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Abstract

The morphing attack is widely acknowledged as an im-
portant security threat to face recognition systems in the
context of electronic machine readable travel documents
and several possible countermeasures have been recently
proposed. Among the existing solutions, differential Morph-
ing Attack Detection (MAD) algorithms, based on the com-
parison of the document image (possibly morphed) and a
trusted live capture, proved to be quite effective and robust
in detecting this kind of attack. However, deploying such so-
lutions in a real-world operational scenario requires the ca-
pability of dealing with images of variable quality in terms
of illumination, pose, focus, etc. This paper analyzes the
impact of face image quality on MAD performance through
an extensive image quality assessment, carried out on a
large and realistic operational dataset using different state-
of-the-art algorithms, thus providing useful insights for the
development of more robust MAD systems.

1. Introduction

Face Image Quality Assessment (FIQA) is a very rele-
vant topic in the context of face recognition and a number
of studies have been reported in the literature to propose
new effective approaches for quality assessment or to eval-
uate the impact of image quality on face recognition accu-
racy. In the context of face morphing [6], face image quality
can play an important role too. A first aspect to consider is
that the morphing process, either landmark- or GAN-based,
typically leaves some traces on the generated morphed im-
age, such as artifacts in specific face regions or typical GAN
generated artifacts, respectively. Such traces could be re-
flected in the image quality score that could be exploited to
prove the quality of the morphing generation process. Fur-
thermore, during the morphing process, the blending phase
could increase slightly the blurriness and be observable as

a lack of sharpness. Moreover, some works in the litera-
ture propose the possibility of exploiting quality scores for
MAD [10, 9]. Another quality-related aspect to analyze is
the impact that image quality might have on general MAD
systems. For instance, in the Differential Morphing Attack
Detection (D-MAD) task, the trusted gate image acquired
by an Automated Border Control (ABC) gate is not strictly
controlled in terms of pose and illumination, and such fac-
tors could have a strong impact on the D-MAD results. To
the best of our knowledge, this aspect has not yet been ad-
dressed in the literature, even because this kind of analysis
is not easy to carry out since public datasets generally used
for the evaluation of MAD systems fail to represent realistic
operational conditions, being the images mostly acquired in
different contexts. In this work, a big effort has been done
to collect a dataset, that aims to reproduce a very realis-
tic testbed, thanks to the availability of images acquired at
real airport border gates or at very realistic laboratory sim-
ulations of the gate environment (i.e., images acquired with
real gate equipment but in a laboratory setting). The data are
available in the BOEP platform1 as sequestered test dataset.
The quality of the dataset images is in this work evaluated
using different FIQA Algorithms (FIQAAs), and the cor-
relation between image quality and MAD performance is
analyzed in a real operational scenario. We believe that
the outcomes of this study can provide interesting insights
about possible improvements of existing MAD approaches
aimed at increasing the robustness to adverse image acqui-
sition conditions. Moreover, stricter requirements to control
face image quality can be justified with the findings in this
work.

2. Face Image Quality Assessment
Standardized quality measures have been established in

the past for some biometric traits (e.g., NFIQ 2 [16] [26]
for fingerprints). As to face, the standardization process

1https://biolab.csr.unibo.it/fvcongoing/UI/Form/BOEP.aspx



for interoperable image quality measures is still ongoing
[17], and in our analysis, we took into account the main ap-
proaches used in the literature for face image quality evalu-
ation.

2.1. FIQA Algorithms

Most of the existing methods have been proposed for
general face recognition application scenarios where the
image acquisition is not strictly controlled or even uncon-
trolled. A recent survey [25] provides a comprehensive re-
view of the recent literature. Some of the most recent and
widely used approaches exploit deep-learning based models
to assign a unified quality score to a face image. From this
category, we consider in particular:

• FaceQNet [13] - A well-established approach for
face image quality estimation in a variety of condi-
tions. The proposed framework aims at attributing to
ISO/ICAO compliant images top quality scores, and
adopts the BioLab-ICAO framework [5] to produce the
ground truth quality score used for model training.

• MagFace [21] - A face recognition approach trained
by a loss function defined to learn a universal feature
embedding whose magnitude can measure the quality
of the given face image. The magnitude of the fea-
ture embedding monotonically increases if the subject
is more likely to be recognized. In addition, Mag-
Face introduces an adaptive mechanism to learn a well-
structured within-class feature distributions by pulling
easy samples to class centers while pushing hard sam-
ples away. This prevents models from overfitting on
noisy low-quality samples and improves face recog-
nition in the wild. For our experiments, the mag-
nitude is normalized according to the minimum and
maximum values obtained on the dataset. MagFace
is the candidate unified quality scoring algorithm in
the new international standard ISO/IEC 29794-5 and
is deployed within the reference implementation Open
Source Face Image Quality (OFIQ) software2.

• CR-FIQA [2] - A recent method that estimates the face
image quality of a sample by learning to predict its
relative classifiability. This classifiability is measured
based on the allocation of the training sample feature
representation in angular space with respect to its class
center and the nearest negative class center. To pre-
dict the classifiability property of a facial image, the
model is trained simultaneously with a face recogni-
tion model.

• SER-FIQ [27] - The quality score is established in an
unsupervised fashion, based on the relative robustness

2https://github.com/BSI-OFIQ/OFIQ-Project

of deeply learned embeddings of the image, rather than
on a predefined ground truth derived from human la-
beling or face comparison scores that could provide
inaccurate information. By determining the embed-
ding variations generated from random subnetworks of
a face model, the robustness of a sample representa-
tion, and thus its quality, is estimated.

• Quality Regressor [8] - A regressor trained starting
from a number of single quality components, specif-
ically designed to encode in a quality score the utility
of a given face sample for subsequent face recogni-
tion. Differently from the previous approaches, this
method has been explicitly designed to be applied to
high-quality ISO/ICAO compliant images, assigning a
meaningful (and varied) quality score within the small
range of variability allowed by the standard.

Besides the above mentioned FIQAAs, we also take into
account some specific quality components that are partic-
ularly relevant for the analyzed scenario. Specifically, we
analyze those components, which are also considered rele-
vant in ISO/IEC 29794-5, eventhough the definition in the
recently posted draft standard is close yet not identical to
our work. In particular:

• Illumination Uniformity (IU), measuring the difference
in illumination on the left and right side of the face.
The IU score is determined as the intersection of the
normalized luminance histograms HL = {hli, i =
1, .., n} and HR = {hri, i = 1, ..n} computed on
the left and right side of the face region, respectively:

IU =
n∑

i=1

min(hli, hri).

• Defocus (DF), that analyzes the level of sharpness. The
DF score is computed as the difference between the
face region F and the smoothed version of the same
face region (F̃ = F ∗g) obtained through a convolution
of the image with a 3×3 mean filter g: DF = |F−F̃ |.

• Pose, analyzing the head roll, pitch and yaw. In partic-
ular, given the orientation of the head relative to the
optical axis; the three angles corresponding to Roll
(ϕR), Pitch (ϕP ) and Yaw (ϕY ), are estimated using
the 6DRepNet [12] and each score for a given angle ϕ
is computed as: P = max(0, 100 · cosϕ)

• Shadows across face, computed as described in [5].

3. Dataset acquisition and composition
In the context of the iMARS European project [14], a

new dataset, called Mixed-Quality (MQ) database, has been
collected in six sites in different European countries, includ-
ing two airports (in Lisbon and Athens) and four research



laboratories, where images were acquired under real border
control conditions using real ABC capture devices.

A total of 60 different subjects have been involved in
the acquisition and some of them have been acquired across
multiple sites: four subjects across three sites, ten subjects
across two sites and the other 46 subjects were acquired at
a single site. The MQ dataset consists of:

1. Bona fide enrolment images, taken in a capture setup,
which meets the requirements [18] for a document im-
age in a passport application (see Figure 1(a)). For
each of the 60 subjects in the database, a varying num-
ber of bona fide enrolment images were captured us-
ing a high-quality studio acquisition setup, reflecting
the real-life passport photo capture process. Given the
context of this work reflecting an operational border
control scenario, we have taken care to ensure that all
images are ISO/ICAO complaint [18]. The database
comprises a total of 205 bona fide enrolment images
that have been cropped to remove the background and
resized in order to follow the same inter-eye distance
distribution of the morphed images, so that it is not
possible to infer the image class from its size or back-
ground properties.

2. Morphed enrolment images: morphed images cre-
ated from the pool of bona fide enrolment images, as
described in Section 3.1, to simulate the attack (see
Figure 1(b)). In total a set of 7652 morphed enrolment
images have been generated using 12 morphing algo-
rithms (both landmark- and GAN-based) and different
morphing factors.

3. Gate images: bona fide face images captured live with
a face capture system in an ABC gate (see Figure 1(c-
f)). The database contains multiple gate images cap-
tured from each subject (overall 612 images) obtained
across various locations under real border control con-
ditions using authentic ABC devices.Thus, given six
different setups of ABC gates, the probe-set provides
a variation for benchmarking different D-MAD algo-
rithms. This necessitates the algorithms to exhibit ro-
bustness to varying conditions.

Some examples of bona fide, morphed and gate images
from the MQ dataset are given in Figure 1).

3.1. Selecting the morph pairing candidates

An essential aspect of creating a successful morph attack
is the selection of subject pairs that closely resemble each
other. In line with the methodology in [7], the morphed
images were created by selecting the morph pairing candi-
dates with high comparison scores from three Commercial-
Off-The-Shelf (COTS) FRSs – Neurotechnology Verilook
[23], Cognitec FaceVACS [3] and Innovatrics IFace [15]

SDKs. All bona fide enrolment images of each subject (i.e.,
the criminal) are compared with all bona fide enrolment im-
ages of other subjects of the same gender (i.e., possible ac-
complices) even if acquired at different sites. Images with
glasses were excluded from the comparison, to prevent vis-
ible artifacts in the resulting morphed images. Given the
three FRSs, a unique value v(i, j, u, w) was computed:

v(i, j, u, w) = 1
3 ·

∑3
k=1

τk−sk(i,j,u,w)
τk

where:

• sk(i, j, u, w) is the similarity score between bona fide
image u of subject i and bona fide image w of subject
j provided by the FRS k;

• τk is the score threshold recommended by the kth FRS
corresponding to a False Match Rate (FMR) of 0.1%.

The value v(i, j, u, w) indicates how far the verifica-
tion scores are, on average, from the FMR=0.1% thresh-
olds; lower values imply higher similarity between images.
For each criminal subject i, the potential accomplices j
are sorted in increasing order of v(i, j, u, w), and the top
five subject candidates are selected. Given a selected pair
v(i, j, u, w), a morphed image is generated by combining
the bona fide enrolment image u of subject i with the bona
fide enrolment image w of subject j. This decision aims at
maximizing the likelihood of fooling FRSs at the gate. Note
that, none of the selected image pairs was able to fool all
the three FRSs at the same time. Since one subject wears
glasses in all the enrolment images, it was excluded from
the generation process. Each of the remaining 59 subjects
is paired with five other subjects, obtaining a total of 295
image pairs for morphing.

4. Experimental evaluation
4.1. Dataset quality assessment: enrolment images

From the visual point of view, morphed images in the
MQ dataset present different quality levels, since some mor-
phing algorithms produce quite visible artifacts while other
are able to generate good face morphs with limited pres-
ence of artifacts. In this section, we analyze the quality
scores of the enrolment images in the MQ dataset. We
report the results computed using different FIQAAs sep-
arately for the bona fide and the morphed images gener-
ated using landmark- or GAN-based morphing algorithms.
In particular, Figure 2 shows the box plots of the quality
scores computed over the enrolment images using the Qual-
ity Regressor, FaceQNet, OFIQ, CR-FIQA and SER-FIQ,
respectively. The graphs show that some approaches tend
to assign uniform quality scores to the enrolment images on
average; in particular, no evident differences are visible be-
tween bona fide and morphed images for some approaches



(a) (b) (c) (d) (e) (f)

Figure 1. Example of images contained in the iMARS MQ database for two different subjects. For each row, bona fide, morphed and gate
images are reported in the first (a), second (b) and last four (c-f) columns, respectively.

(a) Regressor (b) FaceQNet (c) OFIQ (d) CR-FIQA (e) SER-FIQ

Figure 2. Quality distributions of enrolment images, reported separately for Bona fide (blue), landmark-based morphs (orange) and GAN-
based morphs (gray), for different FIQAAs.

(e.g., FaceQNet). For others, the quality scores assigned to
bona fide images are slightly higher than those measured for
the morphed images, even if the differences are limited and
the overlap in terms of score distribution is significant.

Most of the FIQAAs are able to capture such differences
by assigning generally lower quality scores when strong ar-
tifacts are visible. Concerning this aspect, it is worth not-
ing that most of the tested FIQAAs first detect and crop
the face so the analysis is mainly focused on the inner face
region and the artifacts surrounding the face (e.g., shad-
ows in the hair region), produced by some morphing algo-
rithms, are not taken into account. The Quality Regressor
takes into account the whole image to assign a quality score
but, even in this case, most of the quality components con-
tributing to the quality score computation focus on specific
face parts and are not explicitly designed to analyze the
presence of artifacts. Anyway, in all cases, the morphing
algorithms that produce more artifacts received low qual-
ity scores. An interesting aspect to note is that, for some
FIQAAs, a noticeable difference can be observed between

landmark- and GAN-based morphing algorithms. Specifi-
cally, GAN-based algorithms achieve, in most cases, lower
quality scores w.r.t. landmark-based approaches. This can
be reasonable if we consider that the generated images
do not present the typical artifacts of landmark-based ap-
proaches but are usually characterized by a blurred texture
that is not always “natural” and an image style quite differ-
ent from real images.

4.2. Dataset quality assessment: gate images

The quality of the gate images in the MQ dataset has
been evaluated using FaceQNet, OFIQ, CR-FIQA and SER-
FIQ; the results are reported in Figure 3.

First of all, it is worth noting that the gate images used
for the D-MAD evaluation have been selected from video
streams either by the specific face verification SDK installed
in the acquisition device when feasible, or manually. De-
spite of this selection, they still present some pose varia-
tions due to the free movement of the subject during acqui-
sition (potentially causing motion blur) or to the position



Figure 3. Comparison of quality measures for gate (G) and bona
fide enrolment images (B), using different FIQAAs.

of the camera, changes in illumination or slight blurring.
A first aspect to note is that, for the different FIQAAs, the
bona fide images achieve quality scores mostly comparable
to those of gate images (see Figure 3); the only exception
is OFIQ, which generally assigns higher scores to bona fide
images. We believe that this is due to several factors. First
of all the methods used are deep-learning based, and the
models used for quality assessment take as input fixed-size
images; this implies a face detection stage (which removes
the face surrounding area) and a resize that causes a loss in
terms of resolution in case of high-quality ISO/ICAO com-
pliant images. Moreover, the pre-selection done on the gate
images certainly allowed to exclude the most extreme cases;
the visual quality of the gate images is therefore reasonable,
despite of the above mentioned variations. Finally, we ob-
serve that the range of quality scores is quite different for the
analyzed FIQAAs, with average values quite high for some
FIQAAs such as CR-FIQA and quite low for others (e.g.,
FaceQNet). This behaviour clearly shows that the compari-
son of quality scores computed with different approaches is
critical and supports the need for a standardized approach
able to guarantee system interoperability.

5. Impact of image quality on D-MAD perfor-
mance

D-MAD approaches can be broadly organized in two
main categories. The first one includes approaches aimed at
inverting the morphing process and exploiting the resulting
image for MAD detection. The first example of this cate-
gory is Face Demorphing [7], where the typical processing
pipeline adopted for landmark-based morphing is exploited.
This method, being based on a combination of shape warp-
ing and texture blending, produces in general better results
when the quality of the input images is good, i.e., well-

aligned frontal images with uniform illumination. The sec-
ond category includes approaches focusing on identity fea-
tures, extracted from both the enrolment and gate images
and compared to classify the enrolment image as morphed
or not. In this category, we find two interesting recent ap-
proaches, ArcFace [4] and MagFace [21], which currently
represent the state-of-the-art in D-MAD based on the re-
sults achieved in NIST FATE-MORPH[22] and BOEP [1].
The two techniques exploit the same basic idea of using a
Deep Neural Network, originally trained for the face recog-
nition task, to extract feature embeddings from the two in-
put images. According to the authors, the network is pre-
trained and no additional training is performed specifically
for the morphing detection task, thus avoiding any kind of
overfitting with training datasets limited in size and variety.
The extracted features are then subtracted and the result-
ing feature vector is given as input to an SVM classifier
for the final classification. For ArcFace [24, 20], a ResNet-
50 [11] network is used as backbone, trained through the
ArcFace loss [4]; as to MagFace, the same backbone is
trained through the MagFace [21] loss function, an adaptive
mechanism to learn a well-structured within-class feature
distribution relying on the magnitude of vectors.

5.1. Analysis of the results

We analyze here the impact of image quality on the D-
MAD performance. In particular, we conducted the D-
MAD experiments on the MQ dataset described in Section
3, consisting of 2187 bona fide and 158987 morphed at-
tempts. Figure 4 reports the results obtained by the different
D-MAD algorithms on the MQ dataset in a DET plot where
the Bona fide Classification Error Rate (BPCER) is given as
a function of the Morphing Attack Classification Error Rate
(MACER) [19].

Figure 4. DET curves of the tested D-MAD approaches on the MQ
dataset.

The D-EER of Demorphing is quite high, 17.01% on the



whole MQ dataset, confirming that this dataset represents
a realistic and challenging benchmark compared to exist-
ing public evaluation datasets (where Demorphing achieved
significantly lower error rates). Slightly better results are
achieved by ArcFace, whose D-EER on the whole set is
12.4%; MagFace achieved the best performance with a D-
EER of 7.73%.

5.1.1 Impact assessment based on unified quality score

For quality impact assessment, we organized the D-MAD
attempts (both bona fide and morphed) in different subsets
based on the quality of the enrolment and gate images in-
volved in each attempt. Specifically, the quality scores of
enrolment images are sorted in increasing order and the 1st,
2nd and 3rd quartiles are computed and used as thresholds
to organize the enrolment images into four equally-sized
subsets of increasing quality ([< 1st], [1st -2nd], [2nd - 3rd],
[>3rd]). The same is done for the gate images, thus iden-
tifying 16 possible combinations of enrolment/gate image
quality ranges. Each attempt is therefore assigned to one of
these 16 subsets according to the quality of the enrolment
and gate image used for the attempt. We then computed
the D-EER for the single subset of attempts to analyze the
possible impact of image quality. The full results are given
in the supplemental material. To better quantify the impact
of quality, for each enrolment subset, we also computed the
relative difference (percentage) in the D-EER between the
gate images of bad quality (< 1st quartile) and those of good
quality (> 3rd quartile):

∆D-EER =
D-EER(4)− D-EER(1)

D-EER(1)
(1)

A negative value is desirable for this indicator, since it cor-
responds to a reduction of the D-EER when the quality of
the images is good w.r.t. bad quality images.

The results in terms of ∆D-EER for Demorphing, Mag-
Face and ArcFace are reported for different FIQAAs in Ta-
ble 1. For each D-MAD approach, the table reports the
∆D-EER values computed according to Eq. 1 for different
FIQAAs. In the first four results columns, the Quality Re-
gressor is used to estimate the quality of the enrolment im-
age and one of the other four FIQAAs to compute the gate
image quality. In the remaining columns, the four consid-
ered FIQAAs are used to compute the quality of both enrol-
ment and gate images.

The results obtained show an interesting correlation be-
tween image quality and D-MAD performance of the De-
morphing algorithm (see also Table 4). In general, we can
confirm that, as expected, the quality of the gate image has
a stronger impact on the results as compared to the enrol-
ment image. When both enrolment and gate images have
top quality scores – element (4, 4) in the matrices in the sup-
plemental material - the D-EER measured is significantly

lower: around 8-13% compared to about 17% on the whole
dataset. Analogously, when both images have poor quality
– element (1, 1) in the matrices in the supplemental mate-
rial – significantly higher error rates are observed (around
18-20% or more). The trend is highlighted quite well by the
∆D-EER values that are negative in most cases, confirming a
reduction (often noticeable) of the D-EER when good qual-
ity gate images can be exploited. As to the single FIQAA,
the general trend described above is more evident for some
approaches. For instance, in this specific evaluation, OFIQ
and SER-FIQ, as well as their combination with the Quality
Regressor, seem to produce more coherent results.

This outcome is confirmed by the results obtained for
some specific quality assessment algorithms also for Mag-
Face (see Table 5 for details), even if the trend is a bit less
evident in this case. In particular, the results observed with
SER-FIQ and OFIQ confirm more clearly the impact of gate
image quality on MAD. In general gate images of very low
quality produce worst MAD performance (first column of
all tables); the correlation is confirmed also in this case by
the mostly negative values of ∆D-EER. Among the differ-
ent D-MAD systems analyzed, ArcFace seems to present a
lower correlation with image quality (see also Table 6), but
even in this case an impact of quality can be appreciated
when specific FIQAAs are used (e.g., SER-FIQ and OFIQ),
as shown by the negative ∆D-EER values.

The higher impact of quality on Demorphing is perfectly
reasonable since the Demorphing approach is based on the
inversion of the morphing process and produces better re-
sults when the two images are frontal, well-aligned and
with good illumination. MagFace and ArcFace approaches
are different from Demorphing and mainly rely on iden-
tity information extracted through DNN models, specifi-
cally trained to be more robust to this kind of variations.

As a further result, the impact of quality for enrolment
and gate images separately has been quantified by reporting
the ∆D-EER in Table 2 for different FIQAAs and different
D-MAD approaches. The results confirm a generally high
impact of gate images quality while the effect of the en-
rolment image quality is less relevant. SER-FIQ and OFIQ
confirm to be reliable FIQAAs, being able to predict quality
scores correlated to D-MAD accuracy.

5.1.2 Impact assessment based on specific quality com-
ponents

The results reported in the previous section show that the
quality of gate images has an impact on MAD performance.
In order to have more insights on the specific quality as-
pect influencing the performance, we decided to perform
further investigations using some of the quality components
suggested in the new version of the international standard
ISO/IEC 29794-5 [17]. The analysis focuses on the gate im-



D-MAD Enrolment
quality

Regressor
CR-FIQA

Regressor
SER-FIQ

Regressor
FaceQNet

Regressor
OFIQ

CR-FIQA SER-FIQ FaceQNet OFIQ
D

em
or

ph
. 1 8.7% 16.5% -35.2% -12.0% -97.4% -90.2% -41.6% -64.0%

2 -30.8% -43.4% -40.8% -43.1% 92.3% -30.7% -53.0% -47.1%
3 -9.6% -51.6% -20.9% -13.2% -1.5% -31.3% -55.1% -41.1%
4 -17.1% -21.2% -33.1% -50.7% 33.8% 49.0% 121.8% -17.7%

M
ag

Fa
ce

1 6.2% -10.3% -33.3% -42.8% -83.1% -61.9% -89.2% -82.5%
2 -24.4% -49.5% -30.6% -47.1% 9.8% -13.4% -25.7% -44.7%
3 -6.7% -52.7% -10.3% 12.3% -10.8% -41.9% -46.9% -33.8%
4 -1.3% -15.4% 2.0% -24.6% 71.3% 35.7% 30.0% -39.6%

A
rc

Fa
ce

1 13.8% -0.9% -15.1% -38.3% -80.3% -41.5% -85.5% -24.4%
2 14.8% -32.7% 28.1% -43.1% -57.4% 35.7% 12.6% 4.0%
3 33.8% 4.8% 45.8% 78.3% -26.6% -4.5% -26.6% -5.9%
4 12.2% -31.6% -10.1% -16.8% 159.9% 33.3% 39.1% -24.8%

Table 1. Demorphing, MagFace and ArcFace ∆D-EER for different enrolment image quality (rows) and FIQAAs (columns).

Measure Demorphing MagFace ArcFace

Enrolment

Regressor -0.83% -3.07% 24.18%

CR-FIQA -2.18% 42.28% 43.46%

SER-FIQ 2.93% -29.82% -26.23%

FaceQNet -10.50% -14.95% 10.44%

OFIQ 6.09% -9.74% 56.67%

Gate

CR-FIQA -13.88% -0.30% 20.62%

SER-FIQ -33.53% -34.91% -23.40%

FaceQNet -37.80% -19.25% 13.29%

OFIQ -28.21% -30.08% -13.98%
Table 2. Impact of enrolment and gate image quality on D-MAD
performance, expressed in terms of ∆D-EER representing the rela-
tive D-EER variation between the fourth and the first quality bins.

ages, which present a higher variability in terms of quality
with respect to enrolment images. The quality measures are
computed on the raw captured images, without any kind of
cropping applied. The main focus is on illumination, possi-
ble blurring, presence of shadows and pose variations, com-
puted as explained in Section 2.1.

Figure 5. Quality score distribution in gate images for different
quality components.

Each quality measure is defined in the range [0-100] in
this case. The variations of the quality components in the
set of gate images are represented in Figure 5. Gate images

present some noticeable variations in terms of illumination
uniformity and presence of shadows, due to the variable
lightning conditions used in different acquisition sites and
environments. The focus level is also quite variable, images
are taken while the subject is moving so a blurring effect
is visible in some cases. Finally the pose presents limited
variations, even if there are some differences for the three
axes. In particular, roll angles are always well controlled as
expected, some limited variations are observed in terms of
yaw, while pitch is the pose indicator presenting a higher
variability. We believe the latter is related to the acquisition
condition that characterizes some sites where the acquisi-
tion device is placed not exactly in front of the subject and
images are acquired from a slightly lower (or higher) van-
tage point. In our evaluation, we consider only pitch that
might have an impact, especially on Demorphing results.

We finally performed an analysis of the correlation be-
tween the gate image quality for the different components
and the D-MAD performance. Also in this case, for each
quality component, we identified the different quartiles and
used them to define four subsets of gate images of vary-
ing quality. The bona fide and morphing attempts have
been subsequently organized into four subsets, based on the
quality of the gate images computed according to a specific
quality component, and the corresponding D-EER is com-
puted. The results are given for illumination uniformity,
focus, pitch, yaw and shadows in Figures 6a, 6b and 6c for
Demorphing, MagFace and ArcFace, respectively. More-
over, Table 3 reports the corresponding ∆D-EER.

The interesting aspect to analyze in the graphs for De-
morphing is the trend observed for each quality component
in the different subsets of images. For illumination unifor-
mity, focus, and pitch a very clear decreasing trend in the er-
ror rates is visible as the specific quality value increases. For
shadows the trend is less evident, probably due to the equal-
ization procedure applied by Demorphing. Pitch exhibits
the most evident impact: the D-EER measured on the im-
ages with higher angles (< 1st quartile in terms of quality)



(a) Demorphing

(b) MagFace

(c) ArcFace

Figure 6. D-EER for the four quality bins computed for different
quality components on the gate images.

Measure Demorphing MagFace ArcFace

Quality
components

Illumination -12.60% 1.95% 15.57%

Defocus -27.68% 22.86% 28.89%

Pitch -41.11% -14.96% -1.49%

Yaw -25.74% 10.97% 18.45%

Shadows 11.13% -31.62% -18.72%
Table 3. Impact of specific quality components on D-MAD perfor-
mance, expressed in terms of ∆D-EER.

is around 24% while in the last two subsets, characterized
by very limited angles, the D-EER drops to around 14%.
The impact of the yaw angle, that is generally limited in the
gate images, is slightly lower on D-EER; for higher yaw an-
gles (< 1st quartile in terms of quality), the D-EER is in fact
around 21%. Overall, the results show that, as expected, il-
lumination conditions, focus and pose represent important
challenges for Demorphing, with pose being the most im-
portant factor to consider. MagFace and ArcFace D-MAD
approaches (Figures 6b and 6c) confirm a higher robustness
to face image variations, generally achieving lower error
rates, not strongly impacted by varying quality scores for
the different quality components. Some correlations be-
tween quality and D-EER are observed for shadows and
pitch. On the contrary, the trend for focus is increasing,

suggesting that lower error rates are observed for slightly
blurred images; this is a little counterintuitive, but it is prob-
ably justified by the fact that for MagFace the face image is
resized to the fixed dimension required as input by the net-
work for embedding extraction thus limiting the impact of
defocus; moreover, a slight blurring could reduce the pres-
ence of possible artifacts in the face image, thus allowing to
reliably extract identity features.

6. Conclusions

Face image quality plays an important role in face recog-
nition; in the context of electronic ID documents, it repre-
sents a valuable instrument for the selection of document
images or specific frames from the video stream to be used
for face verification. This work focuses on the correlation
between image quality and MAD performance. The dataset
analyzed represents an important resource for this assess-
ment since it depicts a real operational scenario, where the
typical face appearance variations are well represented; the
lack of realistic probe images is generally an important lim-
itation of the existing public datasets used for D-MAD al-
gorithms evaluation. The analysis highlights some interest-
ing aspects, showing that D-MAD performance mostly de-
pends, as expected, on the quality of the gate image. In par-
ticular, illumination, focus and pose have an impact on the
Demorphing performance. Pose is the most critical factor
since Demorphing requires an alignment of the document
and the gate images and this alignment is not optimal when
the pose is not frontal. MagFace and ArcFace showed to
be more robust to most of these specific variations, even if
in general a correlation between unified quality scores of
gate images and D-MAD performance is confirmed. Identi-
fying the most relevant quality factors influencing D-MAD
performance and identifying at the same time appropriate
metrics able to quantify those factors is a valuable outcome
of this study. We believe that selected quality indicators
could be effectively coupled with D-MAD approaches in
different ways, to pre-process the gate image, if necessary
(for instance to adjust lighting or other factors impacting
D-MAD performance) or to select “good” frames from the
video stream acquired at the gate for reliable D-MAD. Fi-
nally, quality scores could be used to modulate the morph-
ing score, thus better taking into account the probe image
quality and avoiding false alarms for low quality images.
These observations provide the basis for our future research.
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Supplemental material

Regressor - CR-FIQA Regressor - SER-FIQ Regressor - FaceQNet Regressor - OFIQ

1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER

1 .153 .143 .135 .167 8.7% 1 .108 .205 .185 .126 16.5% 1 .181 .156 .134 .117 -35.2% 1 .157 .205 .103 .138 -12.0%

2 .164 .163 .105 .114 -30.8% 2 .171 .180 .136 .097 -43.4% 2 .186 .145 .138 .110 -40.8% 2 .176 .167 .104 .100 -43.1%

3 .206 .193 .155 .186 -9.6% 3 .261 .246 .211 .126 -51.6% 3 .230 .174 .161 .182 -20.9% 3 .231 .192 .140 .200 -13.2%

4 .155 .133 .123 .128 -17.1% 4 .186 .161 .102 .147 -21.2% 4 .152 .140 .161 .101 -33.1% 4 .164 .173 .102 .081 -50.7%

CR-FIQA SER-FIQ FaceQNet OFIQ

1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER

1 .176 .111 .036 .005 -97.4% 1 .207 .175 .131 .020 -90.2% 1 .201 .165 .128 .118 -41.6% 1 .213 .163 .078 .077 -64.0%

2 .140 .128 .091 .269 92.3% 2 .154 .179 .161 .107 -30.7% 2 .185 .101 .146 .087 -53.0% 2 .193 .247 .111 .102 -47.1%

3 .196 .207 .133 .193 -1.5% 3 .209 .218 .143 .144 -31.3% 3 .197 .176 .157 .089 -55.1% 3 .189 .185 .127 .112 -41.1%

4 .118 .188 .171 .158 33.8% 4 .095 .267 .213 .142 49.0% 4 .070 .170 .160 .155 121.8% 4 .181 .207 .132 .149 -17.7%

Table 4. Demorphing D-EER for 16 quality bins (4 for enrolment, 4 for gate images) determined according to different FIQAAs. Rows and
columns refer to enrolment and gate image quality, respectively. The ∆D-EER is also reported in the last column of each table, representing
the relative D-EER variation between the 4th and the 1st gate quality bins.

Regressor - CR-FIQA Regressor - SER-FIQ Regressor - FaceQNet Regressor - OFIQ

1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER

1 .087 .073 .065 .092 6.2% 1 .074 .107 .082 .067 -10.3% 1 .116 .056 .074 .077 -33.3% 1 .099 .097 .083 .057 -42.8%

2 .086 .074 .063 .065 -24.4% 2 .096 .090 .076 .049 -49.5% 2 .109 .055 .074 .075 -30.6% 2 .104 .066 .084 .055 -47.1%

3 .095 .054 .055 .089 -6.7% 3 .111 .073 .063 .053 -52.7% 3 .103 .053 .051 .092 -10.3% 3 .094 .046 .066 .106 12.3%

4 .093 .065 .061 .092 -1.3% 4 .086 .086 .077 .073 -15.4% 4 .071 .077 .097 .072 2.0% 4 .079 .091 .102 .060 -24.6%

CR-FIQA SER-FIQ FaceQNet OFIQ

1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER

1 .092 .032 .018 .016 -83.1% 1 .127 .089 .099 .048 -61.9% 1 .102 .083 .053 .011 -89.2% 1 .119 .056 .101 .021 -82.5%

2 .105 .055 .034 .116 9.8% 2 .081 .064 .066 .070 -13.4% 2 .082 .039 .095 .061 -25.7% 2 .067 .072 .097 .037 -44.7%

3 .080 .062 .060 .071 -10.8% 3 .089 .105 .070 .052 -41.9% 3 .117 .049 .089 .062 -46.9% 3 .101 .073 .083 .067 -33.8%

4 .059 .112 .079 .102 71.3% 4 .048 .084 .078 .065 35.7% 4 .055 .046 .052 .072 3.0% 4 .109 .092 .087 .066 -39.6%

Table 5. MagFace D-EER for 16 quality bins (4 for enrolment, 4 for gate images) determined according to different FIQAAs. Rows and
columns refer to enrolment and gate image quality, respectively. The ∆D-EER is also reported in the last column of each table.

Regressor - CR-FIQA Regressor - SER-FIQ Regressor - FaceQNet Regressor - OFIQ

1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER

1 .103 .114 .075 .118 13.8% 1 .103 .144 .113 .102 -0.9% 1 .133 .082 .118 .113 -15.1% 1 .123 .137 .140 .076 -38.3%

2 .099 .092 .090 .114 14.8% 2 .122 .123 .086 .082 -32.7% 2 .107 .066 .114 .138 28.1% 2 .099 .118 .123 .056 -43.1%

3 .082 .103 .103 .110 33.8% 3 .088 .125 .122 .092 4.8% 3 .104 .083 .091 .152 45.8% 3 .083 .102 .096 .148 78.3%

4 .135 .106 .098 .151 12.2% 4 .144 .169 .106 .099 -31.6% 4 .137 .127 .157 .123 -10.1% 4 .145 .138 .126 .121 -16.8%

CR-FIQA SER-FIQ FaceQNet OFIQ

1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER 1 2 3 4 ∆D-EER

1 .089 .035 .029 .018 -80.3% 1 .150 .140 .131 .088 -41.5% 1 .124 .099 .085 .018 -85.5% 1 .076 .069 .145 .057 -24.4%

2 .125 .103 .061 .053 -57.4% 2 .088 .087 .123 .120 35.7% 2 .146 .073 .163 .164 12.6% 2 .044 .072 .111 .046 4.0%

3 .119 .117 .067 .088 -26.6% 3 .088 .181 .083 .084 -4.5% 3 .105 .065 .119 .077 -26.6% 3 .138 .134 .127 .130 -5.9%

4 .058 .145 .130 .150 159.9% 4 .063 .147 .102 .084 33.3% 4 .095 .091 .078 .132 39.1% 4 .131 .174 .117 .098 -24.8%

Table 6. ArcFace D-EER for 16 quality bins (4 for document, 4 for gate images) determined according to different FIQAAs. Rows and
columns refer to enrolment and gate image quality, respectively. The ∆D-EER is also reported in the last column of each table.


