to the thermocouple model (as
described in Section 4.5.4), and the results shown are the outputs from the thermocouple
model. The lower-left plot in Figure 26 presents the results for the entire cycle, while the
lower-right plot provides a magnified view of this full cycle. As seen in this figure, the
hybrid approach (yellow line) follows more closely the measured value of the temperature
(blue line), thereby further highlighting the advantages of following this approach.
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tt
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Figure 26. Exhaust gas temperature results under transient tests.

6. Conclusions and Future Work

This study highlights the significant advancements achieved through the integration
of traditional analytical methods with modern machine learning techniques in engine mod-
eling. The hybrid approach developed in this work is based on the effects superposition
principle, and it combines the precision and robustness of physical models with the adapt-
ability and learning capabilities of artificial neural networks. By incorporating analytical
corrective functions into ML-based engine models, this study addresses key limitations
of the current modeling approaches, such as feature extrapolation, parameter estimation,
and the ability to capture physical dynamics. The main innovative contribution of this
work is the extension of the hybrid approach to model complex physical problems, even
with a larger number of independent variables. In particular, artificial neural networks
are used to capture the effects of variables for which the operating range is well defined
(such as the engine speed and load), while analytical functions are applied to describe and
extend the trends of the output variables (such as the combustion, knock, and exhaust gas
temperature indices) with respect to those independent variables that could assume values
that differ from the calibrated ones. This allows us to increase the extrapolation capabilities
of a standard data-driven model, and it does not have an impact on the effort required for
the collection of the experimental data.

This experimental campaign and the development of a complete engine simulator
demonstrate the superior predictive accuracy and generalization performance of hybrid
models compared to purely data-driven methods. These enhanced models maintain consis-
tency with physical trends, even under operating conditions that deviate significantly from
the training data. This capability is crucial in ensuring the reliability and applicability of en-
gine simulators in real-world scenarios, including under anomalous engine operations and
failure predictions. It is demonstrated that such an approach can be effectively applied to
combustion and knock modeling, but also to exhaust gas temperature estimation, through
the implementation of a semi-physical thermocouple model. Moreover, an additional
benefit of the proposed approach is the possibility to define the values of the calibratable
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coefficients with fewer engine points, with respect to a purely data-driven approach. This
results in a reduction in the computational effort required for the calibration of the model
and in the possibility to extend the data collected at the test bench via simulations, with a
concrete reduction in costs.

On the other hand, tests for the calibration of the analytical functions have to be
carried out by varying a single variable and keeping all other variables constant, so as
to isolate the effect of each input feature on the calculated output. This, in some cases,
leads to variation in the standard procedures to conduct the campaign to calibrate the
main ECU control strategies. At the same time, as mentioned above, the number of engine
points required for complete model calibration is smaller than that needed for a purely
data-driven methodology.

Future research directions include further improving the accuracy and robustness of
the data-driven models and exploring additional applications of the hybrid approach to
model different engine parameters, such as functional indices. Moreover, the developed
engine simulator will be applied for offline engine calibration activities and to design and
pre-evaluate new durability tests and driving cycles.
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Abbreviations

1D One-Dimensional

2D Two-Dimensional

ANN Artificial Neural Network

ECU Engine Control Unit

IMEP Indicated Mean Effective Pressure

λ Lambda

LUT Look-Up Table

MAPO Maximum Amplitude Pressure Oscillation

MBD Model-Based Learning

MFB50 50% of Mass Fraction Burnt

ML Machine Learning

PDF Probability Density Function

Pmax Maximum In-Cylinder Pressure

R2 R-Square

RMSE Root Mean Square Error

RON Research Octane Number

SA Spark Advance

Tans Intake Manifold Temperature

VVT Variable Valve Timing
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