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Abstract: This paper comprehensively explores the development of a standalone and compact mi-
crowave sensing system tailored for automated radio frequency (RF) scattered parameter acquisitions.
Coupled with an emitting RF device (antenna, resonator, open waveguide), the system could be
used for non-invasive monitoring of external matter or latent environmental variables. Central to
this design is the integration of a NanoVNA and a Raspberry Pi Zero W platform, allowing easy
recording of S-parameters (scattering parameters) in the range of the 50 kHz–4.4 GHz frequency
band. Noteworthy features include dual recording modes, manual for on-demand acquisitions and
automatic for scheduled data collection, powered seamlessly by a single battery source. Thanks to
the flexibility of the system’s architecture, which embeds a Linux operating system, we can easily
embed machine learning (ML) algorithms and predictive models for information detection. As a
case study, the potential application of the integrated sensor system with an RF patch antenna is
explored in the context of greenwood hydration detection within the field of smart agriculture. This
innovative system enables non-invasive monitoring of wood hydration levels by analyzing scattering
parameters (S-parameters). These S-parameters are then processed using ML techniques to automate
the monitoring process, enabling real-time and predictive analysis of moisture levels.

Keywords: microwave sensors; NanoVNA; Raspberry Pi; precision agriculture; machine learning

1. Introduction
1.1. State of the Art

The advancement of radio frequency (RF) integrated circuits (ICs) is the primary
driving force behind the current rapid progress in portable and low-cost vector network
analyzer (VNA) technology [1]. Since the inception of the first devices in the 1950s, VNAs
have undergone continuous enhancement in terms of accuracy, speed, miniaturization, and
functionality. These advancements have solidified their status as indispensable instruments
for research, development, manufacturing, and testing purposes [2]. Notably, VNAs serve
as the primary measurement tools utilized for characterizing circuits and devices across
radio, microwave, millimeter-wave, and submillimeter-wave frequencies [3,4]. Indeed,
VNAs have become highly sought-after instruments that extend beyond the domain of
electronic and telecommunications engineering. Emerging applications of VNAs encom-
pass the measurement of various materials, biological samples, plants, and soils [5–13]. In
fields like dielectric spectroscopy, when coupled with appropriate sensors, the VNA offers
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invaluable capabilities [14,15]. When coupled with one or more antennas, it transforms
into a radar system, capable of detecting material flaws imperceptible to the naked eye,
even without the use of X-rays [16]. However, the utilization of VNAs typically remains
limited to stationary scenarios because of their size, weight, and high cost [17]. Conse-
quently, there exists a growing demand for a compact, affordable, and portable VNA with
sufficient accuracy and functionality. Such a device is regarded as a promising noninva-
sive measurement technique applicable across a wide range of fields [18]. However, the
initial efforts to develop cost-effective functional VNAs were primarily targeted at the
amateur radio market, focusing on the HF and VHF portions of the spectrum [19]. Another
well-known series of devices is the nanoVNA series, which has given rise to numerous
variants [20]. A separate VNA, named nanoVNA v2, has recently emerged and developed
independently from the original one. The latter represents a portable yet high-performance
tool. This compact handheld device operates as a battery-powered, self-contained LCD
gadget [21]. In its initial development stages, the NanoVNA was designed to function
within the 50 kHz–300 MHz frequency range. The operation of this nano-analyzer’s mixer
SA612A necessitates a 5 V power supply, which cannot be directly sourced from the battery.
Therefore, an initial version of the NanoVNA required a USB power supply for operation.
For this reason, Hugen redesigned the NanoVNA based on the edy555 schematic and
incorporated a DC-DC circuit, enabling it to operate independently [22]. A new version
of the NanoVNA called NanoVNA V2 (S-A-A-2) has been released, which can operate
within a frequency range of 50 kHz–4.4 GHz [23]. Like [24], one of the few studies that
have proposed a method that utilizes a Raspberry Pi to act as an interface between a VNA
and a universal arm robot to perform automated measurements, the focus of this study is
on robotics. The system considered in that study, consisting of a VNA, an antenna horn,
and a Raspberry Pi, is not portable. Nevertheless, there is always a need for improvement
of the NanoVNA by employing solutions for data-acquisition-managed local processing,
and miniaturizing it by removing its LCD screen to make it fully wearable [25].

As far as the application chosen in this paper is concerned, assessing wood’s physical
attributes without causing damage is crucial in contemporary orchard production proce-
dures [26]. The amount of water transpired by a plant is an important factor for irrigation
management and the study of plant–water relations. Measuring the volumetric sap flow
rate in plant stems provides a method for estimating transpiration, which is essential in
precision agriculture. It is known that water stress and sap flow measurements are the
most sought feature in irrigation management; however, they are complex to implement in
the field. Therefore, the evaluation of trunk moisture content (MC), even if it misses some
information, could be a faster and more reliable technique to fulfill the main requirements.
Two primary methods for determining the MC of wood can be identified. The dielectric
characteristics of wood are influenced by factors such as density, MC, temperature, and fre-
quency [27]. The first involves direct measurements, in which the MC is assessed through
oven drying, which is considered to be the most accurate method for determining the MC
of materials according to standardized processes (see EN ISO 12570 [28]). However, in
commercial woodworking practice as well as in the field, there is a pressing need for imme-
diate and highly accurate determination of the MC of materials [29]. Indirect measurement
techniques are indeed quick in determining the MC [30]. These technologies encompass
multiple methods, such as electrical resistance measurements [31], acoustics [32], ther-
mal [33,34], near-infrared spectroscopy (NIR) [35], and RF [36]. The latter method fulfills
all the desirable criteria of being non-destructive, non-contact, accurate, robust, and rapid
simultaneously. It is typically useful for monitoring purposes, but its current application
might be hindered by the relatively high cost of the measurement equipment it requires,
and it seems that there is still a need for more affordable, low-cost, and stand-alone tech-
niques for monitoring wood MC. Sap flow evaluation by thermal methods seems to be the
most accurate and relies on detecting temperature changes in the sap using thermocouples
placed at locations distant from a heat source. However, even if very useful in agricultural
research, it is time consuming in the field, as it requires drilling into the trunk or the precise
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attachment of sensors and actuators. For these reasons, the proposed approach is promising
since it is non-invasive and does not require trunk modification. It is easy to install in a
shorter timeframe in a working field scenario, allowing for the monitoring of many trees
for irrigation purposes.

1.2. Proposed Approach and Application

Following the needs of the application and the drawbacks of currently used techniques,
we developed a patch-type antenna spectral sensor to be installed on the upper horizontal
surface of greenwood samples to capture the RF spectra of the microwave signals reflected
by the wood. Since the device is noninvasive, it could be easily applied, removed, and repli-
cated in multiple devices for orchard monitoring. The approach is shown in Figure 1. To
demonstrate the feasibility of the technique, thanks to the versatility of the proposed device,
we performed long-term acquisitions of scattering parameter spectra of a greenwood trunk
chop forced to progressively dry in a climate chamber. Then, we performed ML algorithms
on the acquired spectra to understand the correlation with hydration values.
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Figure 1. Overview of the proposed system and application.
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The device is based on a versatile standalone and miniature system using a NanoVNA
as an RF sensor frontend working in both manual and automatic modes. To accomplish that,
we used a Raspberry Pi Zero as a control system and fused the two systems using a custom
printed circuit board (PCB) board. It facilitates powering both components using a singular
battery source and automatically capturing spectra. Data acquisition is performed through a
Python function saved in a Raspberry Pi Zero W, which is also used for storing the data and
controlling all the parameters necessary for the acquisition. The features of the presented
system represent a first example in the integration of a low-cost microwave-based platform
for precise and automated S-parameter measurements. The MC detection in the wood
sample is carried out by adopting a patch antenna, operating at 2.45 GHz, as the sensing
element. Patch antennas are widely exploited in RF applications for their low profile, low
cost, and ease of manufacturing. Although patch antennas are commonly used in wireless
links [37,38], vehicle positioning [39], energy harvesting/WPT [40–42], and biomedical
applications [43], they are not extensively exploited for sensing applications. In [44], a
first attempt to use a patch antenna as a sensing element for MC detection is presented.
Common RF-based sensors exploit near-field resonators such as split-ring resonators (SRRs)
and complementary split-ring resonators (CSRRs) [45]. Although the latter offer high
performance in terms of quality factors, they have low penetration thicknesses, making
them unsuitable in solutions where the chemical and/or physical property to be analyzed
resides in the innermost layers of the material under test. Therefore, a patch-type antenna,
operating in the near-field radiative region, is used as an MC detector. However, a bare
automatic VNA could hardly be considered a sensor of some physical entity because
spectra raw data hide the sought information [46]. For this reason, a machine learning (ML)
post-processing technique should be employed to extract sensitive variables. Therefore, the
acquired spectra were collected into a dataset, and an ML predictive model was derived.
The latter could then be used in operating mode to monitor, in real time and in a real
scenario, the amount of water flowing in a trunk to understand watering needs.

The main contributions presented in this paper are twofold. First, from the architec-
tural implementation viewpoint we will present: (i) a compact hardware (HW) integration
between a Raspberry Pi Zero W, a single-board computer (SBC) and a NanoVNA V2
(S-A-A-2) operating in the range of 50 KHz–4.4 GHz [23,47,48], using specific PCB and case
design; (ii) a data acquisition procedure based on Python scripts for manual and automated
S-parameter acquisition and data storage. Secondly, from the case study demonstration
point of view, we will show (i) the coupling with a patch antenna for hydration sensing of a
cut wood trunk; (ii) a long-term automation acquisition of the S-parameter spectra of fresh
wood dehydrated in a drying oven; (iii) an ML predictive model (embedded in the system)
for hydration quantitative evaluation. The structure of this paper is as follows: Section 2
presents the main architecture and materials. Section 3 introduces the modes of operation.
Section 4 is dedicated to a case study, addressed to the agriculture field, applying the new
PCB. Finally, Section 5 provides a summary of the findings and discusses the implications
of the study.

2. Main Architecture and Materials

The simplified HW structure is presented in Figure 2a, where the NanoVNA is con-
trolled by a Raspberry Pi to gather spectra from the nanoVNA connected with an external
patch antenna. The controls and the power supply of the NanoVNA are delivered through
an internal USB connection. The architecture has been conceived to work for two kinds
of acquisitions, manual and automatic, using additional components located in a custom
PCB. The Raspberry Pi is powered by a DC/DC converter through an MOS switch that is
normally set to ON. In the manual mode, the NanoVNA and the Raspberry Pi are always
powered, and a single acquisition is enabled by an HW interrupt. In automatic mode, a
real-time clock (RTC) is enabled, which can put the Raspberry Pi in HW sleep by switching
off its power supply through the MOS transistor. The acquisition timing is set by a digitally
controlled resistance connected to the RTC. The data flow is shown in Figure 2b. The overall



Sensors 2024, 24, 6199 5 of 19

control is performed by the Raspberry Pi using Python scripts that run in its operating
system. All the spectra are temporarily stored in the Raspberry’s internal memory and
transferred to an external PC through a Wi-Fi link on demand to be processed offline.
Alternatively, in a more advanced implementation, the predictive models could be directly
implemented in the Raspberry to achieve direct hydration estimation to realize a fully
autonomous sensor. In automatic mode, a script is run during the wake-up phase when the
Raspberry is powered on. All the acquisition parameters are previously set in the script
during the setup.

(a)

(b)

Figure 2. (a) Hardware structure of the proposed PCB; (b) data flow scheme.

2.1. The Core HW Components

The overall system is based on the integration of the following two core components:
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2.1.1. Raspberry Pi

Raspberry Pi is a series of small SBCs developed in the United Kingdom by the
Raspberry Pi Foundation in association with Broadcom [47]. The presented study depends
on the Raspberry Pi Zero W model. This new iteration is a further development of the
Raspberry Pi Zero, an extremely affordable model that could be purchased at retail prices
down to a few dollars upon its release in 2015. This version offers integrated Wi-Fi and
Bluetooth low energy (BLE) functionality, which eliminates the need for external adapters
and enhances flexibility. This model boasts the following key features: a 1 GHz single-core
GPU, 512 MB of RAM, a Mini HDMI port, a micro USB on-the-go (OTG) port, and a
HAT-compatible 40-pin header. It runs a 32b Pi OS, a Unix-like operating system based on
the Debian GNU/Linux distribution on which Python 3.0 scripts can run, managing data
acquisition via the NanoVNA and saving the results as text files.

2.1.2. NanoVNA

NanoVNA V2 (S-A-A-2) is a 4 GHz VNA [48]. Its wide frequency range makes
it versatile for various applications, including HF radio, Wi-Fi, and cellular networks.
Moreover, the NanoVNA V2 provides low noise and enhanced temperature stability, both
crucial for high-precision, long-term measurements. Furthermore, the improved USB
protocol and software support enable seamless integration with other systems for real-time
data streaming and advanced analysis. Before conducting measurements, a thorough
calibration is carried out using an open-short-load protocol following standard procedures
to ensure high accuracy. The NanoVNA V2 allows the computation of the complete set
of four scattering parameters (S-parameters) in the 50 KHz–4.4 GHz range using two
ports. The setup can be selected by the user through the LCD screen. The acquisitions
can be conducted by linking the NanoVNA to a computer and employing the specialized
software. Alternatively, it can be connected to the Raspberry Pi via a USB cable and
utilize a Python function to configure the settings, execute calibration, and obtain the
spectrum. When connected to external devices, power is supplied through the USB cable.
The used NanoVNA model in the present paper is an unofficial clone called “3.2 black
and gold”, but it is compatible with the official software. The primary distinction between
the official version and this clone lies in the inclusion of an external battery, enabling its
use as an autonomous system. Upon removing the external casing, it is revealed that the
NanoVNA comprises two PCB boards. One houses circuits that are essential for the LCD
screen and the battery. At the same time, the other one accommodates all components
necessary for generating electromagnetic waves and acquiring the T/R waves. To make a
spectral acquisition, the NanoVNA needs to be connected to another system. Usually, it is
connected to a PC with a USB cable, and acquisitions are performed thanks to a software
called NanoVNA-QT, downloadable from its official website.

2.2. Custom PCB Design Elements

A compact PCB has been designed, as depicted in Figure 3, whose purpose is twofold.
Firstly, it connects the Raspberry Pi with the VNA and external switches/LEDs. It ac-
commodates the Raspberry Pi using a 20 × 2 pin header. This configuration ensures that
all GPIO pins utilized for our application are electrically connected to the rest of the cir-
cuit. Since the NanoVNA screen is not needed for our purposes, we opt to utilize only
the second PCB. The PCB we designed will replace the first one and incorporate a new
battery. This configuration allows it to be compatible with both the official version of
the NanoVNA and our modified setup. The mechanical design facilitates the physical
connection between the two devices: it is crafted to be mountable atop the NanoVNA,
enabling the Raspberry Pi to be soldered onto it using a 40-pin header. This setup results
in a compact and self-sufficient device. Additionally, leveraging the Raspberry Pi’s Wi-Fi
capability, the device can be connected to the internet seamlessly. The power-on and -off
cycle, combined with a one-spectrum acquisition, takes less than 1.5 min, showcasing the
system’s efficient operation. Despite its single-core CPU, the prediction process is swift:
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experimental trials demonstrate that once a spectrum is acquired, the entire computation
takes approximately 1 min. Secondly, it hosts other components that are used for governing
the system, specifically:

1. A USB interface chip BQ2409 (Texas Instruments, Dallas, TX, USA): This serves to
connect the system with a 3.7 V battery. It facilitates charging the battery using
standard power cables (similar to the one utilized for the Raspberry Pi) via the micro
USB port, even while the system is operational.

2. A step-up DC/DC converter TLV61070a (Texas Instruments, Dallas, TX, USA): It
converts the 3.7 V output from the battery to 5 V for powering both the Raspberry Pi
and the RTC.

3. An RTC TPL5110 (Texas Instruments, Dallas, TX, USA): It is used for the time control
of the system in automatic acquisition. It is linked to a digital potentiometer (MAX5161
(Maxim Integrated Products, Sunnyvale, CA, USA) [49]. Additionally, the real time
clock (RTC) is connected to a PMOS transistor (Infineon IRLML2246 (International
IoR Rectifier, CA, USA)) [50], which is responsible for controlling the 5 V line. This
control allows for a complete deep sleep of the Raspberry Pi when it is not in use.

4. Temperature and humidity sensors SHT40 (Sensirion, Staefa ZH, Switzerland): This
sensor is used for monitoring both internal and external temperature and humidity,
with humidity accuracy of ±1.8% RH and temperature accuracy of ±0.2 ◦C. It is
directly connected to the Raspberry Pi via the I2C protocol.

As illustrated in Figure 3, there are switches included to power up the system and en-
able manual data acquisition. Switch 1 is specifically employed to power up the Raspberry
Pi and the other associated components. Conversely, Switch 2 is designated to power only
the RTC. This system enables the implementation of two modes of operation. In the manual
mode, the Raspberry Pi remains powered on until it manually shuts down, allowing for
single spectra acquisition by pressing Switch 3. Conversely, in the automatic mode, an
RTC module, the TPL5110, is utilized [51], which drives a MOSFET that is connected to
the power via the Raspberry Pi. With this, it is possible to turn on the Raspberry Pi auto-
matically only for the time necessary to perform and save an automatic acquisition, greatly
enhancing the duration of a single battery charge. A second manual Switch 2 allows one to
turn on the RTC only when the automatic acquisition mode is required. The period between
two acquisitions is defined by the value of the resistor connected to the RTC. The digital
potentiometer MAX5161, by Maxim Integrated, is used, which can take on 31 different
resistance values, ranging from 0 to 200 kΩ. This configuration empowers the user to select
the period between two consecutive acquisitions via the Raspberry Pi before initiating the
acquisition phase. Two level shifters [52,53] are used to facilitate communication between
the Raspberry Pi, which features 3.7 V output pins, the RTC, and the digital potentiometer,
which operates with 5 V.

Battery Management

This system is primarily executed by the TLV61070a. It takes the 3.7 V battery as
input and provides a 5 V output for powering the Raspberry Pi and all other components.
Additionally, it facilitates battery charging via a micro USB port. Lastly, four LEDs visually
indicate the battery charge status. When the battery charge is above 75%, all four LEDs
are illuminated, gradually decreasing to just one LED when the charge falls below 25%.
The entire system is powered on/off using a manual switch, Switch 1, which is positioned
between the battery connector and the TLV61070a.
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(a) (b)

(c) (d)

(e)

Figure 3. PCB and case implementation: (a) front view; (b) back view; (c) side front view; (d) side
back view; and (e) case made using 3D printing.

2.3. External Patch Antenna

The sensing element is a patch antenna operating at 2.45 GHz, realized on a typical
RF substrate Rogers RO4360G2 (Rogers corporation, Evergem, Belgium) with ϵr = 6.15,
0.610 mm substrate thickness, and electrodeposited copper with 35 µm thickness). A coaxial
feeding is chosen for the antenna, to avoid direct contact of the feeding section with the
wood sample. The antenna is firstly simulated through full-wave electromagnetic (EM)
simulation, in a CST STUDIO environment. Figure 4a,b show the top and lateral views
of the proposed antenna, respectively. The total dimensions of the radiating element are
50 × 50 mm2. A superstrate, when placed above a patch antenna, significantly influences
the reflection coefficient by altering the impedance matching between the antenna and
the surrounding medium. This happens because the superstrate modifies the effective
dielectric constant around the patch, leading to changes in the resonance frequency and
bandwidth of the antenna. For this reason, EM simulations are carried out to predict the
behavior of the antenna in three distinct cases: unloaded antenna (free-space condition),
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dry wood loaded, and wet wood loaded. The electrical properties of the wood in the S-band
are extracted from [54].

The antenna is firstly optimized in the free-space scenario, where a specification of
a reflection coefficient lower than −20 dB is set as a requirement. The antenna is then
simulated in the loaded condition by the wood sample presenting different MC levels. To
reproduce the laboratory measurement conditions, the dimensions of the wood sample
inserted in the EM simulations are the same as those of the real one.

Figure 4c shows the simulated reflection coefficient of the patch antenna in the un-
loaded, fully-dried-wood-loaded, and fully-wet-wood-loaded condition, in the 2–2.8 GHz
band. As expected, the predicted S11 strongly depends on the superstrate medium and its
electrical properties. From the free-space scenario, where the antenna presents a minimum
peak at 2.45 GHz of −27 dB, the deviation in terms of the center frequency is 70 MHz and
110 MHz for the dry-wood-loaded and wet-wood-loaded antenna, respectively. A strong
change in the minimum value of the S11 is also observed. For the dry-wood-loaded antenna,
a −7.5 dB peak is observed, whereas for the wood-loaded patch, it is only −1.5 dB.

The high penetration depth of the electric field strength produced by the patch antenna
is verified by monitoring the electric field along the wood sample section employing full-
wave simulations. The wet wood is used as a test case. In particular, for a trunk sample of
dimensions 19.0 × 20.5 × 20.7 cm3 (longitudinal × radial × tangential, L × R × T), a 25%
decrease in the electric field strength is observed after 15 mm of the patch-wood transition.

(a) (b)

(c)
Figure 4. (a) Top view; (b) lateral view of the proposed antenna with its dimensions (W = L = 50 mm,
Wp = Lp = 24.4 mm, and Hs = 0.61 mm); and (c) simulated reflection coefficient in three different
loading conditions: free-space scenario, dry wood loaded, and wet wood loaded.

3. Modes of Operation

Acquisition of the spectral data with the NanoVNA using a Raspberry Pi is performed
by a Python script that runs in the Raspberry operating system. As previously mentioned,
the existing control system integrated into the PCB enables toggling between two acqui-
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sition methods as presented in Figure 5. The first mode is labeled as manual, while the
option for automatic can be engaged using Switch 2.

Manual mode: The system is activated using Switch 1 after a wait period approximately
less than one minute. A brief press of Switch 3 enables spectrum acquisition. Each spectrum
acquisition takes approximately 10 s. To conclude the acquisition session, the user must
press and hold Switch 3 for more than 1 s to initiate the shutdown of the Raspberry Pi.
After waiting approximately 5 s, the power can be turned off using Switch 1.

Automatic mode: Upon activating the system with Switch 1, the user is required to
establish a connection with the Raspberry Pi and specify the interval between acquisitions
by executing a Python function from the command line. Following this setup, the user must
shut down the Raspberry Pi and then activate the RTC using Switch 2. Subsequently, the
system will automatically power up the Raspberry Pi, which will proceed to autonomously
acquire a spectrum before shutting down. This action prompts the RTC to deactivate the
5 V power. To halt the automatic acquisition process, simply power off the entire system
using Switch 1 and then toggle Switch 2 to disable automatic acquisition. In summary,
spectra will be continuously acquired and stored in the Raspberry Pi’s memory until the
automatic mode is halted by toggling the secondary power switch, Switch 1.

(a) (b)
Figure 5. Mode of acquisitions: (a) manual; (b) automatic.

4. Case Study: Greenwood Moisture Content Detection Using a Patch RF Antenna

The application is addressed by acquiring multiple spectra in a dataset with known
MC (determined by the oven-dry method). Subsequently, a predictive model would be
developed offline and embedded in the proposed PCB. This embedded model could be
enabled in real time for detecting the MC in wood, as the sensor acquires spectra in its
operation mode. The proposed measurement system operating within the frequency range
of 2.2–2.5 GHz was selected to estimate the MC of a silver fir tree trunk chop. The antenna
is affixed to the central area of a flat, horizontal surface of the greenwood sample.

4.1. Experimental Setup

Measurements were conducted on silver fir (Abies alba) greenwood chops with a size
of around 19.0 × 20.5 × 20.7 cm3 (longitudinal × radial × tangential, L × R × T), as seen
in Figure 6. They were freshly placed in a drying oven with a controlled temperature set
at 40 ◦C, attached to a patch antenna, the latter connected to the PCB. The initial MC of
the greenwood in this study measured by the oven-drying method is 110%. Greenwood is
commonly described as recently cut timber where the cell walls are fully soaked with water,
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and there might be extra water within the cells. The moisture level in green wood typically
varies from 30% to over 200% [55]. The target parameter (MC, on a dry basis (%)) used for
the statistical inference was obtained by the traditional weighting method, in which it was
weighted multiple times a day. For a given piece of wood, the MC can be calculated as [56]:

MC(%) =
mgreenwood − movendry

movendry
× 100 (1)

mgreenwood is the mass of the specimen at a given MC in kg, and movendry is the mass of
the oven-dry specimen in kg. The specimen initially weighed 6.944 kg, but by the end
of the drying period, its weight had decreased to 3.299 kg. This weight reduction took
place between the 4 June and the 28 June 2024. As illustrated in Figure 7, the recorded MC
values over this period closely follow a model that has been previously documented in the
literature [57]. The decision to halt the drying process was based on the observation that
there were changes below the resolution of the instruments in the S11 and the weight of the
specimen. We collected 33 MC experimental data points from the 4th to the 28th. Unlike
spectra acquisitions, which are acquired automatically by the system, weight measurements
were taken by hand. Therefore, the number of collected spectra is much greater than that of
the weight measurements. Hence, to make a predictive model, we need to associate each
spectrum with a weight (i.e., hydration status). To do so, we used the fitting model shown
in Equation (2), from which 911 points were extrapolated to be associated with spectra. The
equation is a function of the time t (expressed in hours) up to 572 h, which corresponds to
the experimental duration.

f (t) = A(1 + B × t)−C (2)

where f (t) is the MC percentage at time t, A = 110, B = 5.2 × 10−3, and C = 3.19.

Figure 6. Experimental setup comprising a patch antenna, a drying oven, a greenwood sample, and
the customized PCB.
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Figure 7. Drying curve of the greenwood on a dry basis vs. time.

4.2. Statistical Analysis

A regression approach was chosen to construct the models from the S11 data (the
spectral variables). These spectra served as independent variables and were arranged into
a matrix X (N × K), also referred to as a dataset matrix, containing N acquired spectra, each
defined by the K frequencies variables. Furthermore, for developing predictive models, we
collected MC into a Y (N × 1) output vector. This was achieved using a bilinear regression
technique known as partial least squares regression (PLSR) analysis. First, the dataset
matrix is “well represented” by a matrix of the same size X̂ = TPT , where T is (N × A),
referred to as the score matrix, and PT is (A × K), called the loadings matrix. In other
words, X̂ is a projection of X in a subspace of A < K orthogonal variables of maximum
variance directions. Then, we represent an estimate of the output along the same direction
Ŷ as

Ŷ = TQT + F = X̂PQT + F, (3)

where Q and F are the loading and error matrices of Y , respectively [58,59]. PLSR finds the
A orthogonal direction to maximize the covariance between input and output in the newly
defined spaces. Arranging Equation (3), we have the linear correlation expression

Ŷ = X̂β + β0 (4)

where β is a (K × 1) coefficient array. The latter relationship embeds the predictive model.
In operating mode, newly acquired spectra are treated with Equation (4) to estimate the
moisture percent. The experimental plan included 911 measurements across 400 frequency
points within the range of 2.2–2.5 GHz within 572 h. The independent variables in the
X dataset were organized in a matrix with dimensions N = 911 (spectra measurements)
× K = 400 (frequency points) for the S11 parameter, and N = 911 (spectra numerical
derivative) × K = 399 (frequency points), and the dependent variable Y (dataset MCs) was
arranged as (911× 1) . Spectral sample outliers were identified before initiating the model-
building process on the complete dataset. Cross-validation [60] and test set validations
were subsequently conducted to assess how the models performed with unfamiliar samples
to test the model’s prediction ability without needing other acquisitions, as illustrated in
Figure 8.
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Figure 8. PLSR scheme for calibration, CV, and test validation.

The model’s ability to estimate wood MC was evaluated using several metrics: the
coefficient of determination (R2), root mean square error (RMSE), significant PLSR com-
ponents (latent variables (LVs)), and bias. The R2 describes the correlation capability of
the model, and when it is close to 1, it indicates a high correlation between the model’s
input and output. However, the parameter RMSE is preferred to evaluate the efficacy of
a predictive model using the cross-validation (CV) approach [61]. Finally, bias refers to
the average difference between the model’s estimates and the actual measured values. It
indicates whether the model consistently underestimates or overestimates the true values.
Usually, preprocessed spectra are used in place of spectral raw data, and based on the RMSE
parameter, we found that using the derivative of the spectra is one of the most effective
and computationally simple preprocessing approaches. For the test set validation, 20% of
the samples were randomly extracted from the calibration dataset, which comprised 80%
of the samples, and used to validate the model. The procedure was replicated many times,
each time using a different random test set, and subsequently, the results were averaged.

4.3. Results and Discussion

In Figure 9, the S11 and its derivative results for the greenwood sample are depicted.
These components are color-coded to highlight variations in MC. The frequency range
spans from 2.2 to 2.5 GHz, corresponding to the region of interest. Measurements, car-
ried out using the nanoVNA, report a good agreement with simulations. In particular,
for the dry-wood-loaded patch antenna, the resonant frequency is about 2.38 GHz, and
the minimum peak corresponds to about −8 dB of the reflection coefficient at the same
frequency. As noticed, fluctuations in MC result in changes in spectral characteristics,
including alterations in the intensity of the peak and shifts in resonance frequencies. The
dielectric properties of wood, which vary with MC, significantly impact the propagation
of electromagnetic waves. Potentially wet wood has a higher dielectric constant due to its
water content, leading to greater absorption and rapid attenuation of the waves, resulting in
lower-intensity signal peaks [62]. Conversely, with lower MC, dry wood exhibits reduced
absorption and attenuation, producing longer and higher-intensity signal peaks [63–66].
When wood is wet, the increased dielectric constant shifts the natural resonance frequency
of the material. This is due to more free water molecules within the wood structure that
can easily polarize in response to the electric field, changing the wood’s overall electric
permittivity and resonance frequency. On the other hand, the loss tangent, which represents
the ratio between the imaginary (related to energy loss) and real (related to energy storage)
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parts of the complex dielectric constant is also affected by moisture content. As moisture
content increases, the loss tangent typically rises, indicating that the wood becomes more
lossy. This higher loss tangent at elevated moisture levels corresponds to greater energy
dissipation, further contributing to the attenuation of EM waves and the reduction in signal
intensity. Conversely, dry wood’s reduced water content causes a different interaction with
electromagnetic waves, maintaining higher frequencies longer due to lesser polarization
effects and maintaining a steadier resonance frequency without a significant shift [67]. The
model’s accuracy relies on using a representative calibration dataset, covering the full
moisture range, from wet to dry wood. Validation, essential for ensuring the model’s future
reliability, is performed through cross-validation and test set validation. These methods
produce prediction RMSE to gauge model performance. Additionally, bias, another key
performance measure, reflects the average difference between predicted and actual values,
helping identify any systematic differences between the training and validation sets. The
results, including R2, RMSE, LVs, and bias, for the calibrated and validated PLSR regression
models derived from the S11 and its derivative are summarized in Table 1.

(a) (b)

Figure 9. (a) Magnitude of S11; (b) its derivative highlights differences in spectra due to MC change.

Table 1. Results of PLSR parameters for S11 and its derivative across various validation processes.

Process RMSE (%) R2 LVs Bias

Calibration 1.7 −5.51 × 10−17

S11 CV 1.8 0.995 6 5.62 × 10−5

Test 1.9 5.62 × 10−5

Calibration 1.8 0
∂S11/∂ (Frequency) CV 2.0 0.996 6 0

Test 1.8 −6.60 × 10−5

Table 1 presents the regression results, focusing on the analysis of the predictive model
parameters of S11 and its derivative with respect to frequency across the different validation
phases: calibration, CV, and test.

During the test phase, the RMSE for S11 is approximately 1.9%, while R2 = 0.995 and
the bias is 5.62 × 10−5, indicating a strong correlation and minimal bias. For the derivative
of S11, the test phase, the RMSE decreases to 1.8%, while the R2 increases to 0.996, and the
bias is −6.60 × 10−5. These results show a good performance in predicting the MC over the
range of (110–0)% for both the S11 and its derivative. When comparing our findings to the
existing literature, such as [68] on NIR spectroscopy for Korean Pine moisture content, we
observe similar success in utilizing PLSR to model complex spectral data. However, where
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NIR techniques showed reduced accuracy for moisture content above 30%, our microwave-
based approach maintains reliable predictions across a broader moisture range. This can be
attributed to the deeper penetration capabilities of microwave sensing, which makes it more
suitable for high-moisture-content scenarios. Figure 10 illustrates the comparison between
predicted and observed MC values for the S11 parameter and its derivative. It provides a
visual representation of how well the PLSR model aligns with MC measurements under
test validation and calibration conditions. The inclusion of derivative analysis serves the
purpose of enhancing the prediction accuracy, as evidenced by comparing the RMSE. While
these metrics provide a quantitative assessment, a clearer understanding emerges from
visualizing the observed versus predicted MC. This approach rectified these nuances,
leading to improved model performance and more accurate and linear predictions, as
demonstrated in Figure 10. Then, regression β-coefficients are calculated to express a linear
combination involving both observed and predicted values, based on the S11 parameter
and its derivative models, as illustrated in Figure 11. Therefore, it shows which segment
of the spectra primarily accounts for explaining variability in the data. For both S11 and
its derivative, the maximum variation of the regression β is around 2.27–2.45 GHz, which
is the most sensitive range for the patch antenna. This analysis demonstrates that our
model effectively captures the key spectral features within this critical frequency range.
The substantial variation of β-coefficients in this range supports the performance of our
model in explaining the variability observed in the data. Regarding model validity, the
concentration of β-coefficient variation in the 2.27–2.45 GHz range aligns with theoretical
expectations and the sensitivity of the patch antenna. This alignment confirms that our
model is robust and accurately represents the relationships within the spectral data. After
extracting the regression coefficients β (399 × 1), it can be stored in the PCB. This allows
for the straightforward acquisition of spectra and direct calculation of MC through simple
mathematical operations using Equation (4).

(a)

(b)
Figure 10. Predicted versus observed MC (in %) for test and calibration of PLSR models: (a) S11

parameter; (b) its derivative.



Sensors 2024, 24, 6199 16 of 19

Figure 11. Regression coefficient β for S11 and its derivative.

Additionally, beyond agricultural applications, this system demonstrates significant
potential for adaptation to other biological and environmental monitoring tasks. For
instance, the same system initially presented for wood hydration monitoring is modified
for use in skin hydration monitoring with minimal changes. By replacing the patch antenna
with a CSRR, the system is used to monitor hydration levels in human skin [45]. In this
related work, the system, coupled with the CSRR, was used to successfully monitor skin
hydration across different body regions, demonstrating its versatility and adaptability. This
capability highlights the potential for the system to be employed in broader biological
applications, as well as other environmental monitoring tasks, simply by swapping the
sensor while retaining the core measurement and data processing components.

5. Conclusions

This paper presented a novel system for monitoring wood MC that integrates hard-
ware and ML techniques to improve the efficiency of agricultural practices. The main
contributions of this work are twofold. From an architectural standpoint, we developed a
compact and affordable system that integrates a Raspberry Pi Zero W and a NanoVNA V2
(S-A-A-2) operating in the 50 KHz–4.4 GHz range, alongside a custom-designed PCB. We
also introduced a robust data acquisition procedure using Python scripts for both manual
and automated S-parameter acquisition and data storage. From a case study perspec-
tive, the system was successfully coupled with a patch antenna to assess the hydration of
greenwood. Monitoring the MC of wood is vital for assessing tree health and optimizing
irrigation practices to enhance agricultural efficiency. Therefore, the availability of cost-
effective and dependable devices is paramount. Microwave techniques offer a promising
approach for accurately measuring wood moisture, particularly by analyzing the scattering
parameter (S11). A stand-alone method utilizing a patch antenna coupled with a custom
PCB has been developed for direct measurement of MC in fresh wood. At present, eco-
nomic viability is crucial for widespread adoption, and the present device effectively meets
this requirement. The S11 spectra acquired at 2.2–2.5 GHz on greenwood and its derivative,
capturing different MC from 110% to 0% (dry basis), were used to build PLSR models.
Both models are accurate in predicting MC. However, the derivative spectra model offers a
slight advantage, with R2 = 0.996 and RMSE = 1.8%, which slightly improves the model
linearity. The original spectra also perform well with a R2 = 0.995 and RMSE = 1.9%.
As expected, variations in wood temperature can affect the spectral waveforms of the S11
parameters. However, the multivariate analysis indicated that MC was the most influential
variable contributing to the variance of the waveforms. The optimal operating bandwidth
was identified to be between 2.27 and 2.45 GHz. This limited bandwidth contributes posi-
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tively to the affordability of the device. Additionally, the integration of the new PCB played
a crucial role in achieving these promising results, facilitating accurate predictions of MC.

6. Future Work

In future work, we aim to extend our validation by comparing the proposed technique
with other existing techniques for measuring trunk hydration and by including a broader
range of environmental conditions and wood types. This will include experiments con-
ducted across varying temperature and humidity levels, along with different wood species,
to assess the sensor system’s robustness and adaptability.

Additionally, recognizing the importance of rigorous validation, we plan to incorporate
comprehensive statistical analyses in our upcoming studies to further ensure the accuracy
and reliability of the model’s predictions.
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