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Abstract—Modern interactive and data-intensive applications
must operate under demanding time constraints, prompting a
shift toward the adoption of specialized software and hardware
network acceleration technologies. This specialization, however,
poses significant scalability, flexibility, security, and economic
sustainability challenges for application developers. Cloud com-
puting holds the potential to overcome these obstacles by
offering the cost-effective option to access specialized acceleration
technologies through standard cloud interfaces. Nevertheless,
that integration is still challenging for cloud providers. In the
cloud, physical resources are hidden behind a virtualization layer,
whereas acceleration technologies make applications directly
interact with the hardware. To bridge this gap, recent liter-
ature explores the possibility of empowering cloud platforms
with accelerated networking as a commodity, thus offering the
innovative option of Network Acceleration as a Service. This
survey reviews these recent research efforts by adopting popular
technologies like XDP, DPDK, and RDMA as a reference. To
organize the surveyed research in a comprehensive framework,
we identify four key aspects that pose critical problems to the
integration of acceleration options in cloud computing - access
interfaces, virtualization techniques, serviceability, and security
- and systematically discuss the associated challenges. Then, we
present the issues to be further addressed and outline the most
promising research directions for the full integration of network
acceleration within next-generation cloud computing platforms.

Index Terms—Cloud computing, network acceleration, next-
generation networks, RDMA, XDP, DPDK.

I. INTRODUCTION

IN THE last two decades, cloud computing has become a
cornerstone of the modern digital economy, pushing orga-

nizations across the globe to radically shift their approach to
IT resources, now perceived as utilities accessed anytime from
anywhere on a pay-per-use basis. On the provider side, the
success of this model is rooted in the possibility of achieving
significant economies of scale. By efficiently spreading the
high costs of operations, such as hardware purchase, mainte-
nance, power supply, etc., over a large customer base, cloud
providers can offer IT resources as a service at competitive
prices. From a technical perspective, these advantages descend
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from the use of homogeneous general-purpose technologies
at scale, which allows providers to both maximize customers
and reduce costs by purchasing large batches of off-the-shelf
hardware components [1], [2].

Today, we are at the dawn of another revolution in the
computing domain. The widespread adoption of the Internet
of Things (IoT) concept [3] and the ubiquitous availability of
Internet services is fostering the emergence of a new gener-
ation of interactive and data-intensive applications in areas
such as transportation, industrial automation (Industry 4.0),
healthcare, telecommunications, education, entertainment, and
many others. These applications are designed to produce
timely answers to either user prompts or events generated
by devices: next-generation communication networks (5G and
beyond) are already being designed to enable high-throughput
and low-latency traffic processing to enable customized and
real-time decision-making, innovative adaptive services, and
advanced forms of automation [4], [5], [6], [7], [8], [9],
[10], [11].

However, these applications are very challenging to support
within the well-established cloud computing model, as they
have demanding requirements: to move, query, and process a
large amount of data under tight time constraints. Thus, these
applications achieve their full potential only when executing
either on specialized software stacks or on hardware accel-
erators, specialized hardware that implements basic functions
such as computing (e.g., Graphics Processing Units, GPUs),
storage (e.g., Non-Volatile Memory Express, NVMe), and
networking (e.g., Smart Network Interface Cards, SmartNICs).
The performance advantages offered by these acceleration
options have increasingly pushed companies to prefer them to
the standard, general-purpose cloud resources [12], [13], [14].

Ideally, the availability of acceleration technologies in the
cloud would couple the advantages of the cloud model with
their performance benefits. Cloud providers are well positioned
to fill this gap, as they already own the necessary infrastructure
and have the expertise to manage it. However, the adoption
of special-purpose software stacks and devices comes with
several technical challenges, ultimately related to a lack
of support from developers and manufacturers for virtual-
ization and sharing among multiple users [13], [14], [15],
[16], [17]. For this reason, providers are offering acceleration
only through forms of dedicated physical resources (bare-
metal instances) [18], [19], [20]. This solution is neither ideal
nor cost-effective, as it forces providers to manage separate
infrastructures and users to pay higher prices to rent these
services.
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Fig. 1. A comparison between the performance improvement of Ethernet link speeds and processor speeds in the last 25 years. As the gap widens, papers
concerning network accelerators in general-purpose data centers start to appear in the literature.

In this paper, we survey recent proposals in the computer
system literature that introduce the idea of full integration of
acceleration technologies as a commodity option in general-
purpose cloud platforms. In particular, our work considers a
specific aspect of cloud computing, the networking infras-
tructure, because it represents the most relevant example
of the rapid and challenging evolution of the cloud land-
scape. Accordingly, we classify the relevant papers in a
taxonomy that reflects the most important challenges related
to the availability of Network Acceleration as a Service
(NAaaS) in public clouds: access interfaces, virtualiza-
tion techniques, serviceability, and security. Our discussion
will cover the various technical, operational, and economic
aspects of network acceleration in the cloud, including archi-
tectures, protocols, performance, security, and deployment
challenges.

To motivate the need for acceleration in cloud networking,
Fig. 1 shows the evolution of the cloud networking scenario
over the past few years: the growth rate of communication
links in data centers has largely outpaced the performance
improvements of other host resources, in particular the pro-
cessor cores. With the end of the Moore’s law, processor
performance increased of just about 3.5% per year in the
last eight years, in sharp contrast with the rapid standardiza-
tion of higher Ethernet network link speeds [21], [22]. This
different performance evolution trend reverses the traditional
assumption in computer systems that network operations
are slower than host processors in processing packets:
because the CPU is involved in the data processing pipeline,
the standard networking stack available in common oper-
ating systems is becoming the bottleneck of data center
networking [23], [24], [25].

At the same time, the increasing amount of CPU cycles
spent for high-performance networking is subtracted from user
applications, i.e., to the core business of cloud and data center
providers. For example, in a typical long-lived TCP flow

between two hosts, more than 50% of the total CPU cycles
are spent for data copies at the end hosts [23]. For an average
request, a server running a simple key-value store spends
only 6% of the total CPU cycles within the application logic,
whereas 85% is spent within the kernel networking stack [25].

As a consequence, application developers are increasingly
shifting to use network acceleration technologies. By mini-
mizing the processor intervention on data plane operations,
these technologies let applications leverage the full speed
of modern communication links, and providers to dedicate
a bigger portion of CPUs to user applications. Fig. 1 cor-
relates the different growth rates of network and processors
speed with the number of major research papers that use
network acceleration technologies to speed-up typical data
center services. As the gap between the two curves widens,
the number of papers increases and stresses the urgency to
find efficient ways to include high-performance networking
within general-purpose cloud infrastructures [14], [26], [27],
[28], [29], [30].

In this context, a few acceleration technologies gained
momentum as cost-efficient options: the Linux eXpress
Data Path (XDP) [31], the Data Plane Development
Kit (DPDK) [32], and Remote Direct Memory Access
(RDMA) [33]. As we further comment in Section III, they all
achieve significantly higher throughput and lower latency than
standard networking by following common design principles,
such as zero-copy transfers, minimal context switching, and
asynchronous processing. The main difference among these
options is how they implement these principles, as they
target different needs and yield to different benefits [14].
XDP provides in-kernel acceleration. DPDK bypasses the
OS kernel and handles networking from userspace. RDMA
takes a step further by following a different communication
model: it allows remote processes to share memory areas
over the network and to transparently offload the necessary
operations to a special network card called RDMA NIC
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(RNIC), which can be implemented using a wide range of
hardware devices [33], [34], [35].

Despite the advantages that NAaaS would bring to cloud
users both in terms of increased performance and CPU over-
head reduction, cloud providers remain skeptical about this
option because it comes with unsolved challenges, especially
for hardware-based acceleration. For example, is it possible to
preserve the native performance of acceleration technologies
while integrating them into a cloud infrastructure in a scalable
and cost-effective way? How can providers adapt their internal
services to network operations that bypass the existing control
infrastructure? The proposals we survey in this paper address
these questions in a fragmented way: each solution tends to
investigate one or a few specific aspects of this topic, such
as which network access interface the provider should expose
to users, how efficiently the data path between applications
and hardware devices can be virtualized, how such a path can
be controlled to enforce different levels of Quality of Service,
and how such access can be secured from internal or external
malicious users. Instead of providing a complete context of
usage and a consequent operation model, the outcomes of such
research are sometimes not compatible or even clashing with
one another, and a unifying idea is still missing.

Conversely, enabling accelerated networking in cloud plat-
forms is a challenge associated with the collaboration and
interplay of several stakeholders, including hardware manu-
facturers, operating system designers, cloud providers, and
even application developers, and all have to agree on common
principles at several abstraction levels.

From our perspective, we believe that a standardization
effort is crucial for the evolution of both network acceleration
technologies and the cloud paradigm. Since data-intensive
applications are increasingly common, the ecosystems of cloud
computing and of network acceleration must converge, closing
the existing technological and architectural gaps while acceler-
ated cloud systems are still at a prototype stage, and avoiding
the proliferation of divergent proposals. This paper focuses on
those gaps by providing a comprehensive picture of the state of
the art on the availability of NAaaS in cloud data centers, with
the goal of describing the main research challenges to be faced,
how these challenges have been addressed in the literature,
and if and how these approaches can be combined together.

A. Related Surveys

Previous surveys investigated the interplay between cloud
computing and network acceleration techniques in connection
with the concept of Network Function Virtualization (NFV).
NFV is a paradigm in network architecture that promotes the
replacement of dedicated hardware middleboxes with more
flexible software instances that can be dynamically scaled
and migrated. However, general-purpose hardware cannot
achieve the same performance as special-purpose application-
specific devices. Thus, previous research reviewed not only
the deployment options for virtualized network functions,
including VMs and containers in public clouds, but also the
possible software and hardware acceleration technologies to

TABLE I
CONTRIBUTIONS OF PREVIOUS SURVEYS AND COMPARISON

improve the performance of their network operations [11],
[36], [37], [38].

In particular, Linguaglossa et al. [36] and
Shantharama et al. [37] review several network acceleration
technologies and acknowledge the performance overhead
associated with their virtualization, suggesting that future
research must focus on the challenge of providing better
virtualization support.

In this work, we review recent contributions targeting that
challenge. Our survey adopts a holistic approach and consid-
ers any application that needs to efficiently access network
acceleration, regardless of its business logic: we survey the
techniques to minimize the overhead introduced by the cloud
virtualization layer. For a telco operator, NFV separates the
virtual function logic from the hardware that executes it,
whereas NAaaS improves the efficiency of this separation.

Hence, NAaaS is an enabler not only for NFV, but
also for the emerging Network Applications (NetApps) that
offer vertical-specific services directly from the network
infrastructure (see Section II-B), as well as for the emerg-
ing disaggregation trend of the Radio Access Network
(RAN) [39].

This survey considers the cloud integration of both
hardware-based and software-based network acceleration
technologies. Peccerillo et al. [13] extensively review the
hardware acceleration options available today, not limited
to networking but including any aspect of computing and
communication. The paper recognizes that these devices can
be much more effective than general-purpose processors to
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Fig. 2. Overview of the survey structure.

satisfy the globally growing demand for computing power
and performance but also that this specialization comes
with an intrinsic heterogeneity problem. Given the lack
of proper virtualization support, the possible cloud inte-
gration of these devices is described as an open research
challenge. In this paper, we are interested in how cloud
platforms can offer access to those devices as a service to
customers.

Similarly, Freitas et al. [14] review software-based accelera-
tion technologies for fast network packet processing, including
XDP and DPDK. After a careful analysis of the current
bottlenecks of the Linux kernel, the paper reviews how dif-
ferent in-kernel and kernel-bypassing approaches can improve
end-host packet processing performance, yielding to differ-
ent advantages and trade-offs. The survey also includes a
brief discussion about the virtualization of these technologies,
but it only considers a few examples of I/O virtualization
(see Section VI-A). On the contrary, our paper focuses
specifically on the cloud integration of these technologies
and carefully analyzes all the several implications of the
approaches proposed in the literature on the design of cloud
infrastructures.

Sharing the same goal of this survey, the works by
Hong et al. [15] and Bobda et al. [16] investigate the possibility
of enhancing cloud platforms with GPU and FPGA hard-
ware respectively. Hong et al. survey the GPU virtualization
techniques and their scheduling methods, focusing on the
performance and fairness issues that might arise between
multiple tenants. However, other aspects like security, ser-
viceability, and observability are not extensively covered.
Bobda et al. systematically review the existing contribu-
tions to provide FPGA acceleration in cloud platforms,
considering various deployment options and their impli-
cations on programming interfaces, virtualization, sharing,
and security.

Therefore, both these surveys focus on the specific
requirements of a single kind of device (GPU, FPGA) and
consider, to a different extent, the literature contributions about
their integration in cloud infrastructures mainly to acceler-
ate compute-intensive workloads. On the contrary, this work
reviews the various aspects of a cloud infrastructure that must
evolve to include network acceleration technologies regardless
of the availability of a specific kind of hardware. We consider
RDMA as our reference communication model for hardware-
based acceleration: as Section III explains, this model can be
implemented through a wide range of different devices.

Overall, to the best of our knowledge, this is the first work to
comprehensively review the state of the art of NAaaS in cloud
infrastructures. The novelty of our approach lies in three key
factors. First, we do not make assumptions about applications
business logic: users should be able to leverage acceleration
for general-purpose networking. Second, we do not tailor
our review to a specific acceleration technology or hardware
device, but move from the consideration that both software-
based (e.g., XDP, DPDK) and hardware-based (e.g., RDMA)
options share common design principles. Finally, not only do
we cover the virtualization techniques that make NAaaS solu-
tions feasible, but we also discuss the aspects related to their
practical deployment in cloud infrastructures (programming
interfaces, serviceability, security) and the challenges associ-
ated with the interplay among several stakeholders, including
in particular cloud providers and hardware manufacturers.

B. Structure of the Survey

This survey follows a step-by-step structure, as Fig. 2
illustrates. In this Section we introduced the scope of our
survey and discussed its novelty in comparison with previous
work. In the remainder of the paper, we first present an
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overview of the main features and properties of cloud com-
puting platforms (Section II) and of accelerated networking
(Section III). In that background part, we stress the funda-
mental dichotomy between the virtualization paradigm and
the kernel-bypassing, accelerated approaches. Secondly, we
propose a taxonomy of the most important aspects of cloud
networking impacted by the introduction of network acceler-
ation techniques (Section IV). Then, we survey the scientific
literature in the field of computer systems about the support
to network acceleration in cloud computing, by systematically
organizing the relevant papers in the proposed taxonomy
(Sections V–VIII). Finally, Section IX summarizes the lessons
learned and identifies the most compelling open challenges and
the future research directions that need to be addressed toward
the availability of NAaaS. Section X concludes the work.

II. CLOUD COMPUTING

This Section briefly introduces the concept of cloud comput-
ing from a networking perspective. In particular, we define four
aspects of cloud networking that according to the scientific
literature are more impacted by the integration of network
acceleration: network access interfaces, virtualization tech-
niques, serviceability, and security. We review the current
standard approaches to handle each of these aspects, thus
offering the necessary background for readers to understand
the motivation and the technical feasibility of the solutions
reviewed in the remainder of the paper. We also consider
the growing decentralization trend of cloud infrastructures and
briefly motivate why the approaches surveyed in this paper are
even more compelling in these emerging scenarios.

A. Introduction to Cloud Computing

Since its definition, the cloud computing paradigm gained
wide popularity in virtually any economical and social sector.
The key reason of that success resides in the availability of
computation, networking, and storage resources as a service,
accessible anytime and anywhere, so that companies in any
economical sector no longer need to buy and maintain their
own on-premise IT infrastructure. Cloud providers transpar-
ently manage the physical infrastructure, billing users for
their real resource usage, e.g., charging per time unit, num-
ber of requests to a service, or amount of transferred data
(pay-per-use model). Thus, companies can elastically scale
resources based on the actual demand, saving upfront costs
and avoiding to pay for idle machines under low traffic, but
still being able to respond to peaks in demand. Depending
on the agreement between users and providers (Service Level
Agreement, SLA), different kinds of cloud resource offerings
are possible: a widely popular classification distinguishes
between Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS) depending on
the user visibility of the underlying computing resources [40].
Although this categorization no longer captures the whole
spectrum of available offerings [41], it is still considered an
important reference.

The focus of this paper is not on a specific cloud model
but rather on the mechanisms for users to access accelerated

networking, independently of their degree of visibility on the
network and whether the network is managed by users or
by providers on their behalf. However, we assume that user
applications execute either within VMs or containers.

A VM is a deployment technique based on a software-based
replication or emulation of actual hardware architectures,
enforced by a program called hypervisor. A container is a
different technique based on the isolation of a user process
on a shared OS kernel. Both VMs and containers are used by
cloud providers for tenant isolation: users get access to the
machine resources, their operating systems (in case of VMs)
and applications, whereas the provider keeps control on the
underlying physical cloud infrastructure. This distinction is not
strict: approaches commonly used in one can be seamlessly
applied in the other, for instance, leveraging system call
filtering alongside containers or employing sandboxing and
user namespaces in virtual machines [42].

Regardless of the specific model, resource virtualization is
a key pillar of the cloud computing model, as it decouples
the users perspective of working on dedicated resources from
the provider physical view, and we claim that virtualization
plays a crucial role in the dynamicity that characterizes any
cloud offering. For example, it enables the elastic scaling of
resources in response to the current load of users, saving
them significant costs compared to on-premise approaches.
Virtualization also enables multi-tenancy: the same physical
resources can be allocated to different users, even belonging
to different organizations. Because providers can optimize
the use of their equipment, they can also offer a cheaper
service: indeed, multi-tenant clouds generally represent the
most economically appealing solution for most enterprises.

From a networking perspective, virtualization is critical to
support the communication patterns of modern cloud applica-
tions. According to the microservice architecture [43], cloud
users tend to disaggregate applications across separate business
functions, which reciprocally communicate. To support this
pattern, cloud providers must enforce two forms of virtualiza-
tion: not only an efficient network access (I/O virtualization),
but also virtual private overlay networks among machines
(network virtualization). There are multiple technical chal-
lenges associated with those two kinds of virtualization: which
interface customers should use to access the network; which
virtualization techniques allow the same tenants to efficiently
while preserving their isolation; how network properties can be
flexibly adapted to meet different SLAs (serviceability); how
the security of network operations on a shared infrastructure
can be guaranteed.

Although these aspects are certainly not the only concerns
for cloud providers, according to the scientific literature
they are the most impacted by the integration of hardware-
based network acceleration in cloud platforms, thus forcing
providers to find novel solutions to retain the existing fea-
tures of cloud networking while also accommodating network
acceleration technologies. To help the reader understand the
motivation for those novel solutions, in this Section we
provide an overview of the current standard approaches to
these fundamental cloud networking aspects (network access
interfaces, virtualization techniques, serviceability, security).
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Then, Section IV will refer to these aspects for the introduction
of innovative solutions in support to NAaaS for faster cloud
networking.

B. An Emerging Trend: The Cloud Continuum

The success of the IoT concept and its widespread adoption
across various application domains are driving an evolution
in the cloud computing paradigm. With the pervasive avail-
ability of connected devices, there is an increasing demand
for applications to consume, analyze, and generate diverse
data from a variety of sources under tight time constraints.
Centralized clouds can only partially meet these demands
and new decentralized computing infrastructures, able to host
cloud applications outside data centers, have started to appear
in recent years, improving aspects such as response time and
bandwidth use for performance-critical services [7].

In the telecommunication ecosystem, the paradigm of
Multi-access Edge Computing (MEC) has been developed
to answer this trend. MEC envisions that operators leverage
resources physically co-located with their equipment to host
new services that analyze, process, and store the data in close
proximity to mobile users [44], [45]. The recent push toward
the disaggregation and virtualization of the Radio Access
Network (RAN) answers to the need of achieve additional
flexibility and scalability to host new network services and
requires the capabilities to efficiently execute performance-
critical virtualized applications (e.g., xApps, rApps) [39].

More broadly, the entire design of next-generation commu-
nication networks (5G and beyond) is oriented to the support
of high-throughput and low-latency traffic processing, with
the goal to enable a wide range of performance-sensitive
applications (e.g., augmented reality, robotics, autonomous
transportation, etc.) to run on the operator networks rather
than on remote cloud data centers. This trend is embodied
by the concept of Network Applications (NetApps), which
allow external users to design vertical-specific services that
use network capabilities via APIs [46], [47].

In the Information Technology ecosystem, a similar concept,
Fog Computing, was proposed to move compute-intensive
services close to data sources and allow them to meet
key performance targets. Factory-local small data centers,
modern power grids, smart homes, autonomous vehicles,
etc. are all potentially capable of hosting low-latency
services [48], [49], [50].

Combining the ability to run performance-sensitive, local-
ized applications both at the edge and within the telco
infrastructure with the high capacity from the cloud, the Cloud
Continuum has emerged as a paradigm that can support the
heterogeneous requirements of small and large applications
through multiple layers of a computational infrastructure that
combines resources from the edge of the network as well as
from the cloud [51]. The resulting model is a composition of
edge, fog, and cloud layer designed to support applications
with heterogeneous Quality of Service (QoS) requirements,
including performance-critical services.

To overcome the intrinsic resource heterogeneity of these
layers, the Cloud Continuum paradigm relies on a layer

of virtualization that, like in cloud data centers, decouples
physical resources from the application code. The resulting
computing model is thus a continuum of virtualized resources
offered as a service that enables the hosting of application
components across the different layers. Across the continuum,
providers can operate according to a cloud-like model, for
example by assigning slices of the resources to different
tenants, by guaranteeing isolation, and by distributing the
workload at all levels of the infrastructure [5], [51].

In this context, the need to integrate network acceleration
technologies is perhaps even more compelling than in cloud
data centers. In the telco ecosystem, the literature on NFV (see
Section I-A) already explored the adoption of software and
hardware acceleration technologies to reduce the virtualization
overhead [10], [52]. However, as we previously discussed, this
integration is not considered an option available as a service
to general-purpose applications. Unfortunately, the majority
of the contributions that target this integration challenge is
focused on centralized data centers. In Section IX-C, we
describe the extension of NAaaS approaches to next-generation
network infrastructures, as well as to the broader cloud
continuum, as a future research direction.

C. Network Access Interfaces

A desirable property for cloud platforms is that users can
deploy unmodified application binaries within the virtualized
environments, thus taking advantage of virtualization without
any change to their existing applications. At the same time,
cloud developers should ideally create new applications with-
out the burden of learning and understanding new frameworks,
programming languages, or interfaces, as they can continue to
use the same tools they are familiar with.

Such flexibility usually stems from the availability of virtual
network interfaces within VMs and containers, which cloud
users may access by using standard APIs: in particular, cloud
applications generally use the standard and ubiquitous POSIX
Socket API to communicate over the network. We stress
here this specific aspect because the network acceleration
technologies discussed in this survey natively expose a differ-
ent interface, and cloud providers that integrate acceleration
devices in their platforms will trade the portability and ease
of programming of the former with the efficiency of the latter
(see Section V).

D. Virtualization Techniques

Resource virtualization is a fundamental principle of the
cloud computing paradigm. From a networking perspective,
we already distinguished between two kinds of virtualization,
I/O virtualization and network virtualization, according to
previous literature on this topic [53], [54]. Although those two
aspects are closely intertwined, in the former case we refer
to the mechanisms to enable VMs or containers running on
a shared physical host to access an external network. In the
latter case, we consider the techniques to create virtual private
overlay networks among a set of VMs or containers belonging
to the same users or tenants. Both these aspects are crucial for
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Fig. 3. The two prominent techniques for I/O virtualization for VM: direct device assignment (left) and paravirtualization (center). On the right, two modes
for container networking: host (dashed line) and overlay (solid line).

cloud networking as they influence the performance, flexibility,
and isolation properties of communication.

Furthermore, as we discuss in the remainder of the survey,
the most important challenges concerning the introduction
of network acceleration technologies in cloud platforms will
emerge in the context of I/O virtualization and network
virtualization. In the following, we briefly discuss the standard
approaches typically used by cloud providers to enforce
those two forms of virtualization [8], [54], [55], [56], [57],
[58], [59].

1) I/O Virtualization: A critical challenge for applications
running in virtual environments is to efficiently access I/O
devices, especially when network performance is a criti-
cal concern. The techniques to obtain an efficient end-host
network performance differ for VMs and containers. For VMs,
the most prominent approaches are direct device assignment
and paravirtualization, represented in Fig. 3 left and center.

Direct device assignment reserves a device instance exclu-
sively to a VM or container (passthrough), so each virtual
environment (VM or container) requires a distinct physical
network adapter. To mitigate this heavy scalability limit, recent
devices support a form of hardware-assisted virtualization
called Single Root IO Virtualization (SR-IOV [60]) that
makes them appear as multiple separate devices called Virtual
Functions (VFs). Each VF can be assigned to different VMs
as if it were a distinct device. Either way, direct device
assignment allows to exclude the hypervisor from the network
critical path: virtualized applications can access the network
as if they were physical hosts, thus achieving the best network
performance. However, this technique tightly couples network
devices and virtual environments, strongly limiting the inher-
ent flexibility of virtualization: for example, live migration
becomes impossible to support, because the hypervisor cannot
create a snapshot of the network state.

The paravirtualization technique, instead, splits the device
driver into a frontend driver, located in the guest OS of
a VM, and a backend driver on the host (Fig. 3), where
those two drivers exchange commands through a dedicated
communication channel. This separation lets the hypervisor

in full control over the network control and data planes,
thus providing a high degree of flexibility: because traffic is
mediated by software, it can be easily controlled. However,
this also introduces overhead on data path operations, espe-
cially when crossing the guest/host boundaries. The virtio [55]
framework is the de facto standard tool for paravirtualization,
and it allows the hypervisor to expose paravirtualized devices
to the guests. To mitigate the performance overhead introduced
by paravirtualization, virtio clearly separates the data plane,
which handles the actual network traffic between the host and
the guest, and the control plane, which allows to exchange
control messages about the data plane. The data plane is imple-
mented as a set of shared memory areas, called virtqueues,
between the frontend driver on the guest and the backend
driver on the host. Those memory regions are managed as
couples of ring buffers holding the network data to be received
and transmitted, similarly to the actual queues of physical
network devices. Each virtual device can have zero or more
queues associated, with the limitation that each queue must be
associated with a distinct vCPU. Conversely, the control plane
consists of a notification mechanism used between the frontend
and the backend driver to discover and signal new data in the
queues. For network devices, that notification mechanism is
implemented as a direct inter-process communication channel
between the two drivers.

The paravirtualization technique is popular for VMs, but it
introduces an overhead that is often unacceptable in the case
of containers. Indeed, containers are considered a lightweight
form of virtualization compared to VMs, as they let appli-
cations execute directly on the host operating systems [42].
Various mechanisms are used to isolate containerized appli-
cations from the host; from the networking perspective, each
container is generally assigned a network namespace, which
includes a separate instance of the kernel networking stack
(Fig. 3 right). Hence, it is possible to create interfaces directly
in that namespace, without resorting to virtio, to assign
arbitrary IP addresses, and to use the same device drivers
installed in the host. In host mode, data are forwarded directly
to the device driver, so the network configuration is the same
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as bare-metal applications (dashed line in Fig. 3). Otherwise,
data can be directed by using a software-based datapath to a
software bridge (overlay mode) and then forwarded to the host
networking stack for the actual network access (solid line).

2) Network Virtualization: In the case of I/O direct device
assignment for VMs (or host networking mode for con-
tainers), the traffic of a virtualized application appears on
the network as the traffic of a bare-metal application on a
physical host. This option might make sense in a dedicated
infrastructure, such as a private cloud or on-premise infras-
tructure, but is not suitable for multi-tenant scenarios, where
traffic isolation among tenants is paramount. Instead, providers
usually adopt a paravirtualization approach (for VMs) or the
overlay networking mode for containers, with the goal of
segregating user traffic within controlled boundaries (network
virtualization).

The key technology to enable network virtualization is the
virtual switch, a software module in the host kernel that
acts as packet dispatcher among network interfaces. Once the
traffic of a virtualized application reaches the backend driver
(in case of VMs, see Fig. 3 center) or exits the network
namespace (in case of containers, see Fig. 3 right), the switch
forwards it on the physical network. In the cloud, virtual
switches represent the first network hop for user applications.
Hence, they are the main tool for providers to build logically
isolated, virtual private overlay networks to connect user
application components, or to implement customer-supplied
network spaces.

Importantly, the software flexibility allows cloud providers
to offer richer network semantics, by configuring traffic shap-
ing policies and dynamically adapting such configuration to
external events, e.g., mutated network conditions, new policies
to enforce, or user requests. With software switches on each
host, providers can scale such control actions to a high number
of servers, while at the same time keeping the actual physical
network simple, scalable, and thus very fast.

Important traffic shaping policies include network isolation
of VMs and containers via different forms of tunneling, such
as VXLAN [61], security, migration, QoS enforcement, and
generally all the key serviceability aspects that we discuss in
Section II-E. To leverage this flexibility as much as possible,
major cloud providers design their own software switches [62],
although open-source versions are widely available, such as
Open Virtual Switch (OVS) [63].

E. Serviceability

Virtualization allows cloud providers to dynamically
optimize their resources in the most cost-effective way. For
instance, providers can automatically trigger various forms
of load balancing and optimizations toward an efficient use
of their data center, transparently to the end users; the
same mechanisms can be employed to elastically scale user
resources according to different SLAs. All these actions
are crucial for providers to make their virtualized resources
serviceable, in the sense of ready to be offered as a service to
their customers.

Among several serviceability aspects, some of those related
to networking are particularly relevant for this survey, namely
monitoring and logging, QoS enforcement, and live migration,
as the current techniques to implement them are not compati-
ble with the fundamental principles of accelerated networking.
Cloud providers currently control those aspects through
software-programmable virtual switches (see Section II-D2),
but current approaches to network acceleration provisioning
also bypasses those switches, thus forcing providers to recover
serviceability through alternative strategies.

In the following, we briefly introduce those three main
serviceability aspects, leaving to Section VII the discussion on
how they can co-exist with network acceleration technologies.

1) Monitoring and Logging: A key factor for successful
cloud operations is a rich set of observability tools. By
monitoring every aspect of their software and hardware infras-
tructure, cloud providers can motivate several technical (e.g.,
control actions) and business (e.g., pricing levels) decisions.
Control actions can trigger automatically, thus improving
the overall quality and performance of the offered services,
and include, for example, tracing the connection behavior of
single VM or container, diagnostic any kind of problems,
locating performance bottlenecks; all at the scale of a data
center.

Overall, the pay-per-use business model is enabled by the
ability of monitoring fine-grained actions from customers.
Monitoring data are also generally exposed to end users
in the form of Key Performance Indicators (KPIs), so that
customers can verify the respect of the SLA negotiated with
the provider [64], [65].

In some cases, monitoring data can be logged and kept on a
persistent support for the offline analysis of the operations, or
the detection of malicious actions. More and more often, log-
ging is also becoming a legal obligation [66], [67] that enables
independent auditors to investigate controversies among users
and providers.

2) QoS Enforcement: The definition of Quality of Service
(QoS) is wide, so here we limit our considerations to
networking aspects. Nonetheless, QoS is a crucial concept
for cloud providers as they base their business model on the
offering of different levels of services: basic resources with
limited capabilities are generally cheap for users, whereas
advanced features can be purchased with a fee. Beyond
economical considerations, QoS management is important
also for technical reasons, because on a multi-tenant cloud
it ensures that no tenant can exhaust the whole available
resources. Concretely, QoS control is enforced through packet
quotas, bandwidth caps, and other kinds of limits on network
resources, such as the number of links, or of on-demand virtual
private networks a user can instantiate [68], [69], [70].

3) Live Migration: Cloud users expect to deploy appli-
cations through automated orchestrators that take care of
the necessary management, automated scaling, and lifecycle
operations of their application components. On their side,
providers in multi-tenant clouds are continuously looking
for an optimal allocation of user resources on the available
infrastructure, by taking into account the user requirements,
the SLAs, and also the overall data center status. Since the data
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center conditions change over time, because of shifting user
workloads, load balancing needs, infrastructure maintenance,
etc., both providers and their customers need a dynamic way
to scale, re-allocate, and balance their resources (continuous
scaling).

In this context, live migration is a powerful tool for the
administration of data centers that allows providers to move
running VMs or containers from one physical host to another.
With live migration, even critical applications can be moved
without service disruption and with controlled performance
overhead, thus allowing providers to dynamically balance
resource usage and to isolate portions of the infrastructure for
maintenance or updates.

Unfortunately, the live migration of network resources is
one of the biggest challenges in the whole migration process
even when standard networking is adopted. The migration
procedure requires to checkpoint and restore the state of
all the active communication channels of an application. In
turn, the checkpointing procedure requires the availability of
specific support mechanisms from major operating systems:
for instance, the Linux kernel modified its implementation
of TCP to introduce a new state (TCP_REPAIR) that helps
the migration operations. The same visibility issue affects
accelerated network channels, as we discuss in Section VII-C.

F. Security

An increasing number of companies completely rely on the
cloud to design, deploy, and operate their own services, as
well as to manage system and customers data. Customers need
to trust cloud providers for high-quality services, in particular
for the security and the availability of applications and data.
Nowadays, the trust relationship between users and providers
is based on a set of security best practices, consolidated in one
decade of operations in the cloud industry, including security
mechanisms at many levels: firewall and hypervisor, crypto-
graphic mechanisms, authentication and access control, traffic
isolation, etc. [71], [72]. Even for security-related policies,
dynamic actions are paramount for the effectiveness of those
mechanisms, which are expected to be easy to reconfigure and
capable of immediately enforcing new security policies.

At the network level, in particular, providers must guarantee
the confidentiality, integrity, and authentication of the traffic
between users and external networks as well as on virtual
private overlay networks among user machines. Resource
access is another critical aspects, especially in public shared
infrastructure: hence, provider define mechanisms such as
access control lists (ACL), security groups, Firewall as a
Service (FWaaS) to ensure only authorized users can access
to network resources. When different tenants share physical
resources, providers must guarantee the isolation of their
computations and communication activities from those of other
users. For example, network traffic flows from different tenants
must not interfere with each other. Even worse, a malicious
tenant must not be able to infer which kind of workloads or
traffic patterns other tenants are running by just inspecting
the performance of its own resources [73], [74], [75]. Finally,
another paramount security requirement is attack detection:

providers should be able to recognize an attempt to break
their system, notifying users if necessary. Recent legal reg-
ulation, for example, mandate many forms of auditability
and require that providers warn users about possible data
breaches [66], [67].

III. NETWORK ACCELERATION

In this Section we provide the necessary technical back-
ground to understand the potential benefits, the challenges, and
the trade-offs associated with the integration of network accel-
eration technologies in cloud infrastructures. In the first part
of the Section we define the concept of network acceleration
and distinguish between software-based and hardware-based
technologies. Rather than delving into complex technical
details, we aim at presenting the common design principles
behind different technologies (XDP, DPDK, RDMA, etc.),
which are all based on the fundamental concept of clear
separation between the control and the data planes of com-
munication [76], [77]. Then, because a significant majority of
the surveyed literature focuses on hardware-based technologies
and specifically on the RDMA communication model, we
present an extensive background on them.

A. Introduction to Network Acceleration

In the context of this survey, the term network accelera-
tion refers to the minimization of the performance overhead
incurred from the initiation of an application’s data transmis-
sion request to the execution of the send operation by the
hardware NIC. Similarly, it refers to the minimization of the
performance overhead from the NIC’s reception of a packet
to its delivery to the receiver application.

Based on the considerations introduced in Section I about
the end of Moore’s law, network acceleration technologies tend
to improve end-host networking by minimizing the processor
intervention on these operations. This idea reflects a shifting
balance highlighted by recent research: modern networking
links are so fast that to utilize its full potential, developers
must clearly separate the control plane, which expresses the
application logic and thus entails CPU intervention, from the
data plane, where data must be free to move at the link
speed [76], [77]. Thus, applications can leverage the full speed
of modern communication links, and data center providers
dedicate a bigger portion of their CPUs to user applications.

In particular, it is possible to identify three key design prin-
ciples that modern network acceleration technologies follows
to guarantee clear separation of control and data planes:

• Zero-copy Data Transfers. Memory copy operations are
by far the most significant bottleneck for end-host
networking [23], [25]. Ideally, a complete separation
between control and data planes would require a model
in which any host involved in the communication has a
single copy of any given data item at a certain memory
location: the network equipment places incoming data at
in a designed area (or reads them from it), from which
data is never moved. The control plane refers to the
items by sharing references to that location. Although
maintaining just a single copy of each data item might
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Fig. 4. A comparison between (a) the standard kernel-based networking stack vs network acceleration technologies: (b) XDP, (c) DPDK, (d) RDMA. RDMA
clearly separates the control path (solid line) from the data path (dashed line).

not be always practically viable for many reasons (isola-
tion, security, etc.), high-performance network protocols
should strive to minimize their number.

• Minimal Context Switching. Context switches between
processes, especially at the boundary between userspace
and the kernel, use precious CPU cycles. Hence, it should
be avoided performing protocol processing and other data
plane actions in the kernel, as that involves passing con-
trols multiple times between user and kernel processes.
Ideally, data plane operations should be performed by a
single or a small set of processes or threads in userspace,
thus also improving data and instruction cache locality,
or, even better, completely offloaded to hardware.

• Asynchronous Processing. Because control and data plane
potentially execute at very different speeds, program-
ming network interfaces and protocols should be ideally
designed to be completely asynchronous and lock-free,
thus avoiding that control plane stalls data plane, or vice
versa. That is practically not always possible, e.g., when
parallel processing is performed on multi-core processors,
but the more this separation is enforced, the better is
network performance.

Although all the network acceleration technologies share
these design principles, each implements them in different
ways, partially or totally bypassing the standard OS kernel,
as Fig. 4 visually summarizes. In this survey we distinguish
between two categories of network acceleration technologies:
software-based and hardware-based. In the following, we
summarize the main differences of these approaches.

1) Software-Based Technologies: Software-based acceler-
ation technologies improve end-host network performance
without requiring any special hardware to be installed. On
the one hand, that is an economical advantage as this option
does not require additional hardware than the existing general-
purpose network equipment. On the other hand, the absence of
dedicated hardware means that compute-intensive operations
such as protocol processing must be performed by the CPU,
thus burning precious processor cores [14].

Currently, the most prominent software-based acceleration
technologies are the Linux eXpress Data Path (XDP) and the
Data Plane Development Kit (DPDK). XDP [31] is the most
conservative option with respect to the standard network stack:
packet processing executes within the kernel, thus retaining the

existing observability tools and isolation mechanisms but also
the user/kernel context switches. XDP enables the execution
of user-provided code (eBPF programs) for each packet at the
lowest layer of the kernel networking stack, located within
the driver of network devices. This allows users to forward
packets directly to/from user applications, thus bypassing the
higher layers (e.g., kernel-based TCP/IP) that are responsible
for significant packet processing overhead.

Instead, DPDK [32] is designed to accelerate packet pro-
cessing through a kernel-bypassing approach that removes
also the user/kernel context switches. Originally developed
to accelerate virtual network functions, DPDK has been
increasingly adopted as a form of end-host network acceler-
ation for general-purpose applications. A set of C libraries
let users directly interact with the hardware NIC through a
userspace version of the network device drivers designed to
allow zero-copy data transfers and totally asynchronous packet
processing. To minimize latency, usually applications employ
one or more threads that continuously check for packets
from the applications to be sent on the network and from
the network to be sent to the application. This busy polling
approach is very effective in terms of performance, but it also
represents one of the major drawbacks of DPDK because it
induces a high CPU and energy consumption. Furthermore,
bypassing the kernel also prevents DPDK applications to
use standard kernel-based observability tools and isolation
mechanisms.

2) Hardware-Based Technologies: Hardware-based accel-
eration technologies offload one or more computationally
intensive tasks to a network accelerator, a special-purpose
hardware device. In the networking domain, these devices
can effectively execute compute-intensive operations, such as
protocol processing, much faster than general-purpose proces-
sors, by removing the bottleneck of software-based protocol
implementations and by allowing application developers to
leverage the full potential of modern network links. Also in
this case, different approaches can either retain the flexibility
and isolation of in-kernel networking [52] or adopt a kernel-
bypassing solution for the sake of performance (Fig. 4d). The
most prominent example in this category is RDMA, which we
extensively introduce in the remainder of this Section.

In this survey, we consider the challenges of cloud integra-
tion for both software-based and hardware-based acceleration
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technologies. As these technologies all follow the same design
principles, the approaches surveyed in our literature review
(Sections V–VIII) are generally valid for all of them.

Nevertheless, there is a key performance difference among
these two categories: by offloading compute-intensive tasks to
a specialized device, hardware-based technologies maximize
the performance benefits for customers and do not burn
processor cores, thus making them the most appealing option
for cloud customers. For this reason, the significant majority
of the surveyed works focuses on the cloud integration of
hardware-based technologies and, in particular, of RDMA. As
a consequence, in the remainder of this Section we provide an
extensive background on RDMA, which will help the reader
understand the technical solutions surveyed by this work.

B. Introduction to RDMA

Network acceleration devices can be significantly hetero-
geneous in terms of hardware implementation, supported
tasks and protocols, interface exposed to developers, and
programmability. From a hardware perspective, most devices
are built using three main technologies, namely Field
Gate Programmable Arrays (FPGAs), Application-Specific
Integrated Circuits (ASICs), or Systems-on-a-Chip (SoCs),
each with different characteristics and properties. Depending
on their goals in terms of product cost and complexity,
manufacturers and researchers can decide to embed specific
network functions in a network card (e.g., [78], [79]), or to
provide them through an additional device (bump-in-the-wire
approach [80], [81]).

From a software perspective, developers interact with these
devices through interfaces that can have different degrees of
standardization, expressiveness, ease of programmability, and
associated performance overhead, depending on the underlying
hardware. An extensive review of these devices and of their
interfaces can be found in [13]. We limit our discussion to
observing that the heterogeneity of these devices creates a
practical concern both for providers and developers: because
applications interact directly with the device drivers, different
devices might assume different communication abstractions,
models, and vendor-specific access interfaces.

Toward a unification, Remote Direct Memory Access
(RDMA) has emerged in the last decade as a convenient,
cost-effective approach to network acceleration. RDMA is
a standard communication model that allows a process to
directly access the memory address space of another process
on a remote machine [33]. The RDMA specification defines
an asynchronous, general-purpose semantics to leverage the
features of network accelerators, such as zero-copy commu-
nication, but it does not require a specific implementation:
any hardware device, including in principle general-purpose
CPUs [82], may implement its model. Thus, RDMA intro-
duces a uniform access layer to hardware acceleration.

The popularity of RDMA as a network acceleration model
makes it an ideal candidate as a reference technology for
hardware-accelerated approaches in our survey. Since its
origin in the High Performance Computing (HPC) commu-
nity [34], RDMA received significant industrial support from

hardware manufacturers, which made it available also for
general-purpose networking, and became a popular networking
technology both in industry and academia [35], [78], [79].
As a consequence, network acceleration devices supporting
RDMA are increasingly available as off-the-shelf components,
by allowing application processes to communicate directly,
bypassing the kernel-level networking stack and achieving
zero-copy transfers, significantly higher throughput and lower
latency, and lower CPU utilization.

In the following, we provide an introduction to the main
aspects of RDMA that serves as the necessary background for
the reader to understand the technical solutions proposed by
the reviewed literature (Sections V–VIII). We start with an
overview of the protocols that implement its communication
model through the de facto standard RDMA interface (Verbs).
We then consider the different kinds of RDMA operations, the
network primitives, and their semantic, as these aspects are
relevant to discuss the available approaches to NAaaS. Overall,
the RDMA protocols and access interfaces are composite and
not compact, and the complexity stems from the need to
balance both the requirement of high asynchronicity and the
necessity of precise tools for monitoring and quality control.

C. Protocols That Implement RDMA

Although the diffusion of RDMA in the cloud community
is a relatively recent phenomenon, it has been a well-
established communication technology in the HPC community
for decades. One reason for this confinement was related to
the available technology: for a long time, the only existing
implementation of RDMA was InfiniBand [33] that defines a
specialized stack of protocols designed to run at high-speed on
special-purpose hardware, which includes not only cables, but
also special NICs (Host Channel Adapter, HCA) and switches
to create a lossless fabric with a credit-based mechanism.

Even though the Infiniband stack offers a lighter transport
option than TCP in terms of protocol overhead and CPU
consumption, the high cost of the entire solution traditionally
limited the adoption of RDMA to HPC deployments. The
increased popularity of RDMA outside HPC environments
became possible with the definition of other two protocols
that implement the RDMA specification, namely RDMA over
Converged Ethernet (RoCE), and Internet Wide Area RDMA
Protocol (iWARP) [83]. In the following, we briefly introduce
their main characteristics.

RoCE [35] enables RDMA over ordinary Ethernet networks.
The latest version, RoCEv2, also enables layer 4 (UDP)
encapsulation, whereas higher-layer headers are InfiniBand
headers. This design enables RDMA over standard Ethernet
infrastructure, because only the NICs should be upgraded to
support RDMA on existing deployments. Because that choice
drastically reduces the upfront investments required for new
equipment that supports RDMA, even cloud providers have
started to consider this option for their infrastructure, thus
effectively paving the way for the adoption of this technology
at a much larger scale [84], [85].

Differently, iWARP is a suite of protocols that layers RDMA
over TCP/IP, based on a complex mix of protocols to enable
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Fig. 5. Main concepts of RDMA networking.

zero-copy data transmission using the traditional networking
stack [86], [87]. The actual acceleration consists in offloading
the TCP/IP protocol processing to the hardware NIC, thus
effectively bypassing the OS kernel but also preserving the
TCP semantic to deal with packet losses without requiring
additional support. Nevertheless, the choice to rely on the
unmodified TCP stack has led to performance and capability
limitations compared to Infiniband and RoCE. On the one
hand, the complexity of TCP protocol, even when performed
by specialized hardware, is quite expensive compared to either
UDP or to the Infiniband transport protocol. On the other
hand, as TCP is connection-based, iWARP only supports
point-to-point connected transport service, limiting the sup-
ported communication patterns. Therefore, the vast majority
of data center operators today prefers the use of RoCEv2 over
iWARP.

D. Communication Interface: RDMA Verbs

In traditional networking, applications require network
resources and operations from the operating system through
the standard POSIX socket API. In contrast, RDMA pro-
grams interact with the operating system only to establish
(or to close) a communication channel (see Fig. 4). Then,
applications can directly interact with each other through a
standard asynchronous API called RDMA Verbs, defined by
the InfiniBand specification [33].

Properly, Verbs are just semantic descriptions of the behav-
ior any RDMA protocol must provide: there are no additional
details, so that implementations are free to define their own
API syntax for functions, structures, types, etc. To prevent
the proliferation of incompatible definitions, the OpenFabrics
Alliance (OFA) has created a vendor-independent C API,
called OFA Verbs, to access the three protocol stacks we have
introduced (InfiniBand, RoCE, and iWARP) through the same
interface [88]. Although Verbs are nowadays the de facto
standard interface for RDMA, they are also a very low-level
interface and developers must write a large amount of code
with tens of parameters to perform simple data transfers. Such
difficulty represents a significant obstacle to a widespread
adoption of RDMA, especially in cloud environments where
developers are used to simple, user-friendly interfaces.

To facilitate the reader understand the proposals for easier-
to-use and higher-level interfaces (see Section V), in the

following we summarize the most important concepts of
RDMA networking. A detailed description can be found in
the Infiniband specification [33].

E. Verbs Objects

The Verbs API require the manipulation of several objects,
as illustrated in Fig. 5(a). In the following, we describe three
of them that are crucial for the NAaaS approaches we review in
the next Sections: Queue Pairs (QPs), Memory Regions (MRs)
and Protection Domains (PDs).

A Queue Pair represents a communication endpoint and is
composed by a Send Queue (SQ) and a Receive Queue (RQ).
The asynchronous RDMA operations are expressed as Work
Requests (WR) that users push to one of these queues. For
instance, a user sends data by posting a Send WR to the SQ. To
enable the zero-copy semantic, data to be sent and received is
placed in one or more memory areas called Memory Regions
(MRs). These are shared areas between the applications and
the hardware NIC: this way, instead of copying data from the
application memory to and from the OS, applications and the
NIC only exchange WR descriptors, which internally contain a
reference to data in the shared area. Finally, as a form of access
control, QPs and MRs are grouped into Protection Domains
(PDs): they have visibility of each other only if they belong to
the same PD. In the following, we describe the most important
features of these three objects.

1) Memory Regions: To allow zero-copy transfers, appli-
cations must first perform the memory registration of one or
more MRs. This operation grants to the NIC the permission
to directly access (DMA) those MRs during communication,
avoiding data copies. The registration operation returns a cou-
ple of memory keys that are required during the communication
phase to access local (lkey) and remote (rkey) MRs.

2) Queue Pairs: Fig. 5(a) includes a schematic representa-
tion of two Queue Pairs. There are three considerations about
QPs that are relevant for this survey. First, according to the
Verbs design, users must be able to asynchronously detect the
outcome of the WR they submit, such as the availability of
new incoming data that match a Receive WR. A third queue,
called Completion Queue (CQ), is associated to each QP to
let user discover these events. All these queues are physically
located on the on-board memory of the RNIC.
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Second, QPs are host local resources, uniquely represented
by an integer called Queue Pair Number (QPN) and by three
other identifiers: the GUID, which uniquely identifies the
RNIC and whose function is equivalent to the MAC address on
Ethernet networks; the GID, a routable address used to identify
a port on a network adapter (equivalent of an IP address); the
LID, a non-routable address (equivalent to TCP/UDP ports).
These number will play a significant role for live application
migration (see Section VII-C).

Finally, a QP is implemented as a state machine, where
each state corresponds to a different phase of the RDMA com-
munication. Fig. 5(b) shows the corresponding state diagram.
Immediately after the creation, a QP is in Reset state, and it
should traverse a number of intermediate steps to reach the
Ready To Send state, which finally enables it to send and
receive packets. In case of an error, the QP moves to an Error
state. It is relevant to note that, as QP information is stored
on the RNIC, kernel-level applications have no visibility on it.
As we discuss in Section VII, that makes it hard to implement
key cloud features such as monitoring or live migration.

3) Protection Domains: The Infiniband specification
defines a mechanism to regulate the access to Queue Pairs
and the other RDMA resources, the Protection Domain (PD).
To create a Queue Pair or a Memory Region, it is necessary
to associate it to a PD. Then, objects within the same PD
can interact with each other (e.g., QPs can be associated with
MRs), but not with objects belonging to other PDs. We will
extensively discuss the current limitation of RDMA access
control mechanisms in Section VIII-B.

F. Communication Channels: Modes and Establishment

To establish an RDMA communication channel, users can
choose different service types, also referred as transport
modes. The InfiniBand specification defines three service
types: Reliable Connection (RC), Unreliable Connection (UC),
and Unreliable Datagram (UD). The Reliable Connection
mode offers a zero-copy, unicast, connection-oriented com-
munication with in-order delivery. In contrast, the Unreliable
Datagram mode allows each QP to exchange single-packet
messages with any other UD QP, but without ordering
or delivery guarantees: e.g., undelivered packets could be
dropped by the receiver. This semantic makes it possible
for a sender to transmit multicast messages (one-to-many).
Finally, the Unreliable Connection mode builds a point-to-
point channel, but without the ordering, delivery, and error
detection guarantees provided by RC.

If RC mode is used, the two peer endpoints must exchange
the following information before being able to communicate:
the memory keys of each registered MR, the QPN, and the
three addresses (GUID, GID, LID) previously described. This
exchange can happen through an out-of-band channel (e.g.,
a regular TCP connection) or through the Communication
Manager, a transport-neutral interface [89].

G. Semantic of Communication Operations

Once a communication channel is created, the endpoints
can communicate at line-rate speed using the data-plane

operations. RDMA Verbs define three possible semantic for
communication operations, two-sided, one-sided, or atomic,
which differ for different degrees of involvement of the remote
CPU in the transfer, as we detail below. Alongside the main
communication channel, Verbs also provide an additional
channel of limited bandwidth (generally 32 bits) in the form
of an immediate value, which is guaranteed to be delivered to
the peer after the associated RDMA operation completes.

1) Two-Sided Operations: The two-sided operations are
send and receive. Fig. 6 shows an example of their use:
when a process A wishes to send data to another process B,
B must previously have posted a Receive Work Request into
the receive queue, associating a free memory buffer to it ( 1 ).
Thus, A can post a Send Work Request ( 2 ), requiring the
NIC to perform a zero-copy transfer into the memory area
designated by B ( 3 ). As each transfer finishes, a completion
record becomes available in the completion queue on both
ends ( 4 and 5 ), that the application can poll to check for
completion. The application also needs to ensure that there
are sufficient Receive Requests in the Receive Queue to match
all incoming Send Requests, as the latter will be dropped
otherwise. Overall, this operation mode requires the receiver to
synchronize with the sender to receive data and thus represents
a compromise between performance and ease of programming.

2) One-Sided Operations: The one-sided write and
read operations allow a process on one machine to asyn-
chronously access a region of application memory on a remote
node, without that node being aware of it and thus without
involvement of the remote CPU. With reference to Fig. 6, only
some steps are performed. In the case of a read request,
the issuing application specifies the remote address to read
from and a local buffer to store the data into ( 2 ). Then,
the network adapter asynchronously performs the remote read
( 3 ), populates the local buffer, and posts a completion event to
the local completion queue ( 5 ). The write operation works
in the same way, except that data is transferred from a local
buffer to the remote memory.

In summary, the remote CPU is never involved in one-sided
operations and for this reason they have been described as a
double-edge sword [90]. On the one hand, they represent the
most powerful RDMA communication mode as they limit the
processor intervention, and also, considering that the network
cables are full-duplex, they can use the entire available
bandwidth to complete the transfer. On the other hand, as we
extensively discuss in Section VIII, they also have relevant
drawbacks, ranging from a more difficult programmability to
a notable series of associated security threads.

3) Atomic Operations: The atomic operations are a partic-
ular form of one-sided communication that includes remote
memory synchronization such as compare-and-swap and
fetch-and-add. These operations act on 64-bits values,
one residing locally to the initiator host and one remotely,
executed by the remote NIC which guarantees their atomicity.

Overall, the complexity of RDMA embodies the inherent
difficulties of working directly with hardware accelerators.
Realizing the potential performance benefits requires a sig-
nificant investment of design and implementation efforts to
customize systems according to the specific characteristics of
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Fig. 7. A logical view of the four key dimensions of accelerated cloud networking where trade-offs between performance and flexibility clearly emerge:
network API, virtualization techniques, serviceability, and security.

Fig. 6. Scheme of two-sided data transmission using RDMA. Asynchronous
communication is a key feature of network acceleration technologies.

these technologies. The integration of network acceleration
technologies in cloud infrastructures as NAaaS would make
them easily available, but it also presents several challenges
that we discuss in detail in the next Sections.

IV. NETWORK ACCELERATION FOR CLOUD COMPUTING

The availability of network acceleration technologies in
cloud platforms represents an appealing perspective for cloud
users to meet the increasingly demanding requirements of
the emerging interactive, data-intensive applications intro-
duced in Section I. However, cloud platforms are founded
on the principle of resource virtualization: a software inter-
position layer mediates all network operations, introducing a
performance overhead that used to be acceptable until recent
years. As network speeds increasingly outperform processors
speeds, the cost of such interposition layer becomes a sig-
nificant performance bottleneck, unacceptable for accelerated
networking.

To face the soaring demand for network acceleration tech-
nologies, major providers have adopted the short-term strategy
of removing such virtualization layer and rent bare-metal
instances equipped with acceleration options [18], [19], [20],
[91], [92], [93], [94], [95], [96]. However, enforcing tenant iso-
lation through dedicated resources has several disadvantages.
First, it is neither cost-effective for providers nor for the end
customers. Second, the flexibility of bare-metal instances is
minimal, thus preventing typical cloud features, such as live
migration or the definition of virtual private overlay networks,
from being available.

In this survey, we consider a recent trend in the scientific
literature that proposes longer-term strategies for the full

integration of network acceleration technologies into cloud
platforms, toward the ultimate goal of enabling Network
Acceleration as a Service. NAaaS is indeed an increas-
ingly compelling option for applications to access modern
high-performance network links without sacrificing the advan-
tages of running in the cloud. To this end, we have considered
the papers published at major conferences and journals in the
field of computer systems and have systematically organized
them into a general framework to provide a comprehensive
and complete snapshot of the state of the art on the availability
of NAaaS in cloud data centers. Our contribution is motivated
by the observation that there is still no complete solution to
the overall problem; we instead observe several proposals that
focus on one or some specific aspects of this general problem.

In contrast with this fragmentation, we believe that a
standardization effort would be fundamental for the evolution
of both the network acceleration and the cloud computing
ecosystems: as the demand for integrated solutions surges, and
experimental forms of accelerated cloud networking are proto-
typed to keep up with them, the lack of a cohesive perspective
poses the risks of hindering any integration initiative. After
a careful literature review, we explore here the potential for
combining together the existing approaches and identify the
key research challenges to be addressed.

We begin our discussion by noting that the literature on
this topic focuses on the trade-off between the performance
acceleration granted by network acceleration technologies
and the flexibility typically associated with cloud platforms.
In the analysis of the solutions proposed in the literature,
we observe that such trade-off emerges in connection with
four key dimensions of cloud networking, which we have
introduced in Section II and represented in Fig. 7. Here, we
summarize the main challenges associated with each of those
dimensions.

1) Network Access Interface. The interface to access an
acceleration technology can have a great impact on
performance, application portability, and ease of pro-
gramming. For instance, a zero-copy, asynchronous
interface like RDMA Verbs might optimize performance,
but breaks compatibility with existing applications.
Conversely, the standard POSIX Socket API is famil-
iar to developers, but it introduces data copies that
significantly harm performance at such high link
speeds.
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Fig. 8. Our proposed taxonomy of the literature aiming at enabling Network Acceleration as a Service in cloud infrastructures.

2) Virtualization techniques. A cloud platform that lets
cloud users efficiently access an acceleration technol-
ogy requires the definition of efficient virtual network
interfaces, of mechanisms to exchange data between
VMs/containers and physical hosts (I/O virtualization),
and of accelerated virtual private overlay networks
(network virtualization). Building such a solution in
software would preserve flexibility, but also make
network operations slow due to processor interposi-
tion; conversely, hardware-based approaches potentially
preserve performance, but they also might subtract
the full control on the network operations from cloud
providers.

3) Serviceability. To expose network acceleration as a
commodity, providers must flexibly control the way
users access shared acceleration technologies, as they
currently do for the rest of their infrastructure. However,
the standard resource management mechanisms are typ-
ically implemented in-kernel, and thus not applicable
to kernel-bypassing technologies. Finding a solution to
this problem is particularly complex for three aspects:
monitoring and logging, QoS policy enforcement, and
the live migration of VMs and containers.

4) Security. The trust relationship between cloud customers
and providers is based on a set of security best practices
at many levels, as we commented in Section II-F.
Some of these practices are mandated by law, and
today are essential for the operation of providers. At
the same time, many of these practices are time and
resource consuming, to the point that some of them
are already partially offloaded to hardware (e.g., cryp-
tographic operations). As the existing mechanisms to
provide security in the cloud become inadequate to

preserve the increasingly faster network link speed,
new ones must be defined for a successful integration
of network acceleration technologies in existing cloud
platforms.

As each dimension of cloud networking introduces spe-
cific challenges related to the trade-off between performance
and flexibility, we organize the various solutions proposed
by the literature on this topic according to the taxonomy
in Fig. 8. For each dimension, we distinguish four coarse-
grained categories, based on the general consideration that,
when applicable, the reviewed solutions tend to explore
four main points in the space between performance and
flexibility: hardware-based, software-based, hybrid, and in-
network approaches. These four approaches are orthogonal to
the two kinds of network acceleration (software and hard-
ware) we discussed in Section III-A and, generally, apply
to both categories, as we discuss in each literature review
Section.

In particular, software-based approaches focus on the
realization of the network control infrastructure mainly in
software, favoring flexibility over performance. On the con-
trary, hardware-based approaches aim at partially offloading
the control infrastructure to hardware devices, thus giving
priority to performance over flexibility. Hybrid solutions try
to combine the best features of the two previous approaches,
leveraging the fundamental principle of separation between
control and data plane that underlies accelerated networking.
Finally, in-network approaches partially or totally move
control functions to the network infrastructure, such as to
Top-of-Rack (ToR) switches. That allows them to recover the
control features that are bypassed by acceleration technologies,
preserving a moderate degree of flexibility with minimal
performance overhead.
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These four approaches (hardware-based, software-based,
hybrid, and in-network) capture the majority of the contribu-
tions that we survey, but there are also specific aspects of cloud
computing where a different classification ensures a more
precise analysis of the surveyed strategies. This is the case
of live migration (Section VII-C), for which we introduce the
specific categories of application-aware, guest kernel assisted,
and transparent techniques.

Although the dimensions of cloud networking that we con-
sider are orthogonal to each other, they are also reciprocally
influenced. For example, the network access interface that
providers expose to customers is strictly related to the choice
of a given I/O virtualization technology. In our discussion, we
pinpoint these aspects when they are relevant and summarize
the key insights in Section IX-A. At the same time, it
is common that the same paper addresses more than one
dimension, so in that case we mention it in every relevant
Section.

The remainder of the paper is modeled after the proposed
taxonomy. Section V is dedicated to dimension 1 and discusses
the problems associated to different kinds of interfaces to
access the network acceleration options: the native APIs
of these technologies, the standard POSIX API, or higher-
level APIs. Section VI focuses on dimension 2 (virtualization
techniques), distinguishing between I/O and network vir-
tualization. In Section VII, we survey the implications of
NAaaS on the serviceability aspects of monitoring and log-
ging, Quality of Service, and live migration (dimension 3).
In Section VIII, we analyze the security challenges of the
integration of network acceleration technologies in cloud
platforms (dimension 4), by introducing strategies to enhance
confidentiality, authenticity, integrity, access control, and iso-
lation. Once completed the literature review, in Section IX
we summarize the lessons learned, identify the challenges that
still remain to be addressed, and discuss the future research
directions. Finally, in Section X we draw the conclusions of
this work.

V. NETWORK ACCESS INTERFACES

In this Section, we consider the interfaces proposed in the
literature to access accelerated networking from user appli-
cations. We organize these solutions in three categories: the
native interfaces of the acceleration technologies, the standard
POSIX API, or higher-level custom APIs. This classification
stems from the different characteristics of these solutions
in terms of ease of development for the end users, imple-
mentation difficulty for the cloud providers, and performance
efficiency. Overall, our discussion centers on the fundamental
trade-off between the efficiency of asynchronous, zero-copy
interfaces and the portability and ease of use of standard APIs.

Our goal is to explore the main research directions by
defining the principles and the solutions that can contribute to
the emergence of an integrated evolution. Indeed, the choice
of the interface has relevant consequences at the system level,
in particular on the virtualization techniques that we discuss in
Section VI. For instance, it determines whether providers must

TABLE II
A COMPARISON BETWEEN STANDARD NETWORKING (FIRST LINE) AND

NATIVE APIS OF NETWORK ACCELERATION TECHNOLOGIES

expose a virtual acceleration device to VMs and containers,
or, instead, a standard virtual network adapter.

In this survey, our focus is on general-purpose network
interfaces through which customers access acceleration capa-
bilities as if they were working bare-metal. Nowadays, cloud
providers also offer alternative, managed communication solu-
tions that expose service-specific interfaces. In the last decade,
several accelerated versions of those services have been
proposed, ranging from storage solutions [26], [97], [98],
[99], [100], [101] to RPC systems [102], [103], [104], from
message-oriented middleware [105], [106], [107] to serverless
computing [108], [109], [110]. However, all these systems
offer a specific high-level service interface, preventing users
to perform general-purpose network operations. Hence, we
consider those systems out of the scope of this survey, leaving
a detailed classification and discussion of these contributions
to future work.

A. Native API

The native APIs of network acceleration technologies, such
as the RDMA Verbs, are designed to maximize communication
performance according to the principles of asynchronous pro-
cessing and zero-copy data transfers introduced in Section III.
Through these interfaces, users can control all the com-
munication details, including the advanced features of each
technology (e.g., RDMA one-sided operations). However,
native APIs achieve high performance by sacrificing ease
of use and portability, representing a disruptive departure
from standard network interfaces. These interfaces are very
low-level and complex for non-experienced systems pro-
grammers to use: not only do they assume the knowledge
of a myriad of concepts and parameters (such as those
introduced in Section III-E), but they are also very hetero-
geneous and different from each other, as summarized by
Table II [111], [112], [113].

For a cloud provider, the choice to support the use of these
native APIs carries relevant consequences. On the one hand,
users from VMs and containers would obtain fine-grained
control over several aspects of communication with minimal
performance overhead, just as if they were working on a
dedicated machine. Such a solution would enable existing
accelerated applications to work unmodified in virtualized
environments, making them portable across various deploy-
ment sites. On the other hand, that would force providers to
expose a virtual accelerated NIC (e.g., a virtual RNIC) or
its equivalent for software-based kernel-bypassing techniques
(e.g., a special PMD for DPDK), which currently represents
an open research challenge, as discussed in Section VI.
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TABLE III
COMPARISON BETWEEN DIFFERENT APPROACHES TO NETWORK ACCELERATION TECHNOLOGIES BEHIND STANDARD POSIX API

B. Standard POSIX API

Standard communication interfaces, such as the POSIX API,
are designed to be general-purpose, portable across different
hardware architectures, and easy to use. Their synchronous
design and their relative simplicity made them pervasively
used in any application domain, with socket-based applications
that account for the vast majority of the existing cloud appli-
cations and several utilities based on them. As a consequence,
many researchers have proposed to use the standard POSIX
API as a transparent layer to leverage the performance benefits
of the network acceleration technologies without modifying
the source code of applications or requiring developers to learn
new programming abstractions.

Although this choice guarantees ease of programming and
preserves backward compatibility, it also potentially jeopar-
dizes the performance advantages of network acceleration
technologies. For historical reasons (see Section I), the stan-
dard POSIX API was designed on opposite principles than
these emerging technologies, as discussed in Section III. For
example, the POSIX API has a write-after-send semantic that
forces data copies: after a write operation, applications can
immediately reuse the data buffers because they have been
copied to a library buffer. Nevertheless, the advantages of this
choice have made it a quite popular option to transparently
accelerate existing applications, as we discuss in the following.

From a cloud provider perspective, the contributions that
follow this approach can be further classified into two groups,
depending on their virtualization awareness, namely whether
the library that exposes the standard POSIX API is aware
of running within a virtual environment. In older proposals,
this library is a wrapper layer that simply translates standard
operations to the native API of the specific acceleration
technology. In this case, providers still need to expose a
virtual accelerated NIC (or its equivalent) just like discussed
in Section V-A. Instead, modern proposals are virtualization-
aware: the library intercepts calls to the standard operations
and forward them to an optimized datapath integrated into the
I/O virtualization scheme. This latter case allows providers to
explore different forms of virtualization support, as we discuss
in Section VI.

Table III classifies the surveyed proposals according to
relevant criteria. In addition to the virtualization awareness,
we consider also whether the zero-copy semantic is preserved,
the completeness of the supported layer, and the public avail-
ability of the source code. We also report which acceleration

technology is used when translating standard operations: as a
preliminary consideration, we observe that nearly all of them
target RDMA, although in different modes. In the following,
we briefly comment those solutions distinguishing between
non virtualization aware and virtualization aware approaches.

1) Non Virtualization-Aware Solutions: Within this first
category, Rsocket [114], Sockets Direct Protocol (SDP) [115],
and UNH EXS [116] share the same approach, but Rsocket
appears the most successful. These solutions privilege
portability over performance: once a communication operation
gets intercepted by these libraries, application data are copied
to a library-level buffer and then transmitted on the accelerated
network, thus losing the zero-copy semantic. Rsocket provides
also a custom socket interface that allows zero-copy opera-
tions, but at the price of losing transparency. An important
limitation of these solutions is that they that only intercept
the basic socket primitives, whereas asynchronous operations
(e.g., epoll) are not allowed and there is limited support to
multi-threading (e.g., limited support to fork).

VMA [117] adopts a different approach, specific to NVIDIA
network hardware: once the library intercepts a network
operation, data are copied, routed through a userspace TCP/IP
stack (lwIP [119]), and sent directly to the NIC.

RemoteRegions [118] proposes the use of the standard file
system API to access an RDMA network. In this model,
processes expose their memory on the network as files, acces-
sible using standard file system operations (read, write,
etc.). Although that enables faster data transfers through the
use of one-sided operations, RemoteRegions does not achieve
full transparency toward applications, as memory allocation
and file access is obtained by custom primitives. Moreover,
these performance gains are partially lost due to data copies
between application buffers and memory region buffers.

2) Virtualization-Aware Solutions: More recently,
VSocket [57] and SocksDirect [58] proposed a more integrated
approach specifically designed for virtualized environments,
with the goal of integrating in the same library the POSIX
interface and the I/O virtualization mechanisms. These
works forward socket calls from the virtualized application
directly to the provider-managed physical host, although in a
different way. On the one hand, VSocket [57] targets socket-
based applications running in VMs. For each intercepted
network packet, VSocket performs one payload copy from the
application to a library buffer on the sender side, and vice versa
on the receive side. While this obviously hurts performance,
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especially for larger payloads, a series of optimizations avoid
additional copies and data are exchanged through one-sided
RDMA operations through the host NIC.

On the other hand, SocksDirect [58] focuses on applications
running in containers and takes a step further by introducing a
mechanism for a true zero-copy semantic, based on a complex
mechanism of memory page swapping. Although effective, this
mechanism is fairly complex and page remapping introduces
its own overhead. Hence, SocksDirect enables it only when
really necessary, i.e., for large messages (>16KB), falling
back to payload copy for smaller ones. In principle, the same
mechanism could be adopted by VSocket for applications
running in VMs. Finally, contrary to the first category, both
VSocket and SocksDirect provide complete support to the
socket interface, including to asynchronous operations such as
the epoll primitive. We further discuss the details of these
two solutions in Section VI-A.

C. High-Level API

A third category of APIs explores different balances
between the need for portability and ease of programming
and the performance advantage of zero-copy and asynchronous
interfaces. With this goal, these proposals do not replace
the native APIs of acceleration technologies but rather build
a different set of general-purpose programming abstractions
and operations over them. Thus, although from a provider
perspective these solutions do not avoid the need for a virtual
accelerated NIC to applications, these higher-level interfaces
simplify the concepts, parameters, and communication primi-
tives that developers must deal with, usually defining a clear
memory ownership semantic.

The main difference among these works is that they propose
to build this new interface layer at different locations: in
kernel space (LITE [120]) or in userspace (X-RDMA [121],
nethuns [112], INSANE [113], and Demikernel [111]).

1) Kernel-Level Interfaces: LITE [120] defines a kernel-
based interface that is specific for RDMA. This approach
appears counterintuitive, as RDMA is widely known as a
kernel-bypassing technique. Yet, by on-loading RDMA capa-
bilities into the kernel, important kernel-based functionalities
can be retained: in particular resource isolation, crucial in pub-
lic cloud environments. The kernel keeps control on network
resources (e.g., QPs), potentially enabling them to be safely
shared across applications and thus improving the overall
scalability. The LITE interface is based on an higher-level
representation of an RDMA memory region with additional
support for management, synchronization, and isolation. Based
on that, LITE exposes a rich set of higher-level primitives,
including an RPC and messaging interface, that closely
resemble standard system calls, but are then mapped onto
native zero-copy Verbs operations. However, a kernel-based
RDMA interface forces applications to continuously cross the
boundary between user and kernel spaces, incurring significant
performance penalties.

2) User-Level Interfaces: X-RDMA [121], nethuns [112],
INSANE [113], and Demikernel [111] propose a userspace
interface to different network acceleration techniques, both

hardware and software based, with the ultimate goal to enable
the transparent portability of applications across heterogeneous
technologies. The key design principle of these new interfaces
is the minimization of network concepts and primitives,
to simplify system programming in large-scale production
environments. Accordingly, they define the abstraction of a
communication channel to exchange messages among remote
processes and a set of zero-copy and asynchronous primitives.

Similarly to LITE, X-RDMA focuses on RDMA and has
a built-in support for RPC and for a messaging interface.
Nethuns [112] and INSANE [113] share the same design
principles but with the goal of easing the access to a wider
range of acceleration technologies, including also DPDK and
XDP, through a unified minimal interface, still expressive
enough to enable the efficient implementation of higher-level
domain-specific abstractions. Although these works do not
directly provide a solution for an efficient virtualization of
accelerated I/O, they explicitly address this issue by easing
the requirements on the virtual device they require (see
Section VI-A). Finally, Demikernel [111] adopts a differ-
ent abstraction (a message queue) and clearly distinguishes
between control plane and data plane operations. Developers
can use the standard kernel-based POSIX system calls for
control path operations, such as connection establishment, but
then they can use a novel set of kernel-bypassing datapath
primitives for the actual data transmission. These operations
can then be mapped to RDMA or DPDK operations by the
library.

D. Key Takeaways

In this Section, we considered the interfaces proposed in
the literature to access accelerated networking from virtual-
ized user applications. We distinguished three categories: the
native interfaces of the acceleration technologies, the standard
POSIX API, and higher-level APIs.

Our analysis considered the perspective of both the cloud
users and providers. From a user perspective, standard
interfaces guarantee code portability and ease of programming
at the price of reduced effectiveness of the acceleration
technologies, as data copies can heavily impact performance.
On the opposite, the native interfaces of these technolo-
gies potentially maximize the performance benefits through
their asynchronous design and zero-copy semantic. However,
they are also associated with complex and heterogeneous
interfaces that require specific programming expertise. Higher-
level interfaces mitigate this issue and offer easier access to
accelerated network operations, but sacrifice the compliance
to standard APIs and thus potentially reduce application
portability.

From a provider perspective, nearly all the considered
contributions require the availability of a virtual accelerated
NIC, or its equivalent for software-based techniques, which we
discuss in Section VI as an open research challenge. Notable
exceptions include nethuns [112] and INSANE [113], which
ease these requirements and can work with regular hardware-
based virtualization (see Section II-D1). VSocket [57] and
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TABLE IV
KEY ASPECTS OF THE I/O VIRTUALIZATION PROPOSALS FOR NETWORK ACCELERATION TECHNOLOGIES. THESE WORKS INTRODUCE

OPTIMIZATIONS TO EXISTING VIRTUALIZATION TECHNIQUES TO BALANCE FLEXIBILITY AND EFFICIENCY

SocksDirect [58] take a step further and propose an integrated
solution for I/O virtualization, as discussed in the next Section.

VI. VIRTUALIZATION TECHNIQUES

In this Section, we consider the challenge of the efficient
virtualization of network acceleration technologies as a com-
modity into cloud platforms. As introduced in Section II,
cloud users expect their machines and containers to efficiently
exchange data to and from the physical network (I/O virtual-
ization) and in a distributed context (network virtualization).
The existing cloud model to provide these features is not
suitable to accommodate network acceleration technologies:
the key principle of minimal processor intervention clashes
with the indirection layer that providers adopt for this purpose.

For software-based acceleration technologies, such as XDP
and DPDK, providers might consider still acceptable the
performance overhead introduced by standard I/O and network
virtualization techniques, in light of the high degree of flexibil-
ity these mechanisms offer. However, such tolerance does not
extend to hardware-based technologies: at their data transfer
speed, that overhead becomes unacceptable. Therefore, recent
research has proposed alternative strategies to achieve both
forms of virtualization, focusing in particular on hardware
network acceleration technologies such as RDMA.

In the following, according to our taxonomy, we first clas-
sify these contributions into approaches for I/O virtualization
and for network virtualization. Within each category, we fur-
ther distinguish between hardware-based, software-based, and
hybrid techniques. Our goal is to show the different degrees
of efficiency and flexibility they provide to applications.

A. I/O Virtualization

A good I/O virtualization solution consists in the definition
of a virtual I/O device that preserves the performance of
the corresponding physical device as much as possible. In
Section II-D1, we have introduced the most common tech-
niques for I/O virtualization, but we noted that neither of
them actually meets both the flexibility requirements of cloud
networking and the performance constraints of accelerated
networks. Hence, researchers have explored ways to adapt
these approaches to accommodate the performance properties
of modern acceleration devices.

This Section describes three main techniques that have
been proposed to fulfill these requirements, which we
visually represent in Fig. 9: new forms of hardware
offload (AccelNet [81]), a more efficient paravirtual-
ization technique (virtio-PMD [122], FreeFlow [56],
KuberneTSN [59], VSocket [57]), and hybrid solutions that
combine the advantages of both (virtio-rdma [123], HyV [53],
Mouzakitis et al. [124], MasQ [54], SocksDirect [58]). We
summarize the key insights of these proposals in Table IV: we
underline the main optimizations each work introduces over
standard techniques for an efficient integration of hardware-
accelerated networking into the existing infrastructures. We
also report about the target environment and the network
access interface of these solutions, crucial factors for their
effectiveness.

1) Hardware Offload: The kind of all-or-nothing virtual-
ization provided by SR-IOV [60] (see Section II-D) lacks the
typical flexibility of software-based control and data paths,
making features like monitoring and live migration almost
impossible to achieve. To overcome this issue, AccelNet [81]
has explored the possibility to combine the efficiency of the
hardware-based approach with the flexibility and programma-
bility of paravirtualization: instead of exposing a SR-IOV VF
directly to applications, AccelNet creates a standard virtual
interface through which applications connect with negligible
overhead. During regular network operations, this interface is
attached to a SR-IOV VF, benefiting from its close-to-line-rate
network performance. Only when dynamic actions are required
(e.g., live migration), the virtual interface is temporarily and
transparently attached to a traditional paravirtualized datapath
to ensure the sufficient degree of flexibility. This approach is
already adopted in production by some providers to support
DPDK networking in regular VMs [94], [95], [96].

Fig. 9 shows this technique on the left, where dotted
lines represent the control and data paths during transition
periods. Assuming that most applications do not often need
to be migrated or to change their network configuration,
this technique enables to leverage the full hardware speed
and introduces a high performance overhead only during the
temporary transition periods. However, as Section VII will
discuss, when the datapath is offloaded to the hardware, cloud
providers have no visibility on the network operations, making
certain actions such as monitoring still impossible to achieve.
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Fig. 9. I/O virtualization approaches for network accelerators: hardware offload (left), efficient paravirtualization (center), and hybrid virtualization (right).
The solid lines represent the control path, the dashed lines the data path. The dotted line on the left figure represent the temporary data and control paths
during dynamic network operations. The thick dots on the center figure represent shared memory.

2) Software-Based Efficient Paravirtualization: To sup-
port XDP-accelerated applications in virtual environments,
currently providers rely on the standard paravirtualization
technique (Section II-D1). That is not possible for DPDK and
RDMA, as they both bypass the kernel and thus the standard
implementation of the paravirtualization mechanisms.

Within the DPDK framework, I/O virtualization is imple-
mented through virtio PMD [122], a software-based device
driver that plays the role of frontend driver and exchange data
with a backend driver in the host, thus substantially replicating
standard paravirtualization techniques (see Section II-D). This
is currently the solution adopted by cloud providers that do not
support the hardware-based approach described above [125].

FreeFlow [56] and VSocket [57] propose a more efficient
version of the paravirtualization technique, designed for high-
performance networking such as RDMA and, in principle, also
DPDK. Their proposals clearly separate the control and data
planes, with the goal to remove the processor involvement
from the data path and to enable forms of asynchronous, zero-
copy communication to move packet payloads between the
frontend and the backend drivers (see Fig. 9 center).

To build the data plane, these works propose the definition
of shared memory areas between the two drivers, generally
implemented as ring buffers, where message payloads will
be placed. That way, the two drivers only have to exchange
notifications about the presence of new messages in the
designated area. In turn, the backend driver might register the
shared memory area with the NIC, thus enabling true zero-
copy operations: every time a VM and container posts a write
operation, the payload of the request is accessible directly from
the NIC, and vice versa for reception, thus removing time-
consuming payload copies from the data path.

However, device drivers must still involve the processor
to exchange request descriptors and completion notifications.
Although these descriptors are generally exchanged through
asynchronous communication channels, such as UNIX sockets
or virtio queues, these mechanisms might still introduce

too much overhead and ultimately become a performance
bottleneck. FreeFlow mitigates also this problem through the
definition of a fast path for latency-critical applications, such
that even the notification exchange happens over a shared
memory area. Even though this mechanism is effective, it also
requires a spinning thread that continuously polls for updates
the memory area, a solution not ideal for cloud environments
where processor cores are precious assets [81].

Further optimizations are possible by considering the spe-
cific virtualization and acceleration technologies. For example,
FreeFlow, which only targets containers, does not expose a
virtual network interface to application, but gives applications
the visibility of the physical NIC available on the host. When
applications try to access it through the native primitives (e.g.,
RDMA Verbs), FreeFlow intercepts these calls through a client
library that forwards them to a custom virtual switch on the
host, which has the same function of a paravirtual backend
driver. In the specific case of RDMA, any request to create
a new connection will return a virtual QP created by the
library, which plays the role of a paravirtual frontend driver
in this case. KuberneTSN [59] follows the same approach of
FreeFlow, but focusing on containerized DPDK applications.
Instead, VSocket exposes a socket interface to applications
running in VMs. As a consequence, once it intercepts calls
to network operations, it can directly forward them to the
host and thus maximize communication efficiency compared
to FreeFlow. Specifically, VSocket targets RDMA and uses
using a single RDMA connection to transmit all the traffic
toward each remote peer.

3) Hybrid Virtualization: A number of works have intro-
duced the concept of hybrid virtualization to balance the
flexibility of the paravirtualization mechanism with the
performance efficiency of the hardware-based option [53],
[54], [58], [123], [124]. The goal of these approaches is a
complete separation between the data and control planes, in
order to preserve the flexibility of a software control path,
typical of paravirtualization techniques, while also leveraging
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the efficiency of a bare-metal access to the NIC, typi-
cal of hardware-assisted virtualization techniques. As Fig. 9
shows on the right, hybrid virtualization uses a standard
paravirtualization mechanism for control-plane actions, such
as connection establishment. Then, it lets user applications
directly interact with the hardware device for the actual data
plane operations, such as send and receive. To cross the
virtualization layer, many of these approaches define a shared
memory mechanisms to enable zero-copy data transfers, as we
discuss in the following.

In a more detailed view, user applications in VMs and
containers have the visibility of a virtual NIC bound to a
frontend driver. During connection establishment, this driver
contacts the backend driver in the host kernel, triggering the
creation of a fairly complex memory remapping mechanism.
This mechanism allows the guest and the physical NIC to
share memory for exchanging data and related information
in a zero-copy fashion. Thereafter, the datapath is completely
memory mapped: during the actual communication phase,
guest applications can directly interact with the hardware
device as if it were running on the host, without any active
intervention from the hypervisor on the critical path.

From the perspective of I/O virtualization, this approach
represents an original space in the trade-off between flexibility
and performance, because the hypervisor maintains control
on the data plane to enforce properties such as isolation and
portability, but without performance penalties. In fact, existing
solutions that adopt this approach perform close to the network
hardware limit. However, hybrid virtualization also comes with
some relevant drawbacks. First, just like in hardware-based
solutions, the hypervisor loses the possibility to enforce the
different data plane policies that are typically used by cloud
providers to manage traffic on established data connections:
it can only act with per-connection granularity. Secondly, this
approach is limited to connection-based communication and is
not applicable for datagram-based interactions, as these lack
a preliminary setup phase. Lastly, this approach poses strong
maintenance constraint on the provider to keep the frontend
driver and the memory remapping mechanisms up to date with
the hardware evolution.

A final consideration about hybrid approaches is that
all the existing proposals only consider VMs, except for
SocksDirect [58], which offers a socket interface for container-
ized applications: a monitor process runs in each host, acting
as a backend driver with the role to set up the direct data
path among local or remote containers. Communication occurs
through a shared memory channel for containers located on
the same host, whereas remote containers interact directly
without the mediation of the monitor, according to the hybrid
approach. In this case, since a container is just a process for
the operating system, there is no need for a custom frontend
driver and containerized applications can directly use the host
driver.

B. Network Virtualization

Through network virtualization, cloud providers build the
illusion that user machines (and containers) communicate on

a private network when in reality they share the same physical
infrastructure with other cloud tenants. In this Section, we
survey the proposals to create accelerated virtual private
overlay networks in public clouds (e.g., virtual private RDMA
networks) that preserve the flexibility of standard network
virtualization techniques.

As pointed out in Section II-D2, the core of any network
virtualization solution is a virtual switch, a component that
forwards traffic between the virtualized applications and the
physical network. The programmability of virtual switches
is a crucial property, as it enables providers to dynamically
configure and re-configure network features, such as the
overlay network topology. However, because typical virtual
switches are software-based, they turn out to be inefficient for
both software-accelerated and hardware-accelerated network
speeds, especially in reconfiguration.

According to our taxonomy, in the following we consider
various approaches proposed in the literature to overcome
this obstacle and classify them as hardware (AccelNet [81],
Nitro [126], BlueBird [127]), software (VSocket [57],
FreeFlow [56]), and hybrid (or software-defined) (MasQ [54]),
depending on how and where the typical functions of
a virtual switch are implemented to improve the overall
performance. Table V provides a summary of this classi-
fication. In the following, we comment each category in
more detail by focusing on how the virtual switch is imple-
mented by different contributions for different acceleration
technologies.

As a preliminary consideration, we note that the network
virtualization of software-based acceleration is easier to sup-
port for providers. Both XDP and DPDK let applications
directly manipulate Ethernet frames, leaving to applications
the choice of which higher-level protocols to implement.
In the cloud context, usually applications adopt the stan-
dard TCP/IP protocols to enable compatibility with existing
network infrastructures. That makes it easier to use stan-
dard hardware-based or software-based switches as a base
to design improved switching mechanisms. Instead, RDMA
adopts a different communication model which requires
much deeper modifications of existing tools, including virtual
switches.

1) Hardware Approaches: Hardware-based solutions
offload the virtual switch to a hardware device. In particular,
the network virtualization functions can be implemented
at different positions between the physical host, where the
virtualized applications are running, and the first hop of the
underlying network: on the NIC, as an embedded feature of
the device; on a ToR switch; or in the middle between the two
(bump-in-the-wire approach). To improve both the scalability
and flexibility of those devices, two trends have recently
emerged: on the one hand, major cloud providers started
developing custom solutions with enhanced programmability;
on the other hand, modern hardware, such as programmable
NICs [79] or ToR switches [128], [129], is increasingly
capable of dynamic actions that programmers can easily
configure through standard languages such as P4 [130], [131].

Many off-the-shelf NICs currently offer a hardware imple-
mentation of virtual switches, such as OVS [63], but although
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AN OVERVIEW OF THE NETWORK VIRTUALIZATION APPROACHES PROPOSED TO ENABLE Accelerated,

VIRTUAL PRIVATE OVERLAY NETWORKS IN PUBLIC CLOUD PLATFORMS

these implementations can achieve optimal performance, they
also have some important limitations when deployed at scale in
data centers. First, this form of hardware offload suffers from
scalability problems, as the on-chip memory is usually limited
and it is challenging to cache the contexts of several virtual
networks [132]. Secondly, the degree of programmability of
such options is still far from the software-based equivalents:
despite the differences of the specific implementation technol-
ogy (ASIC, System-on-a-chip, FPGA, etc.), writing programs
for such devices is not as easy as using standard software tools
for the same goals [133], [134].

Among the custom solutions, major cloud providers have
mainly focused on the design and deployment of special-
purpose devices to augment the capabilities of commodity
network cards with embedded switching features, or to
place a programmable hardware device between the network
switch and the card itself (bump-in-the-wire approach). Azure
AccelNet [81], and Amazon Nitro [126] are the most notable
examples of this latter approach that consists in placing a
specially-designed device in cascade to the NIC to implement
the switching features. AccelNet [81], in particular, uses
FPGA hardware to build a device that offers hardware-like
performance efficiency, but also exposes a rich interface,
partially in software and partially in hardware, to achieve the
result of software-like programmability.

Such custom approaches currently represent the closest
solutions to achieve the goal of Network Acceleration as
a Service, because they have been specifically designed
to implement data path operations in hardware while also
offering built-in support to network virtualization. Indeed,
as we will comment in Section IX, these proposals repre-
sent early examples of an evolution of commodity network
hardware acceleration devices to include features for cloud
virtualization.

Overall, however, such custom approach has also some
important drawbacks: first, only major cloud providers have
sufficient resources to design and deploy custom hard-
ware devices. Furthermore, because the virtualization features
embedded into the devices must be programmable by soft-
ware, usually these devices do not completely offload all the
switching capabilities and some control path operations remain
in software, requiring a careful orchestration between the
hypervisor and the custom hardware device. Finally, custom
solutions are generally tailored to specific provider needs
and do not necessarily represents optimal solutions under all
possible aspects [134].

An alternative approach to custom hardware design for
network virtualization offload is today the utilization of mod-
ern programmable network cards (SmartNICs) or switches
(SmartToRs) [128], [129]. With these devices, it is possible
to programmatically define custom and dynamic packet pro-
cessing pipelines through a set of scripts in the standard P4
language [130] that will be enforced by the hardware device.
Compared with static hardware implementations of virtual
switches, this approach allows a much more flexible traffic
management and definition of virtual private overlay networks
for cloud tenants. For example, Azure BlueBird [127] imple-
ments and deploy a high-performance network virtualization
system for the Azure bare-metal instances, where hardware
accelerators are available to cloud customers. Combined with
the I/O virtualization strategies surveyed in the previous
Section, this approach has the potential to meet the flexibil-
ity requirements of cloud networking while preserving the
performance advantage of hardware-accelerated networking.

2) Software-Based Approaches: The standard software-
based virtual switches, such as OVS [63], introduce an
unacceptable overhead on high-performance communication.
To preserve its significant flexibility, a faster version of OVS,
called OVS-DPDK, has been designed. OVS-DPDK retains
the same switching logic and programmability properties,
but the data plane is accelerated using DPDK. Thus, any
application (including XDP and DPDK-based applications)
can transparently obtain a faster overlay network with minimal
complexity for the provider. However, even in OVS-DPDK,
the complex switching logic is completely software-based and
thus introduces a non-negligible overhead on the data plane.

To further reduce the performance overhead, some con-
tributions designed software-based switches that introduce
further optimizations, whose nature and effectiveness depend
on which network access interface is exposed to cloud users:
POSIX or Verbs. These proposals, in particular the latter,
mainly address RDMA networks, as the performance impact
of a software-based data plane is particularly critical.

In the first case, VSocket [57] explores the possibility to
partially eliminate the virtual switch from its communication
model, leveraging the same indirection layer that enforces
the I/O virtualization (see Fig. 9 center) to also set up an
overlay network. To allow two remote guest applications to
communicate, the two local backend drivers need to know the
IP address of the peer physical host in order to open a shadow
RDMA connection. To obtain it, the VSocket frontend drivers
within the VMs first ask their local backend driver for the
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(encrypted) local host IP address and exchange it with the
remote counterpart over a regular TCP socket. Once received
the remote physical IP, the frontend drivers communicate it to
the local backends, which decrypt it and set up the RDMA
communication channel.

When the Verbs interface is exposed to applications,
software-based virtual switching becomes more challeng-
ing. Differently from XDP and DPDK applications, which
can rely on standard cloud mechanisms to build overlay
networks, RDMA endpoints must exchange a certain amount
of information, such as GIDs and the memory addresses
to read/write data (see Section III): depending on how the
I/O virtualization is implemented, the creation of an RDMA
overlay network requires the translation of one or both
these tokens between their virtual and physical values. User
applications running in containers, like in FreeFlow [56],
have direct visibility of the host physical NIC, thus they can
simply exchange the physical GIDs through a TCP connection.
However, RDMA peers also need to exchange the addresses
of remotely-accessible memory areas: because these addresses
are only valid in the address space of the containerized
application, the physical RNIC cannot use them directly. To
enable memory translation, FreeFlow introduces a logically
centralized controller that keeps the mapping between virtual
and physical addresses of each tenant (a design similar to
SDN techniques). Although this solution requires that nodes
retrieve such information on the network, the performance
impact of this solution is not high: virtual switches would
retrieve the mapping from the controller during the connection
establishment phase and have the possibility to cache them.
Instead, when user applications run in VMs, they might have
the visibility of a virtual RNIC, with a virtual GID that requires
a similar translation strategies: we discuss this case in the next
paragraph.

3) Hybrid Approaches: The hybrid approaches for I/O vir-
tualization leave only the control plane under the supervision
of the hypervisor, whereas the data plane is directly managed
by the virtualized applications. As a consequence, virtual
switches have only control on the communication control
plane: whereas they usually enforce data plane policies per-
packet, with this approach only per-connection actions are
possible. MasQ [54] defines this option a form of software-
defined network virtualization: all the control actions are
performed at connection establishment time, and then data
flows with neither hypervisor mediation nor forwarding step.

Hence, the set up of overlay networks must happen during
this preliminary phase. Although for XDP and DPDK appli-
cations, which typically use TCP/IP protocols, that would be
straightforward using standard tools, this process is much more
difficult for RDMA channels. In that case, virtualized applica-
tions must first exchange RDMA-specific information with the
remote peer. If the application has direct visibility of the host
RNIC, the solution discussed in the previous paragraph can be
adopted. Instead, when applications have visibility of a virtual
RNIC to applications (e.g., when applications run in VMs),
the network virtualization problem becomes slightly different.
When a guest application wants to connect to a remote peer,
it will target a virtual IP address (on RoCE networks; for

Infiniband networks, there is an equivalent address), a virtual
GID (vGID), and a virtual memory address; to establish the
connection on behalf of the guest, the host on the initiator side
must know a corresponding physical IP address and a physical
GID, as well as the physical memory address for RDMA.

To this end, the role of the virtual switch is to decouple
the network and memory views of guest applications and
hosts. Also in this case, a possible approach to configure the
switch with such information is to have a centralized controller
that keeps the association between a vGIDs, different for
each tenant, and the corresponding physical GIDs, as well as
between the virtual and the physical values of any other token.

C. Key Takeaways

In summary, this Section reviewed the literature on the
virtualization techniques for network acceleration technologies
in cloud platforms. We first considered I/O virtualization
approaches, whose goal is to efficiently transfer data between
the physical devices and the isolated environment where user
applications execute. Then, we surveyed solutions for network
virtualization, which aim at enabling virtual private overlay
networks among remote user applications through the adoption
of a virtual switch. In both cases, we classified the solutions
as hardware, software, and hybrid approaches.

We noted that only software approaches currently guarantee
the necessary flexibility for providers to keep full control
on user network operations, by integrating the acceleration
technologies with existing cloud mechanisms (hypervisors, vir-
tual switches). Although several technical solutions analyzed
in this Section aim at reducing the performance impact of
this software interposition, the optimization they introduce
are mainly useful for software-based acceleration technologies
such as XDP and DPDK. For technologies based on hardware
accelerators, such overhead is still too high to allow appli-
cations to benefit in a meaningful way. Hybrid approaches
significantly mitigate this overhead, but they also excessively
reduce the granularity of possible provider interventions. We
further expand these consideration in Section VII.

Conversely, hardware approaches provide excellent
performance but a reduced degree of programmability and
flexibility. Nevertheless, these solutions are the closest
to achieve the goal of NAaaS by enhancing hardware
devices with both additional programmability and custom
virtualization support. Although these solutions are currently
difficult to program and often proprietary, we believe that
a tighter cooperation of both cloud providers and hardware
manufacturers could further advance the state of the art, as
Section IX extensively discusses.

VII. SERVICEABILITY

In this Section, we survey recent contributions that pro-
pose to support serviceability in combination with network
acceleration techniques. As introduced in Section II-E and IV,
some typical serviceability aspects are challenging to combine
with accelerated networking: monitoring and logging, QoS
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enforcement, and live resource migration are the main con-
cerns, because the standard mechanisms to provide them tend
to be bypassed for the sake of performance.

The different network virtualization strategies we explored
in Section VI-B directly influence whether these serviceability
aspects are more or less difficult for providers to implement,
independently of the specific network acceleration technol-
ogy adopted (software-based or hardware-based). Since these
serviceability aspects are implemented by providers within
virtual switches, retrieving and manipulating the state of those
switches is the main concern of the approaches we present
here: providers face a trade-off between the flexibility and
ease of use of software-based solutions and the performance
of the hardware-offloaded approaches. The discussion in this
Section considers how each work explores this trade-off.

In the following, we classify the approaches proposed in the
literature on this topic based on which of these serviceability
aspect they mainly focus on, as summarized by Table VI.
Within each category, we further distinguish these works
as hardware, software, hybrid, and in-network approaches,
consistently with our proposed taxonomy.

A. Monitoring and Logging

Researchers have explored different strategies to make mon-
itoring and logging tools coexist with the high-performance
data paths discussed in Section VI-B. Accordingly, we cate-
gorize these approaches as hardware-based, software-based,
hybrid, and in-network.

1) Hardware-Based Approach: Various industrial and aca-
demic initiatives aim at enhancing the capabilities of network
cards by exposing, to different degrees, the internal state of
hardware-based virtual switches: modern SmartNICs [78] and
AccelNet [81]. This approach combines the benefits of the
hypervisor mediation, typical of virtual switches, with the
performance advantages associated with their implementation
via specialized devices. Major NIC manufacturers increasingly
offer SmartNICs, enhanced off-the-shelf network cards that
provide a built-in implementation of a full-fledged virtual
switch. For example, NVIDIA ConnectX-6 [78] is an ASIC-
based NIC that comes with a built-in hardware implementation
of OVS [63]. The main drawback of this technique is that
such devices are generally not programmable, making it hard
for providers to update, upgrade, and change in any way the
switch implementation.

An interesting attempt to avoid embedding static switch
implementation into network card is the FPGA-based, bump-
in-the-wire approach introduced in AccelNet [81]. AccelNet
builds a custom hardware-based virtual switch with a three-
fold goal: first, to enable large-scale monitoring through the
collection of a large number of fine-grained metrics from
each infrastructure component; second, to make such solution
efficient in terms of performance; and third, to enable a
frequent and dynamic upgrade of the switch logic when
necessary. Although developed ad-hoc by a provider through
software-hardware co-design, this effort represent the most
complete and concrete approach so far to monitoring virtual
accelerated network in a large-scale public cloud, by offering
an insight on the kind of infrastructure that is required to make
virtual accelerated networks serviceable.

2) Software-Based Approach: The availability of a soft-
ware switch makes it easier to track each connections and their
associated traffic, as the hypervisor mediates every network
operation and thus enables a high degree of observability
on the network resources. OVS-DPDK bypasses the standard
cloud observability mechanisms, but it relies on the DPDK
observability libraries to recover equivalent functions. Because
OVS cannot handle RDMA communications, FreeFlow [56]
solves the same challenge for that technology, by introducing
a central controller to gather metrics from a cluster of physical
hosts, where user containers can communicate through virtual
private overlay RDMA channels.

The drawback of these solutions is that the processor must
be involved in each network operation in order to gather
and log the associated monitoring information. To mitigate
this effect, generally it is necessary to introduce sophisticated
optimizations, such as the FreeFlow fast path commented in
Section VI-A, which requires a high resource consumption.

3) Hybrid Approach: According to the hybrid network
virtualization strategy (see Section VI-B3), the hypervisor only
mediates the control plane of an accelerated communication,
leaving the data plane directly interact with the hardware. The
consequences of this approach are relevant on the monitoring
and logging infrastructure, because the hypervisor keeps visi-
bility only of per-connection information, such as the number
of active endpoints on a certain host.

X-RDMA [121] and MasQ [54] analyze the implications
of this lack of visibility on observability tools. The solutions
they propose are specific for RDMA, because standard cloud
mechanisms can be used to trace the TCP/IP connections
typically adopted by applications that use either standard
networking or accelerated networking via XDP or DPDK.
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X-RDMA [121] is a significant example of adoption of a
hybrid strategy by a major cloud provider. It reports about the
deployment of a set of tools for tracing, tuning, and monitoring
a large-scale production cluster on top of RDMA networks.
Specifically, X-RDMA introduces a monitoring system that
integrates three utilities: a tool to retrieve per-connection
statistics, a ping tool to detect latency issues, and a benchmark
test to understand possible performance issues. Although X-
RDMA does not directly target a cloud environment, the
proposed approach can be extended to cloud-oriented solutions
that use a hybrid network virtualization strategy. To this
end, MasQ [54] proposes the introduction of a feature called
connection tracking in its solution for network virtualization.

However, the complete transparency of the data plane to
the provider cannot be considered an acceptable solution in
a cloud platform, because providers lose the possibility to
monitor important aspects such as the actual performance
a user is experiencing. X-RDMA partially retrieves such
information for RDMA networks by using additional metrics
such as PFC status, queue drop counters, and buffer utilization,
but in a context in which only internal provider services
access the RDMA network. Instead, when untrusted external
customers are allowed to communicate over an accelerated
network, provider control is fundamental. ReDMArk [138]
suggests to leverage the rich set of hardware counters exposed
by NICs to monitor networking events (see Section VIII).

Yet, no current hybrid solution for network virtualization in
cloud platform has adopted similar strategies. Hybrid moni-
toring and logging strategies for accelerated cloud networking
might become practically viable only when providers will have
the option for a complete visibility of the data plane.

4) In-Network Approach: In-network approaches move the
collection point of observability information from the physical
host to the physical network: monitoring and logging is
performed at the first network hop of the host’s traffic.
Following this approach, Bedrock [135] provides a practical
solution for the efficient monitoring and logging in accelerated
cloud environments: through programmable hardware devices
and a set of P4 scripts [130], it recovers missing observabil-
ity functionalities that are typically lost in kernel-bypassing
network virtualization, introducing minimal overhead on the
data plane. In particular, Bedrock tracks packet flows directly
in Top-of-Rack (ToR) switches that keep a state for each active
connection (compressed to minimize the memory overhead).

Not only this approach promises to enable a fine-grained
monitoring of network operations, but it also appears effective
for the detection of a wide range of security attacks that would
be impossible to discover when the data plane is offloaded
to hardware devices (see Section VIII). Finally, logging is
enabled by forwarding relevant packets to a log server.

Overall, in-network approaches appear interesting not only
per se, but potentially as a complement go the hybrid solutions
previously commented. Indeed, for providers that do not have
the resources to develop custom hardware-based solutions, the
combination of hybrid and in-network approaches might offer
a sufficient degree of programmability, performance efficiency,
and observability of the cloud platform.

B. QoS Enforcement

Depending on the SLA negotiated with each customer,
providers usually distinguish different classes of services:
limited resources are generally available to users for a low cost,
whereas more powerful capabilities are generally associated
to a higher price. From the network perspective, that level-
based differentiation is possible only if the provider is able to
enforce heterogeneous Quality of Service (QoS) policies, such
as network quotas, caps, and other forms of limitations on
network resources. In this Section, we survey the literature pro-
posals to enforce those policies on virtual switches that can be
hardware-based (modern SmartNICs [78] and AccelNet [81]),
software-based (FreeFlow [56]), and hybrid (MasQ [54]).

1) Hardware-Based Approaches: Some hardware manufac-
turers already enhance NICs with virtualization support, such
as forms of QoS offloading (e.g., rate limiting) [78]. However,
cloud providers cannot let those functions to be accessed
directly, because they must control user behavior. Either they
use a form of direct device assignment, which offers limited
flexibility, or they use these advanced features from software
switches, selectively offloading the enforcement of specific
policies. AccelNet [81] represents an innovative alternative,
although its proprietary hardware-software co-design is hard
to reproduce: it proposes to augment the NIC capabilities by
integrating a additional FPGA device alongside the network
card, which supports the implementation and execution of
several software-programmable QoS policies, even non-trivial.
For example, AccelNet can support rate limiting policies on
a per-flow basis, a much finer granularity compared to the
hybrid approach of MasQ [54].

2) Software-Based Approaches: The presence of a software
switch makes it easy for cloud providers to reuse existing,
standards tools to enforce QoS policies, as the hypervisor
can have full control of both the control and the data
planes. The obvious drawback of this approach is a heavy
performance penalty on network operations, which in this case
is even higher than for observability tools. Indeed, typical
QoS policies require to limit the data rate on the network
to a given value, involving the processor even more into
the network operations. Although FreeFlow [56] does not
explicitly mention this aspect, their design could easily allow
the enforcement of QoS policies within the virtual switch.

3) Hybrid Approaches: In hybrid approaches to network
virtualization, the control plane is still under the full control
of the hypervisor, so the control-plane QoS policies are
straightforward to implement (e.g., enforce a quota on the
number of active endpoints). However, because the hypervisor
has no visibility on data plane operations, the only possible
solution to enforce data-plane policies (e.g., rate limiting) is
to resort to the hardware-based techniques, provided that the
network card supports the advanced features required by them.

Alternatively, a limited set of QoS policies can still be
enforced through the use of SR-IOV VFs, following an
approach introduced by MasQ [54]. This strategy relies on the
creation of a set of VFs, each configured with predefined rate
limit. Then, each endpoint is configured to use the VF that
enforces the desired rate limit. Although this solution might
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be effective in the short-term, it comes with some important
drawbacks. First, only basic QoS policies, such as a rate
limiting to a given set of possible thresholds, can be supported
at the end hosts. Second, the configuration of a set of SR-
IOV VFs is currently not as easy and flexible as configuring
software-based virtual switches, which is the main goal for
public cloud providers.

Hence, QoS enforcement remains an open challenge
for hybrid virtualization approaches, whose solution might
require the combination with in-network techniques (see
Section VII-A) to recover the missing serviceability features.

C. Live Migration

Live resource migration is a powerful and defining capa-
bility of cloud infrastructures, as discussed in Section II-E3.
Network acceleration technologies were not initially designed
to support live migration: the state of active communication
channels is split between user applications and, in case of
RDMA, hardware devices, and thus not visible to providers.
Recently, researchers started to investigate possible strategies
to achieve that goal, by exploring a trade-off between the
transparency of the migration process for user applications
and the availability of hardware support from manufacturers.

By referring to that trade-off, to enable a more precise
analysis of these works, this Section will categorize the
papers differently from previous Sections. We distinguish three
different approaches to enable the migration of active accel-
erated communication channels: application-aware, which
sacrifice transparency but does not require changes to cloud
infrastructures (X-RDMA [121], MasQ [54]); guest-kernel
assisted, which leverage a software layer on the data plane
(Nomad [136]); and fully transparent, which require protocol
changes in acceleration technologies (MigrOS [137]).

The complexity of live migration solutions largely depends
on the network interface exposed to user applications (see
Section V). If the adoption of network acceleration is hidden
behind the standard POSIX interface, transparent live migra-
tion is not a major issue: SocksDirect [58] and VSocket [57]
support this feature for VMs and containers respectively.
Indeed, those systems already work by redirecting socket oper-
ations to the native interfaces of the acceleration technologies.
When live migration is needed, it is sufficient to redirect
the data path to a standard in-kernel TCP/IP connection and
then apply the well-established migration techniques. Once
the migration is completed, the traffic is routed back to the
new accelerated connection. AccelNet [81] adopts a similar
solution: the interface exposed to users is actually a switch
between a SR-IOV VF, used during regular operations, and a
paravirtualized stack, used during migration (Fig. 9 left).

On the other hand, when the native interface of an accel-
eration technology is directly exposed to applications, two
main issues emerge. Although these issues hold for any
kind of network acceleration, they are more concerning for
hardware network acceleration and in particular for the RDMA
communication model, which is based on different assump-
tions than TCP/IP networking (see Section III-B). First, the

communication state, which resides partially in the virtual-
ized user application and partially in the hardware NIC, is
transparent to the hypervisor. For instance, RDMA one-sided
operations can modify memory pages, or the NIC may silently
change its portion of application state. Second, the presence
of several location-dependent identifiers (see Section III-E)
makes it hard to relocate resources to a different hosting
environment.

In the following, we comment how the three different live
migration strategies handle these issues.

1) Application-Aware Migration: A first option to support
the live migration of accelerated communication channels is
to make guest applications aware of the migration operations
and let them implement the migration logic. This idea is
introduced first in AccelNet [81] by observing that most
applications that use network acceleration in their data centers
are already programmed to gracefully fall back to kernel-
based TCP/IP networking in case of failure of an accelerated
channel. Thus, if the hypervisor shuts down all the accelerated
channels, user applications would redirect communication to
standard in-kernel channels, which cloud providers can easily
handle.

Also X-RDMA [121] and MasQ [54] refer to this strategy
as a possible way to support live migration in their respective
solutions. This approach has the advantage of enabling live
migration even in absence of specific hardware or OS stack
support, and appears efficient also in terms of performance.
However, it forces developers to take responsibility of the
migration logic, a task that logically belongs to the hypervisor.

2) Guest-Kernel-Assisted Migration: If the I/O channels
are paravirtualized (see Section VI-A), the software indirection
layer can enable a form of live migration transparent to guest
applications, in particular for software-based acceleration tech-
niques such as XDP and DPDK. Instead, for hardware-based
acceleration there are two main challenges: handling location-
dependent resources and checkpointing the connection state,
which partially resides on the NIC.

For instance, location-dependent resources in RDMA chan-
nels are QPNs, MRNs, memory keys, and the LID (see
Section III-E). Similarly to how IDs are assigned to processes
by operating systems, those identifiers are sequentially
assigned by the local RNIC. This is not an intended feature
to support live migration (in Section VIII we will mark this
behavior as a security vulnerability), but it can be leveraged
in this sense.

Nomad [136] proposes to abstract these IDs by introducing
a layer of namespace virtualization in the software switch: at
resource creation time, this layer returns to applications VM-
specific identifiers instead of the actual location-dependent
information. Thus, after VM migration, the application code
will not observe any change despite the location change. Such
virtualization layer is implemented by a modified frontend
driver in the guest kernel, which keeps the mapping between
local and virtual resource identifiers. The same frontend driver
plays a crucial role also for the second challenge, i.e., the
connection state checkpointing. Because the hardware NIC
does not expose its portion of connection state, Nomad
proposes that the frontend driver implements a form of QP
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suspension: after a migration request, the driver suspends
all the operations on all the active QPs, waiting for the
outstanding send operations to complete. Then, it notifies all
the peer QPs to do the same on their side. Additional WRs
on both sides are cached by the driver during suspension
time.

This simple migration protocol ensures that, even without
access to the internal state of the NIC, the connection state
eventually becomes deterministic and a consistent checkpoint
can be safely performed. After migration, communication can
be simply resumed by the frontend driver.

This guest-kernel-assisted approach makes the migration
process transparent to the guest applications, but not to the
guest operating system, as a modified user library and frontend
driver implement the necessary abstractions and protocols.
As a consequence, this solution can apply only to virtual
communication channels based on paravirtualization.

3) Transparent Migration: A truly transparent solution for
the live migration of accelerated cloud applications would
only be possible with proper support from NIC vendors,
especially in case of hardware-based acceleration. To prove
that, MigrOS [137] extends RoCE (see Section III-C), an
RDMA protocol, to natively support this feature, investigating
the overall benefits and costs.

Similarly to Nomad [136], the goal of these changes is to
get a deterministic checkpoint of the connection state without
the NIC silently changing resources, but this time without the
requirement of a software support layer in the guest kernel.
Hence, MigrOS introduces two new state to the QP state
machine (see Fig. 5(b)) and two new protocol messages. When
the migration procedure starts on one node, all the QPs of the
target process go into the Stopped state: they do not send or
receive further messages. When a QP learns that its peer QP is
stopped, it transition to the Paused state, in which it does not
send any further message. A simple reliable migration protocol
handles these state transitions. Once every QP is stopped and
has its peer paused, it is safe to checkpoint the process state.

MigrOS modifies a popular framework for checkpointing
and restoring Linux processes (CRIU [139]), widely used in
container runtimes, to include Verbs objects in the check-
pointed state. To this end, they add two new primitives to
the Verbs API, one for dumping the context of a connection
(see Section III) and one for restoring Verbs object on the
new host. Finally, to handle location-dependent identifiers, a
simple virtualization solution like that previously discussed
for Nomad [136] would be sufficient. We note that for XDP-
based and DPDK-based applications, these changes are not
necessary: if applications adopt the TCP/IP protocols, their
traffic can be handled by the unmodified CRIU framework.

Overall, these three changes are sufficient to enable the
transparent live migration of RDMA applications, which is
applicable to both VMs and containers and does not require
any modification to the user application nor to the hypervisor
or container runtime. However, the most significant limitation
to this approach is that the RoCEv2 protocol is generally
implemented in hardware, so any change must be supported by
the card vendors. MigrOS, which implemented the proposed

solution on a software version of the protocol, claims that such
changes are small and backward compatible.

In Section IX, we discuss how this kind of features should
become part of the RDMA ecosystem in order to start offering
network acceleration as a commodity in cloud platforms.

D. Key Takeaways

In this Section, we reviewed the proposals to preserve
typical serviceability functions while integrating network
acceleration technologies into cloud platforms. Our discussion
started from the insight that the placement of virtual switches
significantly impacts serviceability aspects. We reviewed three
of them - monitoring and logging, QoS enforcement, and live
resource migration - that we identified in Section II-E as the
most impacted by this integration, and considered hardware,
software, hybrid, and in-network strategies.

On the one hand, hardware-based solutions are the most
efficient, but also mostly static and do not allow providers to
achieve the level of programmability, flexibly, and dynamic-
ity they need. Some providers started developing their own
hardware-software co-designed solutions, but these designs
are proprietary. In Section IX, we discuss how making them
generally available could be a further step toward the practical
availability of NAaaS. On the other hand, software-based
virtual switches that can introduce significant performance
overhead, especially for RDMA-based networks.

Hybrid solutions showcase promising performance, but they
provide an excessively coarse-grained visibility on the switch
state. In principle, they can be combined with in-network
approaches, which act on the network infrastructure, to achieve
a sufficient blend of programmability, performance efficiency,
and observability of the cloud platform, by recovering in-
network the features bypassed through hardware offload.

For the specific aspect of live migration, we distinguished
between application-aware, guest-kernel-assisted, and fully
transparent strategies. The first two approaches have intrinsic
limitations. In the first category, applications are required to
be aware of virtualization, thus preventing backward com-
patibility and requiring developers to consider non-trivial
migration-related concerns in addition to their business logic.
The second category relies on the availability of a guest
kernel, hence it applies to VMs only, and on software-based
I/O virtualization, which is not the most efficient option
for high-performance networking (Section VI-A). Conversely,
transparent strategies face mostly practical challenges, such
as the need for proper hardware support. In Section IX,
we will discuss how closer cooperation between hardware
manufacturers and cloud providers might help solve these
issues.

VIII. SECURITY

In this Section, we classify the literature on the security
of network acceleration technologies in integration with cloud
computing infrastructures. These works mainly consider three
security properties: confidentiality, integrity, and authentica-
tion; access control; and isolation. These aspects are by far the
most impacted by the introduction of acceleration techniques,
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TABLE VII
A SCHEMATIC OVERVIEW OF THE SECURITY PROPERTIES OF NAaaS CONSIDERED IN THE SURVEYED LITERATURE. “A” MEANS THAT THE WORK

PRESENTED AN ANALYSIS OF THAT TOPIC, OFTEN INCLUDING THE PROPOSAL OF SOME FORM OF VULNERABILITY MITIGATION. “S” MEANS THAT

THE PAPER PROPOSES A NOVEL SOLUTION FOR THAT SPECIFIC ASPECT, AS DISCUSSED IN THE REMAINDER OF THE SECTION

because the standard cloud security mechanisms tend to be
bypassed for the sake of performance.

The security challenges we discuss in this Section mainly
apply to hardware-based network acceleration technologies.
For software-based technologies, like XDP and DPDK,
confidentiality, integrity, and authentication are under the
responsibility of user applications, which tend to adopt stan-
dard protocols to enforce them (e.g., TLS). To support access
control and isolation for XDP applications, providers can rely
on standard kernel-based mechanisms. DPDK provides its own
access control library, whereas the isolation issues described
in Section VIII-C do not apply as they are based on one-sided
RDMA operations or target specialized hardware devices.

Instead, for hardware-based network acceleration tech-
niques, these challenges originate in the difference between
the security context of cloud platforms and the security
model for which these technologies were originally intended.
RDMA was designed for environments that assume a high
degree of trust among users and, when this is not the
case, enforce physical resource isolation. In contrast, cloud
platforms have an opposite security model: resources are
shared among several untrusted users, and the physical
infrastructure, although virtualized, is publicly accessible (see
Section II-F).

Toward the goal of NAaaS, researchers have started to
investigate the security implications of accelerated networking
in the cloud context, unveiling a dramatic situation. For
instance, built-in security mechanisms are largely ineffec-
tive against both same-host and in-network attacks, making
applications vulnerable to denial of service, packet injection,
and side-channel attacks, which could result in devastating
consequences such as attackers stealing entire databases with
no trace, or silently injecting code in other users’ memory
areas [135], [138], [140], [142], [144], [145].

Table VII summarizes the papers we survey. They either
assess the security vulnerabilities of network acceleration
technologies in cloud platforms or propose novel solutions
to achieve stronger security properties in cloud environments.
Although the availability of a mature security framework
for NAaaS appears still far away (see Section IX), these
works represent a first important step toward the definition
of foundational principles for a secure accelerated cloud
networking.

In the following, we expand these considerations by analyz-
ing these three security aspects separately. Consistently with
the goal of this work, we will limit our overview to the chal-
lenges arising from the integration of network acceleration into
cloud platforms, adopting RDMA as a reference. A broader
coverage of the vulnerabilities of hardware accelerators and of
the efforts to mitigate them is out of the scope of this survey
and can be found in complementary work [147].

A. Confidentiality, Integrity, and Authentication

A significant number of works has investigated how to
provide confidentiality, integrity, and authentication proper-
ties to accelerated cloud networks: Lee et al. [140], [141],
Simpson et al. [142], sRDMA [143], Bedrock [135], Tsai &
Zhang [90], ReDMArk [138], and RFC 5042 [146]. All these
contributions agree that only a hardware-based approach can
provide the necessary encryption and authentication without
significantly harming performance, but there is no convergence
on a specific solution yet: some of them implement the
proposed mechanisms on the host NIC; others in ToR switches.
Before considering those proposals, we summarize the main
challenges that accelerated cloud networking faces in terms of
confidentiality, integrity, and authentication.

RDMA endpoints exchange data and metadata in plain-
text, without any form of encryption and authentication.
In a multi-tenant cloud data center, this lack of protection
exposes accelerated traffic to several different potential attacks
affecting not only data confidentiality but also data integrity:
an eavesdropper located anywhere on the network can not
only easily access sensitive information, but also arbitrarily
modify the traffic end even forge new packets. In fact, packet
alteration of headers and/or payload only requires the attacker
to recalculate two checksums whose seeds and algorithms are
defined in the Infiniband specification, and little additional
effort is required for packet forging. Indeed, the RNIC checks
four elements to accept an incoming message: the request must
target a valid QPN, a valid MR with a correct rkey, and a valid
PSN (see Section III-E), and various works have demonstrated
that it is only moderately complex to obtain or predict all those
numbers [90], [138], [142].

Overall, these vulnerabilities may lead to attacks with poten-
tially dramatic consequences, ranging from silent information
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leakage to code injection in remote memory areas [143]. To
make the situation worse, attackers located on the same host
of an RDMA endpoint, such as cloud users that escaped
their confinement in VMs or containers [148], can potentially
impersonate the legitimate user of an established connec-
tion and access remote memory on any machine of the
network [143].

Unfortunately, standard mechanisms to guarantee the con-
fidentiality, integrity, and authentication of data and metadata
(e.g., the TLS protocol) are not currently supported by RDMA
NICs, because they are not part of the standard specification.
Software-based implementations of such functions would be
impractical, both because one-sided operations bypass the
remote CPU, making it impossible to transparently decrypt
incoming data, and because the associated performance over-
head would negate the benefits of zero-copy transfers [140].
Thus, novel proposals mainly focused on introducing the
missing hardware support either on NICs or on ToR switches.

1) Hardware-Based Approach: RFC5042 [146] suggests
the use of IPSec [149] to encrypt and authenticate RDMA
traffic over IP networks, although it is not straightforward
to integrate IPSec into existing RDMA protocols: RDMA
headers are not visible outside the IPSec encapsulation and
thus network equipment cannot distinguish packets directed
to different QP endpoints, making it impossible to achieve
a QP-level authentication and thus to avoid packet injection
or spoofing [138]. Furthermore, IPSec adds a significant
processing overhead which becomes not negligible at RDMA
speed [140], [143]. Nevertheless, major NIC vendors have
recently started to support IPsec-based encryption of RoCE
packets [78]. As a workaround to the problem of QP visibility,
the NIC has to store information about QPs and keep an
association between them and the corresponding IP address.
Alternatively, Kornfeld Simpson et al. [142] suggest the use
of the TLS protocol for iWarp, which is based on TCP. For
RoCEv2, which relies on UDP, they propose Datagram TLS
(DTLS) [150] as a solution to provide the same confidentiality
and integrity guarantees.

However, both IPSec and DTLS would apply only to IP-
based implementations of the RDMA specifications, excluding
Infiniband deployments. Although Infiniband equipment is
less common in cloud data centers, approaching the problem
of RDMA encryption at a higher abstraction level, directly
in the RDMA specification, would be ideal, as the solu-
tion would apply to all the implementations. To this end,
Lee et al. [140], [141] first attempted to introduce changes to
the Infiniband specification. In particular, they proposed a form
of RDMA packet authentication that replaces the Invariant
CRC field with a message authentication code (MAC).

More recently, sRDMA [143] proposed to extend the spec-
ification to include built-in encryption and authentication. In
particular, that work introduces a new RDMA mode called
Secure Reliable Connection (SRC) that adopts symmetric
cryptography to protect RDMA traffic. The choice of sym-
metric cryptography minimizes the computational overhead
compared to asymmetric cryptography, reducing it by three
to five orders of magnitude, and thus is suitable for RDMA
networking. Conceptually, a symmetric key is associated to

each QP at initialization time together with a protection
algorithm. This key will be used by the NIC to perform crypto-
graphic operations. sRDMA also requires a second change to
the specification, namely the addition of a new packet header
called Secure Transport Header (STH). This header contains
a message authentication code useful to provide the integrity
of the payload, and must be included in any RDMA request.

With the new SRC mode and the new header, sRDMA is
able to guarantee both confidentiality, integrity, and authenti-
cation for RDMA traffic with minimal performance overhead,
as cryptographic operations are performed directly by the NIC.
However, this solution assumes that the host trusts the NIC and
the internal bus that connects the NIC to the host. If that is not
the case, additional security mechanisms should be considered.

2) In-Network Approach: Following the trend discussed
in Section VII, modern networking hardware increasingly
supports programmable data planes both in switches and
NICs [128], [129]. Under a security perspective, this approach
makes it possible to define custom datapath protection mech-
anisms that operate at hardware speed.

Simpson et al. [142] comment that DTLS protection
(encryption and authentication) could be integrated in
custom bump-on-the-wire devices like those introduced in
Catapult and AccelNet [80], [81], but these are highly
customized devices. Instead, Bedrock [135] enables in-
network source authentication for RDMA traffic using the
P4 scripts [130], [131]. By enforcing security in ToR-based
switches, this solution is transparent to the end-hosts software
and hardware and does not require any protocol or specifi-
cation change. When end-host actions are required, Bedrock
resorts to the eBPF framework [31] to transparently inject
behavior to, or extract information from, the Linux kernel.

In particular, Bedrock obtains source authentication by
binding RDMA endpoints to network invariants of the data
center topology: as part of the packet processing pipeline,
the ToR switch only allows packets which are directed to
a given QP, which come from the expected IP address,
and from the right switch ingress port ID. To neutralize
same-host attacks, the sender process ID is also considered.
However, Bedrock relies on the strong assumption that the
cloud provider is trusted: under weaker models, such as that
adopted in sRDMA [143], this solution becomes ineffective
against rogue cloud providers.

Overall, the popularity of RDMA in cloud environments
will soon make confidentiality and integrity of RDMA traffic
a top priority for cloud providers. We expect more solutions
like sRDMA to call for an extension of the Infiniband
specification, so that all the RDMA protocols can include ade-
quate built-in protection mechanisms. However, standardizing
those proposals will likely take a long time as it requires
a broad support from the whole community. A short-term
mitigation may come from proposals like the use of DTSN
or IPSec for RoCEv2 traffic, which apply to the most popular
RDMA protocol implementation (RoCE) and are starting to
get support from hardware vendors. Even more promising are
in-network solutions like Bedrock, which can transparently
improve security of existing applications and deployments,
although this approach requires users to trust cloud providers.
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B. Access Control

To enable NAaaS, the resources managed through accel-
eration techniques, such as the memory areas for remote
access exposed by RDMA, should be included into the
existing cloud access control strategies. However, that inte-
gration is particularly difficult to accomplish. In cloud data
centers, access control is managed through software-based
mechanisms like Access Control Lists (ACL), dynamically
reprogrammable lists of permissions (policies) that specify
which users or system processes can access specific resources
and which operations they are allowed to perform. In contrast,
the resources associated with network acceleration tend to
be managed with native access control mechanisms (see
Section III-E3), which in the case of RDMA are fundamentally
insecure and too rigid to be integrated with cloud ACLs.

Nevertheless, access control is essential in cloud infras-
tructures and any viable solution for NAaaS should support
secure and flexible mechanisms for that. Hence, researchers
explored the possibility to apply, extend, or modify ACL-based
techniques to include RDMA resources.

In this Section, we first summarize the major vulnerabil-
ities of the native RDMA mechanisms for access control,
showing that they are insecure and easily bypassed in a
cloud environment. In the second part, we summarize the
possible short-term actions that can be immediately adopted
to mitigate their impact. Finally, in the third part we discuss
the longer-term solutions that have been proposed to over-
come the rigidity of these mechanisms and to integrate them
into existing cloud access resource control policies, such as
ACLs.

1) Security Issues of RDMA Access Control Mechanisms:
Recent contributions [90], [135], [138], [142] discovered
several vulnerabilities in the built-in RDMA access control
mechanisms introduced in Section III. First, these mechanisms
make use of insecure tokens, not only exchanged in plaintext
on the network, but also easy to predict. For example, an
attacker could simply guess the correct values of some param-
eters necessary for a one-sided access to a remote memory area
(memory keys, QPNs) because these are generated by the NIC
according to a predictable pattern [90], [135], [138], [142].

Secondly, several RDMA-based systems, proposed by
industry or academia, tend to misuse the available access
control mechanisms in favor of improved performance, making
predictability even easier. For instance, those systems tend to
use a single protection domain for all applications on the same
host; do not use memory windows to restrict QP access to
MRs; and use a default value for PSN initialization (fixed-
starting PSN) [135], [138]. As a consequence, an attacker
might legitimately require its own QP, register a new MR,
and use the associated parameters to guess the corresponding
values for co-located applications.

Finally, existing systems tend to allocate objects at con-
secutive addresses starting from a randomly-assigned base
provided by the operating system [138]. Hence, although it is
hard for attackers to predict the exact location of objects in
remote memory areas, this task becomes much easier if they
know the memory position of even just one of them, as they

can guess the relative position of the others. This problem
is exacerbated by the common adoption of the Implicit On-
Demand Paging (ODP) technique for improved performance.
Instead of registering many small memory portions for DMA
access, which would introduce non-negligible performance
overhead, developers often use this feature to register for
DMA the complete memory address space of a process.
The security implication of this choice, however, is that an
attacker can potentially obtain access to the entire process
memory [138].

2) Short-Term Mitigation Proposals: Despite initial efforts,
such as avoiding the plaintext transmission of memory
keys [140], [141], the security concerns about the native
RDMA access control mechanisms have remained unad-
dressed for years. The seminal ReDMArk [138] paper recently
proposed a set of possible short-term mitigation mechanisms
that can be adopted without disrupting existing RDMA deploy-
ments. Overall, these mechanisms aim at making harder for
attackers to guess either memory access tokens or the memory
addresses of RDMA objects, and are intended to be used in
combination with encryption (see Section VIII-A).

First, ReDMArk aims at reducing the predictability of the
tokens involved in the communications, especially memory
keys and QPNs, by randomizing their generation. Second,
it also recommends that RDMA developers start to make
a meaningful use of the existing mechanisms, in particular
of PDs and MWs, and randomize the location of RDMA
objects in their memory address space. ReDMArk also sug-
gests to require code attestations for any library loaded with
application binaries, because malicious versions could have
been silently injected by attackers accessing memory without
authorization.

3) Integration With Cloud Access Control Mechanisms:
The research on the integration of network accelerators into
cloud access control mechanisms mainly focused on two
aspects: preventing unauthorized traffic injection into the
physical network fabric, and managing RDMA resources with
ACLs.

The first line of research aims at enabling even accelerated
traffic to be managed through network security rules. In
commodity virtual networks, this problem is generally solved
by making a virtual switch apply security rules chain to
each packet. When that is not possible for accelerated traffic,
such as for hybrid and hardware virtualization strategies (see
Section VI-B3), a per-connection approach can be adopted as
proposed by MasQ [54], VSocket [57], and SocksDirect [58]:
before creating an RDMA connection, a corresponding TCP
connection should generally be created first. If that is allowed
by the current security rules, then also the RDMA connection
obeys those security rules for connection creation. Should a
security rule change during an active transmission such that
the transmission is no more allowed, the corresponding QP
can be moved to a connection error, just like when a network
error occurs [54]. This approach has the advantage of being
immediately available for existing RDMA deployments, but it
is far from ideal as it maps network permission changes to
network errors.
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In the context of live resource migration (see
Section VII-C), MigrOs [137] proposes an extension to the
RoCEv2 protocol to add new states to the QP state machine:
although that proposal does not consider security, the same
strategy could be extended to include a specific state to signal
that a connection has been interrupted because of changing
security rules. However, the overall effort of these works is
mainly focused only on protecting network access, whereas
access to RDMA local objects such as QP or MR is still
demanded to the basic RDMA access control mechanisms.

Within the second line of research, Bedrock [135] proposes
a finer-grained access control for RDMA resources designed
to expose software-programmable ACLs customizable with
network or application-specific policies. This work proposes
to offload the enforcement of access control to programmable
data planes (using eBPF [31] and P4 [130], [131]) located on
ToR switches [128], [129].

With this in-network approach, cloud providers and users
obtain the possibility to control, modify or customize ACL
policies for CPU-bypassing traffic without performance penal-
ties due to software intervention and without modifications
to existing applications. User configurations are forwarded to
a daemon on the closest ToR switch, which translates them
to a P4 program to enforce access control in the data plane.
Access policies can take into account various RDMA object
parameters, such as memory ranges, opcodes, QPNs, but also
process ids for local communication. ACLs are implemented
in the form of match/action tables on the switch, maintained
in a compressed form to reduce memory overhead. Advanced
ACL configuration is also possible by taking into account real-
time monitoring data, as we discussed in Section VII-A.

The Bedrock solution cannot mitigate all the current limita-
tions of RDMA access control, e.g., local resource exhaustion
attacks, because it monitors traffic in switches [151].
Nevertheless, the integration of a software-based ACL config-
uration mechanism for RDMA represents a major contribution
to the goal of NAaaS in cloud infrastructures.

C. Isolation

Under the original security model of acceleration technolo-
gies, physical resource isolation guarantees no interference
among untrusted users. Because this strategy is not economi-
cally sustainable for cloud data centers, providers are looking
for different isolation techniques to guarantee that users cannot
interfere with each other, and the solutions discussed in
Sections VIII-A and VIII-B about confidentiality and access
control for RDMA networks answer the primary need of
ensuring traffic isolation among different tenants.

In this Section, we report about side-channel attacks, which
are forms of violation of the tenant isolation, and report the
strategies proposed to prevent them. In a side-channel attack,
an attacker might obtain information about a running program
by probing the CPU cache (or other caching systems) and
observe how it behaves in consequence of the other program
actions. Although malicious users cannot directly read data
belonging to the target program, they can still obtain so-called
side information such as the application access patterns to
certain data, which can be the basis for more complex attacks.

Recent work identified at least two possible side-channel
attacks to RDMA applications, both related to the use of the
processor caches and one-sided operations: Pythia [144] and
NetCAT [145]. Pythia [144] detected a set of side-channel
attacks that allow a malicious user to learn how clients on other
machines access data exposed by a remote RDMA service.
This attack, invisible to either the victim client and server
due to the use of one-sided RDMA operations, is based on
a evict+reload strategy [152] on the server RNIC. RNICs
cache hot metadata for performance reasons, but in case of
cache misses they must fetch information from main memory,
adding extra latency to that request. Hence, a malicious user
might try to guess whether a victim is using a specific set of
data by forcing specific metadata to be cached on the NIC
and measuring differences in the server response time. For
example, Pythia demonstrates a successful detection of key-
value pair access patterns on a storage system [153].

NetCAT [145] unveiled a different form of side-channel
attack that targets the use of hardware-based performance opti-
mizations, in particular of the Intel Data-Direct I/O (DDIO),
a feature available on recent Intel processors that enables
peripherals (e.g., an RNIC) to perform Direct Cache Access
(DCA) instead of Direct Memory Access (DMA). Using a
similar approach to Pythia, NetCAT allows a malicious user
to detect the activity of a remote processor, as well as of
the other network clients interacting with it. To demonstrate
the effectiveness of this technique, NetCAT performed a
keystroke timing attack, recovering the words typed on a SSH
session by a remote client with the target server. In this case
the reconstruction of data access patterns from other clients
allows attackers to leak sensitive information by just acting as
legitimate clients of the same remote service.

As a general consideration, the risks associated to
side-channel attacks are not particularly high in a noisy
environment with many co-located applications and many
users, such as a public cloud infrastructure [54]. Hence,
although these attacks are certainly a source of concern for
cloud providers, the urgency of mitigation for cloud provider
is much less than the previously considered vulnerabili-
ties [138], [142].

Nevertheless, possible mitigation strategies were proposed
even against this kind of attacks. Pythia proposes a form of
traffic monitoring to identify and block malicious traffic that
tries to launch side-channel attacks [144], and Bedrock [135]
includes that capability into its in-network security suite for
RDMA networks. Other possibilities include adding inten-
tional random latency overhead on the network, disabling
DDIO, or partition the processor cache per-user [144], [145].
However, the latter approach contrasts with the goal of
maximize network performance. Therefore, as all these works
suggest, the most effective approach would be to introduce
countermeasures directly in the hardware equipment.

D. Key Takeaways

This Section reviewed the major contributions to the inves-
tigation of the security properties of network acceleration
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technologies and of the security implications of their integra-
tion in cloud platforms in terms of confidentiality, integrity,
and authentication, access control, and isolation. Whereas for
XDP-based and DPDK-based applications these aspects are
either not under the provider responsibility or quite straight-
forward to implement, the picture we drew for RDMA is quite
concerning: that technology was designed for a security model
based on physical resource isolation. Only recently researchers
have started to assess the vulnerabilities related to its adoption
in shared cloud infrastructures.

When considering possible solutions, the majority of these
works agrees that hardware-based approaches (e.g., embedded
in the NIC) represent the only practical option to add security
mechanisms to network acceleration technologies, in particular
if compute-intensive tasks are involved (e.g., data encryption).
In-network strategies, such as ToR-enforced policies are also
considered effective, especially for access control tasks.

Overall, the proposed solutions are either temporary miti-
gation actions or claims for longer-term changes. Short-term
actions mainly consist in recommendations for developers
to properly use the few existing security mechanisms, for
instance by randomizing sequence numbers and memory
addresses to reduce predictability. Conversely, longer-term
solutions involve changes to protocol specifications (e.g.,
Infiniband [33]) to provide built-in support to all these three
security aspects and to favor their hardware implementation by
manufacturers. Nonetheless, security remains one of the main
open challenges for NAaaS, as we discuss in Section IX.

IX. OPEN CHALLENGES AND FUTURE DIRECTIONS

In the previous Sections, we have provided a literature
overview about the integration of network acceleration tech-
nologies in cloud platforms, with the primary objective of
presenting a cohesive and integrated perspective on this
challenge and to overcome the fragmentation resulting from
isolated contributions. The majority of the surveyed studies
focused on novel concepts and design principles, whereas the
realization of production-grade solutions that can efficiently
and securely accelerate overlay networks in large-scale cloud
infrastructures is still not answered, especially for those
technologies that partially or totally offload network operations
to specialized hardware devices, such as RDMA.

In this Section, we first summarize the lessons learned from
our literature overview (Section IX-A). Then, we present the
key open challenges that currently obstacle the development
of mature industry-grade solutions (Section IX-B). Finally,
we conclude by discussing the most relevant future research
directions that need to be investigated to achieve the maturity
of the NAaaS paradigm (Section IX-C).

A. Lessons Learned

In this survey, we considered four orthogonal aspects of
cloud networking (access interfaces, virtualization techniques,
serviceability, and security). For each aspect, we distinguished
hardware, software, hybrid, and in-network approaches to inte-
grate acceleration technologies. As a preliminary step before
introducing our insights about open challenges and future

research directions, in this Section we observe that these four
cloud aspects are interconnected and reciprocally influenced.
Hence, we first need to discuss whether the principles and the
solutions proposed in the surveyed literature can be combined
toward an integrated evolution of the cloud ecosystem.

We begin by observing that many interfaces for accel-
erated networking (Section V) assume the availability of a
virtual accelerated NIC (e.g., a virtual RDMA NIC), or
its equivalent for software-based techniques (e.g., a special
PMD for DPDK). Such assumption has a significant impact
on both the I/O virtualization and serviceability dimensions:
if applications did not need direct visibility of the NIC,
providers would be able to either use standard solutions
or design more efficient ones to support accelerated cloud
networking [57], [112], [113].

Similarly, different approaches to I/O virtualization impact
the implementation options for virtual switches, core compo-
nents for network virtualization, serviceability, and security:
for instance, offloading I/O virtualization to hardware entails
a hardware-based virtual switch, thus excluding the software
alternatives discussed in Section VII. The same holds for
the other dimensions: different serviceability techniques, e.g.,
for monitoring and logging, influence the granularity and the
timeliness of security operations such as ACL enforcement
(see Section VIII).

Overall, the insight that clearly emerges from our com-
prehensive survey effort is that the selection of an approach
for a certain cloud aspect practically affects all the others. In
particular, we highlight a crucial trade-off between the network
performance offered to cloud customers and the ease of imple-
mentation of NAaaS solutions for providers. Software-based
solutions, although still improving performance over standard
mechanisms, tend to introduce a significant overhead on the
native acceleration technologies, making them less appealing
to cloud users. Conversely, hardware-based solutions preserve
the native performance and are more attractive for customers,
but the limitations we discussed in terms of programmability
and flexibility make them challenging to adopt by providers.

An alternative approach to pure software and pure hardware
approaches that emerged from our review is the combination
of hybrid and in-network techniques. This option offers an
alternative balance between the flexibility of a software-based
control plane and the performance of an accelerated data plane:
in-network solutions can recover the serviceability and security
mechanisms bypassed by the hybrid solutions. However, that
combination would be a short-term solution to a fundamental
shortcoming of the network acceleration ecosystem: the lack
of proper cloudification support from hardware manufacturers.

In light of these considerations, in the remainder of the
Section we will discuss how a longer-term approach to this
trade-off must be designed through a joint effort from different
actors, including cloud providers and hardware manufacturers.

B. Open Challenges

The integration of network acceleration technologies into
existing cloud infrastructures, shared among multiple untrusted
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TABLE VIII
A SUMMARY OF THE OPEN CHALLENGES FOR THE INTEGRATION OF

NETWORK ACCELERATION IN CLOUD PLATFORMS

tenants with demanding requirements of flexibility and secu-
rity, is the most significant challenge for next-generation cloud
platforms. The reviewed literature has introduced solutions
in the form of design principles and prototypes and the first
commercial products are starting to emerge [94], [95], [96].
However, the broad application of these innovations to real-
world infrastructures presents several additional technical
problems, still largely unaddressed. As a result, the industry
has not yet achieved production-ready, large-scale solutions
that can leverage NAaaS. Here we summarize the most relevant
technical challenges that must be overcome to achieve this
goal. We organize our discussion in four paragraphs, corre-
sponding to the four aspects of cloud computing considered
in this survey.

1) Network Access Interface: Although the POSIX APIs
are pervasively adopted in any application domain and offer
a standard and easy-to-use interface, they are also designed
on opposite principles than modern network acceleration
technologies, thus making them difficult to adapt to the
high performance of these options (Section V). However, the
native interfaces of these technologies do not currently offer
an equally easy-to-use programming option. The proposals
reviewed in Section V-C represent attempts in this direction,
but today, they are still at the level of academic proposals and
are a long way from becoming mature products. Therefore,
we consider as an open research challenge the definition of
the right abstraction level for a set of standard, easy-to-use
primitives to access high-performance networking.

2) Virtualization Techniques: We surveyed several propos-
als on the I/O and network virtualization of accelerated
networking, all striving to balance the need to preserve
the native performance with software-like programmability.
This trade-off is especially evident when offloading network
operations to hardware devices, but even the performance of
software-based technologies such as XDP and DPK risks to
be jeopardized by inefficient virtualization techniques.

From our discussion, none of the proposed virtualization
solutions emerged as a clear winner. Approaches based on soft-
ware communication channels and virtual switches introduce
CPU overhead into the data path, slowing down performance

and wasting valuable resources. Hybrid approaches reduce this
overhead but also the providers’ control on the data plane,
which would likely be unacceptable in public clouds. Both
the above solutions are cost-effective and retain the flexibility
advantages of a software-based control path, but at the price
of a significant performance penalty.

On the contrary, solutions based on specially-designed
hardware, such as AccelNet [81] or AWS Nitro [126], offload
the data plane operations to a specialized hardware device
while also providing a high degree of control and pro-
grammability. As a consequence, these solutions are already
part of different commercial services such as DPDK-enabled
VMs [94], [95], [96]. However, these approaches require
a high upfront investment for research, development, and
deployment that only major providers can afford, and propose
highly-customized solutions difficult to generalize. Ultimately,
we believe that further research should be dedicated to the
definition of a standardized approach to the virtualization of
network acceleration that takes into account not only efficiency
and programmability, but also open technology availability
and economical factors.

3) Serviceability: In Section VII we extensively com-
mented about the key role of virtual switches for the
provisioning of serviceability aspects. In this paragraph we
consider the scalability of these devices, which the reviewed
literature do not systematically consider despite being a known
concern in any data center setting [26], [54], [103], [120].

A fundamental issue arises when virtual switches are imple-
mented by hardware devices for the sake of performance:
these devices cache part of the connection state needed for
serviceability directly in the on-board device memory. Because
that memory is typically limited, also the total number of
manageable connections is limited. This issue is exacerbated in
cloud settings, where a device on the same physical host would
be shared by multiple users. Existing countermeasures proved
overall ineffective: for example, sharing on-board connection
descriptors among many CPU cores might increase the number
of managed connections, but it also significantly reduces
performance and network isolation [98], [103], [132]. Even
worse, the scarce scalability of these devices represents also a
security vulnerability (see Section VIII).

Nevertheless, several proposals for NAaaS increase the
amount of per-connection data to store on NICs, for exam-
ple to better support network virtualization or information
confidentiality. The same considerations apply to the smart
switches adopted to carry on in-network packet processing.
While some researchers are confident that this problem will
eventually be solved through the continuous improvement
in NIC hardware [154], [155], other studies question this
argument, noting that such improvement is in fact much slower
than expected [103]. Overall, we believe that more research
is needed to make network acceleration technologies really
scalable, in particular in the context of cloud platforms.

4) Security: In Section VIII, we separately considered
software-based (e.g., XDP, DPDK) and hardware-based
network acceleration technologies (e.g., RDMA). The former
generally adopt standard protocols and cloud mechanisms
to guarantee communication security, or provide their own
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libraries when these cannot be reused. Instead, the latter
technologies are generally based on a different communication
model and on different hardware devices, for which histori-
cally security has not been a key design principle.

In particular, we drew a concerning picture of RDMA secu-
rity. Recent studies found that the built-in security mechanisms
of RDMA are inadequate for the cloud security model where
multiple untrusted users share the same physical infrastructure.
Furthermore, the few available security mechanisms are often
misused by application developers for performance gains.

Consequently, security concerns pose a significant obsta-
cle to the widespread availability of NAaaS, as the risk
of untrusted users accessing remote memory is too high.
Although we lack insights into how providers offering bare-
metal RDMA instances are dealing with this issue, it is likely
that they isolate each user within a secure environment. After
the initial excitement surrounding the performance potential
of network acceleration technologies, which led to a lack of
attention to security aspects, the recent publication of the first
systematic security assessments demonstrates an increasing
maturity of the network acceleration ecosystem. Although
only few proposals have been advanced so far, hardware-
based [143] or in-network [135] approaches might eventually
evolve toward economically sustainable solutions: the building
blocks for high-performance, secure accelerated networking
are in place, although it involves the joint cooperation of
several stakeholders as we further comment in the next Section.

C. Future Research Directions

The increasing availability of powerful network accelera-
tion technologies as a commodity holds the potential for a
breakthrough in the communication domain. The possibility
to significantly upgrade conventional communication infras-
tructures with high-performance networking options opens
new perspectives for customized and real-time decision-
making, innovative adaptive services, and advanced forms
of automation in several application domains. At the same
time, the success of expensive, specialized but fragmented
technologies is leading to a broader decline of general-purpose
technology [12].

Embracing this trend, we believe that an integration of
such specialized technologies as a service into next-generation
cloud platforms will play a crucial role in avoiding an
excessive fragmentation of the networking landscape and, at
the same time, in broadening the access to these modern
options. The availability of specialized, heterogeneous tech-
nology through a standard, easily accessible, and widely used
computing paradigm would be beneficial for many stakehold-
ers. On the one hand, it would enable organizations to access
the increasingly heterogeneous hardware landscape through a
homogeneous point of access, without committing to massive
upfront investments. On the other hand, this integration would
also give cloud providers the economical power to drive the
evolution of hardware accelerators according to their needs.

Consistently with these considerations, we believe that
future research on NAaaS will need to investigate four main
directions, summarized in Table IX. First, the extension of the
cloud paradigm outside data centers, discussed in Section II-B,

TABLE IX
A SUMMARY OF THE FUTURE RESEARCH DIRECTIONS FOR THE

INTEGRATION OF NETWORK ACCELERATION IN CLOUD PLATFORMS

holds the potential to significantly expand the customer base
for NAaaS, which could be used as a high-performance support
for next-generation 5G and beyond telco networks. Second,
emerging cloud service models, such as serverless comput-
ing [156], [157], promote a radical separation between the user
code and the underlying resources, thus potentially enabling
providers to offer acceleration options without giving users
direct visibility of their infrastructure. Third, the fast-paced
evolution of hardware accelerators is blurring the distinction
between different forms of I/O. New devices such as Data
Processing Units (DPUs) go even beyond the concept of
NAaaS by offloading any I/O operation, toward the more
general idea of Accelerated I/O as a Service. Finally, we
observe that a higher degree of maturity of NAaaS solutions
can be achieved only through the cooperation of all the
involved stakeholders, including cloud providers, telco opera-
tors, hardware manufacturers, and standardization bodies.

1) Extension of NAaaS Solutions Outside Data Centers:
The majority of the contributions surveyed in this work
focused on centralized data centers. However, as discussed in
Section II-B, in the last decade cloud computing has embraced
a decentralization trend, making cloud resources available
within the infrastructure of telco operators and even at the
network edge.

In the telco ecosystem, NAaaS has the potential to com-
plement NFV solutions and become a crucial enabler for
the emerging services in 5G and beyond mobile networks,
such as NetApps (see Section I-A). That is because NAaaS
solutions minimize the performance overhead of the cloud
mechanisms used by virtualized applications to access network
acceleration technologies, even when special hardware devices
are involved. With NAaaS, virtual network functions, as well
as any application deployed on the telco infrastructure, could
more efficiently access the underlying equipment. That would
more effectively separate the software functions from the hard-
ware implementing them: for instance, a NAaaS-based solution
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would greatly simplify the development of novel solutions for
the disaggregated Radio Access Network (RAN) [39].

However, adopting the techniques reviewed in this survey
on the telco edge would require, in practice, a careful inte-
gration with existing standard interfaces and specifications
that currently has not yet been explored in the literature.
We believe that future research on NAaaS should focus more
on these extensions of cloud computing outside data centers,
also because many performance-demanding applications are
increasingly hosted there. That would have the effect of
widening the customer base for these services, making it even
more sustainable for providers to design mature technical
solutions, as we discuss in the next paragraph.

At the network edge, it is not uncommon to find small-
scale data centers equipped with fairly powerful resources,
qualitatively comparable to those in centralized clouds. Even
there NAaaS approaches could be effective, because many of
issues of public cloud deployments (in particular, scalability
and security isolation) are generally less concerning for those
environments. However, those settings typically have different
constraints than data centers and might bring out different
concerns, such as energy efficiency [158], [159]. Although
executing functions on specialized hardware requires less
energy than on general-purpose processors, the availability of
hardware accelerators at the network edge is not always guar-
anteed. Conversely, software-based acceleration technologies
might require polling techniques that induce a high resource
usage [14]. Therefore, the implications of NAaaS outside data
centers should be carefully considered by future research,
with particular regard to the energy consumption aspects that
will assume increasing importance in next-generation edge
computing infrastructures.

2) Integration With Emerging Cloud Service Models: In
Section IX-B, we identified the lack of a uniform, easy-to-use
interface as an open challenge for NAaaS. To this end, the
emerging concept of resource disaggregation, which proposes
to radically separate user code from the underlying hardware,
represents a promising research direction [160], [161].

In cloud scenarios, this trend led to the definition of
serverless computing and the Function as a Service (FaaS)
model: users submit code as stateless functions to be exe-
cuted on-demand, thus completely delegating to providers
the control of resource management. The FaaS model yields
several advantages, such as scale-to-zero capabilities and the
possibility to create applications as function pipelines (function
chaining) [156], [157].

However, mainly for security concerns, current platforms
still execute user functions within isolated environments, such
as containers and lightweight VMs, just like in other cloud
models. In addition, the short life of functions worsens the
obstacles for NAaaS: not only do functions still use stan-
dard I/O interfaces that require a NIC, but the overhead of
communication setup (e.g., for data exchange with databases)
becomes dominant [162], [163].

Recent work is starting to promote a more radical sep-
aration between the computation and communication of
functions (computation-centric networking) [110], [164]. The
key insight of this approach is to let users explicitly declare

their communication flows but to leave to providers the imple-
mentation of the actual I/O operations. In the edge cloud, a
similar concept has been recently introduced to decouple appli-
cations from special-purpose acceleration interfaces [113].
Because user code does not need to directly access I/O
resources, providers can then enforce lighter forms of isolation
and transparently optimize I/O operations, without design-
ing complex solutions for virtualization, serviceability, and
security. Hence, we believe that this approach, and more
generally the serverless paradigm, is a promising direction for
researchers to design an easy-to-use, uniform point of access
to I/O acceleration in next-generation cloud platforms.

3) Extension of the NAaaS Approach to Other Forms of I/O:
The hardware acceleration landscape is rapidly evolving. In
this survey, we have focused on network acceleration options
as they represent the most relevant example of this trend.
However, several applications increasingly need efficient ways
to handle any form of I/O. For instance, the AI/ML appli-
cations that are popular today in centralized clouds typically
employ GPUs for parallel processing, requiring frequent and
heavy data transfers between CPU memory, GPU memory, and
persistent storage [15]. Similar communication patterns also
emerge in the edge cloud, whereby data produced by local
devices (e.g., cameras) are increasingly processed on-site to
obtain low-latency responses [28], [165]. Modern hardware-
based techniques like NVLink and GPUDirect already enable
offloading those data movements, even between GPUs and
remote storage devices via direct RDMA transfers [166].

To further optimize data movement, the concept of Data
Processing Units (DPUs) was recently introduced to put
together different hardware accelerators for I/O operations
(network and storage) [167], [168]. With dedicated CPU cores
embedded on the same board, these devices completely offload
I/O operations from the general-purpose CPU that can be
preserved for other types of processing. The potential benefits
of DPUs are promising especially for cloud providers, which
can use them to implement the virtualization, serviceability,
and security aspects that we have previously discussed without
spending CPU cycles for them.

However, due to the novelty of these options, there are
several aspects still to be investigated before their successful
adoption in cloud platforms. For instance, we still lack suitable
software frameworks to easily interface with these devices,
while it is still unclear which I/O virtualization techniques
are appropriate for them. Therefore, we suggest that further
research should be dedicated to the proper integration of
these new devices within cloud platforms. Given the extended
capabilities of these hardware options, we envision that they
can be employed to offer users not only NAaaS but the even
more general option of Accelerated I/O as a Service.

4) Increased Cooperation Among NAaaS Stakeholders: We
believe that only the close cooperation among all involved
stakeholders can solve the open challenges that still clash with
the effective integration of network acceleration technologies
into the cloud paradigm. Cloud providers, telco operators,
hardware manufacturers, and standardization bodies are called
to cooperate and re-design their products and services to
support the needs of next-generation cloud platforms.
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On the one hand, cloud providers and telco operators need
to properly integrate network acceleration technologies with
their infrastructures by enforcing a more radical separation
between control and data plane. The control plane, running
on CPUs, must orchestrate a data plane that should be almost
completely offloaded to acceleration technologies, either in
software (XDP, DPDK) or in hardware (RDMA SmartNICs,
programmable hardware such as FPGA). On the other hand, to
preserve programmability and flexibility, hardware manufac-
turers should include an explicit support for the cloudification
of their products, by enhancing device features with built-in
support to crucial aspects for cloud infrastructures, such as
live migration, network virtualization, and security.

For example, considering RDMA, in recent years the defi-
nition of the RoCEv2 protocol [35] and its support by major
hardware vendors triggered a process of wide dissemination
of that technology even in Ethernet-based data centers. We
believe that a similar change is now necessary to properly
support network acceleration technologies in cloud platforms.

Most research we reviewed propose changes to protocols,
semantics, interface, or objects, sometimes with explicit ref-
erence to a needed change in the RDMA specification and
in its hardware implementations [137], [138]. At the current
early adoption stage of acceleration technologies in cloud
infrastructures, we believe that such changes are still sus-
tainable, technically and economically, and mainly motivated
by an exponential growth in user demand for these services.
Hyperscaler cloud service providers are already co-designing
custom hardware devices to better interoperate with their
software infrastructure [81], [126]. These solutions already
enable some of them to offer NAaaS through software tech-
niques like DPDK [94], [95], [96], but security concerns still
prevent them from enabling the full potential of hardware-
based solutions (see Section VIII). To solve these issues, the
convergence of several stakeholders, including researchers,
hardware manufacturers, telco operators, and cloud providers
on the definition of standard solutions is necessary. Despite the
different economical and industrial interests, that cooperation
is a necessary and unavoidable step to ensure and effective
availability of NAaaS in next-generation cloud platforms,
within but also outside large-scale centralized data centers.

X. CONCLUSION

The increasingly pervasive availability of connected devices
in virtually any application domain is pushing the well-
established cloud computing model to show its inherent
limitations. In the last decade, cloud workloads have progres-
sively shifted toward interactive, data-intensive applications
that need to move huge volumes of data coming from
sparse devices and to process them within tight deadlines.
To meet these increasingly demanding performance require-
ments, developers have started to rely on network acceleration
technologies, which, often by means of specialized hardware,
can substantially outperform standard networking stacks and
protocols.

However, the adoption of network acceleration in cloud
platforms faces several technical challenges, because the nature

of acceleration technologies cannot easily conciliate with the
architecture of standard cloud infrastructures: usually, these
options bypass the existing software stacks and create a
trade-off between the typical cloud flexibility and network
performance. This survey reviewed the literature on Network
Acceleration as a Service and focused on the goal of integrating
accelerated networking into the cloud computing platforms,
adopting the popular Remote Direct Memory Access (RDMA)
as the reference communication model.

We discussed the existing proposals by systematically
organizing them in a taxonomy based on the aspects of
cloud networking most impacted by this integration: network
access interfaces, virtualization techniques, serviceability,
and security. For each dimension, we presented different
approaches ranging from software-based solutions, which
sacrifice performance in favor of flexibility, to hardware-
based solutions, which maximize performance at the price of
reduced flexibility. Finally, we identified the key challenges
that providers still need to address to effectively achieve the
goal of enabling NAaaS in cloud platforms and discussed
the crucial research directions that must be investigated for a
mature and widespread adoption of this concept.

Ultimately, we envision that the integration of network
acceleration technologies will become essential for cloud
providers to meet the increasingly demanding performance
requirements of new interactive, data-intensive applications in
several application domains. Although the literature reviewed
in this survey mainly focused on centralized data centers, we
believe that this integration will become paramount also for the
cloud extensions outside data centers. In particular, the evolu-
tion of cloud-based architectures and technologies in support
to the next generation communication infrastructures (e.g., 5G
and beyond) will increasingly require NAaaS solutions.

Despite these compelling motivations, such integration will
only be successful as a result of a joint effort from different
stakeholders. On the one hand, cloud providers and telco
operators should redesign their interfaces and infrastructures to
enable scalable, efficient, and secure data paths. On the other
hand, hardware manufacturers should enhance device features
with built-in, low-overhead support to crucial aspects such as
application live migration, network virtualization, and security.
With this survey, we aimed to provide a comprehensive per-
spective in the direction of achieving that goal, by establishing
a shared knowledge base toward the design of next-generation
cloud platforms and communication infrastructures.
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