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Abstract: Soil respiration is a critical process that regulates key ecosystem functions such as climate
control, nutrient cycling, and plant productivity. Soil texture, nutrient availability, and microbial
communities can all influence soil respiration, yet our understanding of their relative importance
remains limited. This study aimed to investigate how different factors—like soil texture, nutrient
additions, and microbial communities—contribute to soil respiration and define their specific roles in
its variability. Using a microcosm experiment with various fertilizers and two soil types (Navarra,
a silty clay soil, and Saponi, a sandy soil), we measured changes in both biotic and abiotic factors.
A multiple linear regression analysis revealed that, among other biotic and abiotic factors, soil clay
content, soluble nitrogen levels, bacterial abundance, and α-diversity significantly impacted soil
respiration, together accounting for over 60% of its total variance. Structural equation modeling indi-
cated that microbial communities made the greatest contribution to respiration at 30.84%, followed
by soil texture at 19.63%. Overall, biotic factors were found to play a more significant role in driving
soil respiration rates compared to abiotic factors, with edaphic properties having a greater influence
than fertilizer additions.

Keywords: soil respiration; bacteria; fungi; soil texture; microbial community

1. Introduction

Carbon dioxide and other greenhouse gases are major contributors to global temper-
ature rises and climate change [1]. In addition to the large amounts of carbon dioxide
released by human activities such as industrial processes, transportation, and energy
production, soil microbial respiration also contributes to atmospheric carbon dioxide by
utilizing carbon from soil organic matter, releasing an estimated 60 Pg of carbon annually.
This contributes to changes in atmospheric greenhouse gas concentrations [2]. Furthermore,
research has indicated that soil heterotrophic respiration in many ecosystems has been grad-
ually increasing over the past few decades, amplifying its impact on greenhouse gases [3].
Therefore, studying soil respiration is essential for mitigating greenhouse gas emissions.

Agronomy 2024, 14, 2468. https://doi.org/10.3390/agronomy14112468 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14112468
https://doi.org/10.3390/agronomy14112468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-3622-9328
https://orcid.org/0000-0002-2394-2880
https://orcid.org/0000-0001-5313-5871
https://orcid.org/0000-0001-7042-320X
https://orcid.org/0000-0002-0181-1572
https://doi.org/10.3390/agronomy14112468
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14112468?type=check_update&version=1


Agronomy 2024, 14, 2468 2 of 13

Soil respiration governs critical ecosystem functions such as climate regulation, nu-
trient cycling, and plant productivity [4]. Consequently, there is increasing interest in
understanding the factors that influence soil respiration. The key factors include tempera-
ture [2,5], precipitation [6,7], vegetation [8], and soil properties [9,10]. Although climate
factors (temperature and precipitation) are the primary drivers [11], soil properties often
take precedence at a local scale in agricultural systems.

Recently, a meta-analysis of global patterns of soil heterotrophic respiration high-
lighted the varying roles of climate, soil properties, environment, vegetation, and ecosystem
type in driving heterotrophic respiration, but it did not consider microbial communities [11].
Ebrahimi et al. estimated soil respiration across different land uses, including crops, pas-
tures, woodlands, conifers, broadleaf forests, deserts, and salt marshes, demonstrating
that soil microbial communities—particularly bacterial communities—play a significant
role in soil respiration [12]. A long-term fertilizer input experiment provided new insight
that the microbial community can be accounted the major driver in soil respiration [13].
Moreover, soil texture, such as clay content, may not only affect the degradation of soil
organic matter [14] but is also considered as a key driver in converting organic matter into
soil organic carbon for microbial activity [15,16]. Studies have indicated that soils with
finer textures (clay + silt) exhibit a higher carbon retention capacity and stability [17,18].
Considering these factors, it can be inferred that both abiotic factors (like soil texture, total
organic carbon, soluble carbon, microbial biomass carbon, and soluble nitrogen) and biotic
factors (such as microbial communities, biodiversity, richness, and abundance) may influ-
ence soil respiration. However, there remains a lack of in-depth understanding regarding
the relative importance of these factors in contributing to soil respiration.

Currently, many studies focus on the effects of fertilizer addition on soil respiration,
but the results remain controversial. Some earlier studies observed that fertilizer addi-
tion significantly increased soil respiration [19–22], while others observed the opposite
trend [23], and some studies reported no effect [24,25]. Given these conflicting findings, we
hypothesize that soil respiration is primarily influenced by different fertilizers. The aim of
this study is to understand how different factors, such as soil texture, nutrient addition, and
microbial communities, affect soil respiration under different forms of fertilizer addition
and to explain the contribution of these factors to changes in soil respiration. Through
a microcosm experiment, we used two types of soil with a similar total organic carbon
and total nitrogen but different textures, adding the same level of nitrogen of fertilizer
from different sources. We focused on the contributions of biotic and abiotic factors to
soil respiration, employing a multiple linear regression analysis and structural equation
modeling to clarify the contribution rates of different factors. The goal is to provide a
theoretical basis for green, low-carbon, and sustainable agricultural development.

2. Materials and Methods
2.1. Experimental Design and Sampling

Two different soils were selected for microcosm experiment; the Navarra soil was a
silty clay soil, and the Saponi soil was sandy soil (Table 1). Navarra refers to an agricultural
area (cereals) in the area of Ferrara (Po Valley); Saponi refers to an area used for horticulture
in the area of Rimini (Adriatic sea coast) (Figure 1).

Table 1. Soil characteristics of Navarra and Saponi soil.

Soil TOC/% TN/% TP g/kg pH Sand/% Silt/% Clay/%

Navarra 0.93 0.15 0.877 7.78 13 71 16
Saponi 1.06 0.11 1.639 7.76 76 16 8

DAP is short for Diammonium phosphate [(NH4)2HPO4]; two substrates deriving
from the composting process were also added: ACM (Ammendante Compostato Misto,
TOC 26.7%; TN 2.7%; TP 4.630 g/kg) is a commercial product derived from the composting
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of the organic fraction of municipal solid waste, whereas ACFA (Ammendante Compostato
da Fanghi, TOC 27.8%; TN 2.2%; TP 4.228 g/kg) is a compost produced from agro-industrial
waste after an anaerobic digestion process.
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Four different conditions were assayed: soil without any amendments (CONC) and
soil amended with DAP, ACM, and ACFA to reach a total amount of 200 mg nitrogen/kg
dry soil.

All treatments were in triplicate. The soil was sampled at day 0, 7, 14, and 28. The
temperature was kept at 24 ◦C, with twelve hours to the day and night; weight control
was performed to keep 50% of water-holding capacity for each sample. Each sampling
time took soil samples for tests of both soil chemistry and microbiology. The soil samples
were stored for microbiology analysis at −100 ◦C. Fresh soil underwent examination for
humidity and extraction for microbial biomass carbon.

2.2. Edaphic Properties and Soil Respiration Analysis

Total organic carbon was measured with an elemental analyzer (Flash 2000 Thermo-
Scientific, Waltham, MA, USA). Soil samples before analysis were pre-treated to eliminate
the carbonates. The soil samples, finely ground, were weighed (10–12 mg) in silver capsules
placed on a heating plate set at 80 ◦C, and a few drops of HCl 6 M were added to the soil
directly in the capsules until the end of the effervescence. Then the samples were heated
until dried, cooled in the desiccator, and analyzed for organic carbon content.

Microbial biomass carbon, soluble carbon and nitrogen: At every sampling time, the
microbial biomass carbon (MBC) was measured according to the fumigation–extraction
method [26], with slight modifications. An extraction ratio of 1:10 was used, and the
extraction was carried out for one hour. The samples were filtered on Whatman filters
(pore size 2.5 µm), then the carbon in the fumigated and non-fumigated extracts were
determined with an elemental analyzer for liquid samples (TOC-TN Hypertoc Shimadzu
Corp., Kyoto, Japan). The non-fumigated extracts were used to determine as a measure the
dissolved organic carbon (SC) and the total dissolved nitrogen (SN). The C and N pools
were expressed as mg kg−1 dry soil.
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The soil respiration was measured for 35 days from the beginning of the incubation.
For this analysis, moist soil samples, equivalent to 10 g of dry soil, were weighed in
aluminum vessels and an amount of compost, corresponding to the different treatments,
was added to the soil. The samples were then placed within airtight glass jars together with
a glass vial containing 20 mL of 0.25 M NaOH [27]. Twice a week the vials were changed
to new ones. The CO2 released from soil and trapped by the NaOH was quantified by an
elemental analyzer for liquid samples (TOC-VCPH/CPN, Shimadzu, Kyoto, Japan) and
expressed as µg C-CO2 g−1 dry soil.

2.3. Soil Microbial Community Structure and Abundance

DNA extraction: A total of 250 mg of each soil sample was extracted for total genomic
DNA using the Dnasy® Powerlyzer® PowerSoil® Kit (Qiagen, West Sussex, UK), according
to the manufactures’ instructions [28]. The purity and concentration of the DNA extraction
were quantified by testing the ratio of absorbance at 260 and 280 nm (Infinite® 200 PRO
Nano Quant, Tecan, Mannedorf, Switzerland).

PCR-DGGE analysis: To study bacteria (16 s) [29], ammonia-oxidizing bacteria (amoA) [30],
and fungi (ITS) [31,32], primers with GC clamps [33] were used to amplify the total soil
DNA. PCRs were performed with the TopTaqTM Master Mix Kit (Qiagen, West Sussex, UK).

DGGE analyses were carried out using the D Code Universal Mutation System (BlO
RAD, Richmond, CA, USA); 300 ng of PCR product for each sample was loaded onto
6% (w/v) polyacrylamide gel prepared with solutions containing a denaturant gradient
of 40–60% (100% denaturant is 7 M urea and 40% deionized formamide) for the total
bacteria and ammonia-oxidizing bacteria. For fungi, 8% (w/v) polyacrylamide gel with a
denaturant gradient of 20–50% was used. Electrophoresis was run at a constant voltage of
75 V for 14 h at 60 ◦C. Gels were, then, stained in a solution of 1× SYBR Green (Invitrogen
Molecular Probes, Eugene, OR, USA) in 1× TAE for 20 min and their images captured in
UV transillumination with Gel DocTM 226 XR apparatus (Bio-Rad).

Profiles were normalized by including a ladder with PCR products obtained from
known pure cultures. A cluster analysis was carried out by neighbor-joining algorithms
based on the distance matrix (Gel Compare software, version 6.6; Applied Maths, Sint-Martens-Latem,
Belgium). Microbial diversity was analyzed with Gel Compare 6.6 for the following param-
eters: species richness and the Shannon–Wiener index (H).

Real-time PCR assays: A StepOne Plus Real-Time PCR instrument (Applied Biosys-
tems, Foster City, CA, USA) was employed to quantify the gene abundance of 16 s amoA
and ITS. The same pair of primers without GC clamp were performed for amoA and ITS as
we described in PCR-DGGE. And eub338F and eub518R were used for total bacteria [34].
The assays were performed with a 20 µL PCR amplification mixture containing 10 µL of
Fast SYBR® Green Master Mix 2× (Applied Biosystems, Foster City, CA, USA), 50–75 mM
of each primer, 10 ng DNA, and nuclease-free water in a MicroAmp Fast Optical 48-Well
Reaction Plate. Reactions were performed in triplicate. Initial denaturation was 95 ◦C for
15 s; then 40 cycles 95 ◦C for 3 s and 60 ◦C for 30 s. Data was collected at each annealing
step. Copy numbers are reported as gene copies/g·dry soil.

2.4. Statistical Analysis

Differences between the treatments were evaluated by analysis of variance (ANOVA)
and the Duncan method (p < 0.05) for post hoc multiple comparisons. The Pearson correla-
tion coefficient was employed to detect the correlation between the target parameters. All
the gene copy numbers were log-transformed before data analysis to meet normality and
homogeneity assumptions.

A multiple linear regression (stepwise method, criteria: probability-of-F-to-enter ≤ 0.050,
probability-of-F-to-remove ≥ 0.100) was conducted to assess which biotic and abiotic factors
contributed more to the total variance change in soil respiration through the different
treatments which are listed in Table 2. The ANOVA, correlation analysis, and multiple
linear regression were performed with SPSS 19.0 (IBM, Amonk, NY, USA).
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Table 2. Abbreviation of the biotic and abiotic factors assessed in the present study.

Variables Units Abbreviations

Edaphic
properties

Clay content % CLAY
Total organic carbon mg/g TOC
Soluble carbon µg/g SC
Microbial biomass carbon µg/g MBC
Soluble nitrogen µg/g SN
Soluble C:N ratio / CN

Microbial
communities

Abundance of bacteria (qPCR) gene copies lg/g B
Shannon–Wiener index of bacteria / BH
Bacteria richness numbers of bands BR
Abundance of ammonia-oxidizing
bacteria (qPCR) gene copies lg/g AOB

Shannon–Wiener index of
ammonia-oxidizing bacteria / AOBH

Ammonia-oxidizing bacteria richness numbers of bands AOBR
Abundance of fungi (qPCR) gene copies lg/g F
Shannon–Wiener index of fungi / FH
Fungi richness numbers of bands FR
Fungi/bacteria ratio / FB

Structural equation modeling (SEM) allowed us to use a confirmatory approach to test
the maximum likelihood of data that fitted the hypothesized path model including soil
properties, nutrition sources, and microbial traits as predictors. The predictors were selected
from Table 1 if they fulfilled at least one condition described as follows: (a) factors which
significantly correlated with soil respiration considered as the main predictor; (b) other
variables which significantly correlated with those main predictors. The most parsimonious
model was identified by non-significant χ2 tests (p ≥ 0.05), a low Akaike Information
Criterion (AIC), low Root Mean Square Error of Approximation index (RMSEA ≤ 0.1), low
Standardized Root Mean Square Residual index (SRMR ≤ 0.1), and high Comparative Fit
Index (CFI ≥ 0.90) [35]. The fit of the path model and structural relationships with data
were verified using a SEM analysis conducted with AMOS 22.0 (IBM, SPSS).

3. Results
3.1. Soil Respiration Rate Related with Edaphic Properties

During the incubation period, carbon dioxide release from the Navarra soil was
240.6 µg·g−1·soil, nearly double that of the Saponi soil, which released 126.2 µg·g−1·soil.
All three treatments exhibited a similar trend in carbon dioxide evolution, with significantly
higher emissions in the first two weeks compared to the subsequent two weeks (Figure S1,
p < 0.05). For the Navarra soil, all three treatments showed a significantly higher carbon
dioxide release compared to the control, although no significant differences were observed
among the treatments during the first two weeks. After two weeks, the difference in
carbon dioxide release between the treatments and the control was no longer evident. In
the sandy Saponi soil, the carbon dioxide release was significantly higher in the DAP
treatment compared to both compost treatments after two weeks. However, with a longer
incubation, the two compost-amended soils showed a significantly higher carbon dioxide
release compared to both the DAP treatment and the control soil (Figure S1, p < 0.05).

Considering that the addition of nutrients from compost would also bring organic
carbon into the treatment, we calculated CO2 emissions/TOC (Figure S2). CO2 emissions
accounted for 2.6–4.2% in the Navarra soil and 1.2–3.1% in the Saponi soil, respectively, of
the TOC through different treatments. Even though the nitrogen addition was of the same
level, DAP increased the CO2 emissions 1.61 (Navarra) and 2.59 (Saponi) times compared
to the control soil; the two composts increased 1.4 times (Navarra) and 1.8–2 (Saponi) times.
No significant differences were observed between the two compost-based treatments,
whereas they differed both from the control and from the DAP-treated soil. Overall, the



Agronomy 2024, 14, 2468 6 of 13

CO2 emissions of all the treatments in the Saponi soil were lower than in the Navarra soil
(Figure S2).

Compost addition increased the soluble carbon (SC) in both soils at T0 and T28. At
T7, it was higher in ACM and ACFA than DAP in Saponi soil but showed no significant
difference in Navarra soil (Figure S3A,B). There was no significant difference between the
two soils. At T14, soluble carbon was higher in Navarra soil than Saponi soil (Figure S3A,B).
Among the treatments, the soluble carbon of ACM was significantly higher than the control
and DAP in sandy soil. The content of soluble nitrogen (SN) trended quite similarly in both
soils. It peaked in the DAP treatment, but it was higher in Saponi soil than Navarra soil
(Figure S3C,D).

Except for T7, the microbial biomass carbon (MBC) in Navarra soil was higher than
Saponi (Figure S3E,F). In Navarra soil, the MBC decreased in the first two weeks in all
treatments, and slightly increased in T28 in DAP and ACM (Figure S3E,F). In Saponi soil,
all the treatments trended similarly; the MBC peaked at T7 and then slightly decreased
with time.

Through all the treatments, the soil respiration rate was related to soil clay content
(Table 2). And soil clay content correlated with soluble carbon (SN), microbial biomass
carbon (MBC), soluble nitrogen (SN), and C/N ratio (Table 3).

Table 3. Soil respiration rate correlated with clay content (CLAY), soluble carbon (SC), microbial
biomass carbon (MBC), soluble nitrogen (SN), and C/N ratio.

CLAY SC MBC SN C/N

Soil respiration rate 0.423 * 0.112 0.061 0.343 −0.155
p Sig. (2-tailed) 0.016 0.541 0.738 0.055 0.396

CLAY 1.000 0.390 * 0.552 ** −0.165 0.468 **
p Sig. (2-tailed) / 0.027 0.001 0.367 0.007

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level.

3.2. Microbial Traits Shifted by Different Treatments
3.2.1. Bacterial Communities

1. Community structure

The dendrogram (Figure S4A) revealed two distinct clusters in the two soils, indicating
that the distribution of bacteria differs between them. Similarity in the Navarra soil profile
ranged from 70.7% to 92.1%, while in the Saponi soil, it ranged from 82.7% to 96.3%
(Figure S4A). The incubation did not significantly affect the composition and structure
of bacterial communities in the Navarra soil, as the DGGE profile showed only slight
changes over time. In contrast, different clusters were observed in the Saponi soil at various
incubation times, indicating that the total microbial community evolved over time. After
28 days, the two compost-amended samples clustered together, setting them apart from the
other treatments. Overall, the DAP treatment is often clustered with the control soil, while
ACM and ACFA showed greater similarity to each other. Thus, we found that ACM and
ACFA had a more significant impact on the bacterial community than the DAP treatment
in Saponi soil. Additionally, compared to the Navarra soil, the community structure in the
Saponi soil exhibited less stability.

Regarding total bacteria, the ammonia-oxidizing bacteria (AOB) communities differed
between the two soils. The similarity of the DGGE profile in the Navarra soil ranged
from 78.4% to 97.3%, while in the Saponi soil it ranged from 43.5% to 56.5% (Figure S4B).
Interestingly, AOB communities were more closely associated with soil properties than total
bacteria. The dominant AOB species varied significantly between the two soils; however,
the DGGE profiles remained quite similar across different sampling times and treatments.
Notably, the AOB communities in both soils showed considerable similarity across all
fertilizer additions, even when compared to the control soil. This suggests that the AOB
community may originate from the soils themselves rather than from the fertilizers.
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2. Absolute abundance of bacteria similar to ACFA compared

The real-time PCR showed that the absolute abundance of total bacteria from the
Navarra soil was significantly higher than that from Saponi (Figure S4C,D). During the
incubation period, the DAP and control soil reached the highest cell amount after the first
week, and it decreased gradually in both soils (Figure S4C,D). ACM and ACFA trended
similarly, increasing smoothly, except for T7 which was lower than the DAP treatment, and
reaching the highest value after 28 days. The abundance of ammonia-oxidizing bacteria,
checked with the amplification of the amoA gene, peaked at T7 in all treatments; the DAP
treatment in the Saponi soil almost raised this microbial group up 10 times compared to the
other treatments (Figure S4E,F) until the last sampling times, where the concentrations in all
samples were almost equal. During all incubation periods, DAP was always significantly
higher than the other treatments in both soils from T7 (p < 0.05).

3. Correlation between bacteria community and soil properties

Soluble nitrogen significantly correlated with the abundance of ammonia-oxidizing
bacteria (Table 4). Soil properties like clay content positively correlated with the abundance,
Shannon–Wiener index, and richness of total bacteria communities. Additionally, soluble
nitrogen was positively correlated with the abundance of ammonia-oxidizing bacteria,
while clay content was negatively correlated with the Shannon–Wiener index of these
bacteria (Table 4).

Table 4. Pearson correlation (2-tailed) between the abundance, Shannon–Wiener index (H), and
richness (R) of total bacteria (B), ammonia-oxidizing bacteria (AOB), the abundance of fungi (F), clay
content, and soluble carbon and nitrogen (SC, SN).

CLAY SN F SC

B 0.410 * −0.147 0.467 ** 0.279
BH 0.395 * −0.220 0.460 ** 0.074
BR 0.435 * −0.165 0.434 * 0.105

AOB −0.065 0.451 ** −0.136 −0.054
AOBH −0.900 ** 0.003 −0.376 * −0.229
AOBR −0.427 * 0.019 −0.432 * 0.200

F 0.499 ** −0.365 * 1.000 0.442 *
FH 0.049 −0.261 0.189 0.409 *
FR 0.396 * −0.224 −0.052 0.501 **

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level.

3.2.2. Fungal Communities

1. Community structure

The dendrogram of the ITS DGGE profile showed that the fungal profile differed in
the two types of soil, as already observed for bacteria. The similarity in the Navarra soil
profile ranged from 68.5 to 82.4%, and it was 87.2–96.2 in the Saponi soil (Figure S5A).
At T0, after the fertilizer addition, the fungi community structure changed differently in
the two soils. In the Navarra soil, the similarity ranged from 74.5 to 76.6. In the Saponi
soil, the similarity ranged from 89.1 to 96.2. This means the fertilizer addition influenced
the fungal community structure more intensively in Saponi soil than Navarra soil. At
T28, in both soils, DAP clustered with CONC, and ACM clustered with ACFA. It appears
that ACM and ACFA introduced new fungal species into the system and changed the
fungal community structure. Throughout the incubation, fungal communities were more
significantly affected by the treatments compared to bacterial communities, especially
during the later sampling periods.

2. Abundance of fungi

Like bacteria, the abundance of fungi from the Navarra soil was significantly higher
than from the Saponi (Figure S5B,C). Unlike bacteria abundance, fungi trended similarly in
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both soils and reached a peak at T14. The ACM and ACFA treatments showed a higher
fungal concentration with respect to the DAP and control soils, thus being able to maintain
fungal populations in the soil.

3. Correlation between fungi community and soil properties

Soluble nitrogen significantly correlated with the abundance of fungi (Table 3). Clay
content and soluble carbon and nitrogen correlated significantly with the communities and
compositions of fungi (Table 4). We also found a strong correlation between fungi and
bacteria communities (Table 4).

3.2.3. Biotic and Abiotic Factors Contribute to Soil Carbon Dioxide Efflux

Multiple linear regression was employed (stepwise, criteria: probability-of-F-to-
enter ≤ 0.050, probability-of-F-to-remove ≥ 0.100) to figure out which biotic and abiotic
factors (listed in Table 2) contributed more to the total variance in the change in the soil
respiration rate across different treatments. The selected predictors included the abundance
and α-diversity of total bacteria and the abundance of ammonia-oxidizing bacteria and
fungi that represent microbiota activities. Edaphic properties, which significantly correlated
with soil microbial community and respiration rate, were also included (Table 4).

After stepwise selection, model 4 includes the abundance (B) and α-diversity (BH) of
the bacteria, soluble nitrogen (SN), and clay content (CLAY) of different treatments (Table 5).
In this case, model 4 could explain more than 60% of the soil respiration rate change. Four
predictors (the abundance and α-diversity of bacteria, soluble nitrogen, and clay content)
could explain 22.22%, 8.26%, 13.58%, and 19.63% each (Table 6).

Table 5. Model summary of multiple linear regression of clay content, soluble nitrogen (SN), abun-
dance (B), and Shannon–Wiener index (BH) of total bacteria.

Model Predictors R R2

1 B 0.482 0.232
2 B, SN 0.638 0.407
3 B, SN, CLAY 0.704 0.496
4 B, SN, CLAY, BH 0.798 0.637

Table 6. The variance in the main predictors is explained to the total variance changes of soil respiration.

Predictors Standardized Coefficients t Sig. Explained Variance

B 0.461 3588 0.001 22.22%
SN 0.396 3307 0.003 13.58%

CLAY 0.464 3443 0.002 19.63%
BH −0.417 3232 0.003 8.26%

Structural equation modeling (SEM) was applied to determine direct and indirect
effects of microbial communities, different fertilizer sources, and different soil properties
on the soil CO2 released by organizing the dataset into a path relation model. The SEM
model confirmed the results obtained from the multiple linear regression, showing that the
main predictors remained consistent. The interrelationships among these predictors are
illustrated in Figure 2. In addition to their direct effects on CO2 emissions, clay content and
soluble nitrogen significantly influence fungal abundance, which indirectly affects the soil
respiration rate. However, the impact of the fungal community is mediated through the
bacterial community.
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4. Discussion

This study aimed to investigate the relative roles of various factors contributing to
soil respiration following the addition of different fertilizer sources. There are two primary
sources of soil CO2 efflux: rhizospheric respiration and heterotrophic respiration [36]. In
this research, we focused solely on the latter. Fertilizer addition led to increased CO2
efflux, driven by a higher microbial utilization rate of labile carbon, which aligns with
previous studies [23,37]. Although compost addition provided more soluble carbon in both
soils (Figure S3), inorganic nitrogen input from DAP resulted in higher respiration rates
compared to organic nitrogen from ACM and ACFA in both soil types. Notably, significant
differences were observed in the sandy soil (Saponi). Total organic carbon levels were
similar in the Navarra (0.93%) and Saponi (1.06%) soils, indicating that the increase in
respiration rate was triggered by nitrogen addition. Additionally, both compost treatments
resulted in less soil organic carbon loss.

The composition of the microbial community can significantly influence microbial
respiration, as different microbial functional groups exhibit varying carbon use efficiencies
and preferences for carbon type [38,39]. Based on the results from the DGGE fingerprinting
and real-time PCR, it appears that while bacterial composition changed only slightly,
bacterial abundance peaked at T7. This suggests that the structure and abundance of the
bacterial community are key contributors to soil respiration under different treatments.
Two explanations may account for these findings. First, bacteria tend to have faster growth
rates compared to fungi, making them more responsive to changes in the soil environment.
Second, soil bacteria generally have a lower carbon use efficiency than fungi, resulting
in higher CO2 emissions from bacterium-dominated communities compared to those
dominated by fungi [40,41]. This study found a positive correlation between the soil
respiration rate and bacterial abundance, indicating that increasing bacterial populations
may significantly contribute to soil CO2 emissions, consistent with previous research [39,42].
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Through the analysis of various biotic and abiotic factors, multiple linear regression
revealed that clay content, soluble nitrogen, and the abundance and α-diversity of bacteria
were the primary contributors to soil respiration, more so than other factors. This aligns
with studies suggesting that the soil microbial community plays a crucial role in predicting
soil respiration rates following multiple fertilization treatments in a single soil type [13].
Our findings are consistent with previous research demonstrating positive correlations
between clay content and soil organic matter, as well as between clay content and soil
respiration [14,43,44]. However, our results indicate that, in addition to microbial activity,
soil texture in agricultural systems can also explain a portion of the soil respiration rate,
with its contribution sometimes exceeding that of fertilizer addition.

Liu et al. utilized structural equation modeling (SEM) to gain a comprehensive
understanding of how microbial community composition influences soil respiration, taking
into account human management, soil properties, and other key microbial drivers identified
through their best-fitting distance-based models [13]. Our SEM provided further evidence
that not only does the soil microbial community directly affect soil respiration, but edaphic
properties, such as clay content, also play a direct role. The Navarra and Saponi soils
exhibit typical clay and sandy textures, respectively, with fine fractions (clay + silt) at
87% and 24%. This creates a distinctly different environment for microorganisms. Clay
content is crucial in providing diverse soil environments, influencing factors like nutrient
availability, water-holding capacity, and cation exchange capacity, all of which ultimately
affect soil respiration. A meta-analysis on the response of mineral soil carbon storage
noted that clay soils offer more favorable microsites for soil microorganisms to assimilate
organic matter [45]. Soil texture also impacts the stability and microbial accessibility of soil
organic carbon, a key predictor of mineral soil carbon dynamics [18,38]. Several studies
have reported a positive correlation between clay content and carbon stocks across various
climatic and edaphic gradients [14,46,47]. Our results indicate that compost addition can
maintain a higher level of soluble carbon compared to DAP and control treatments in
both soils.

Considering all these factors, we can explain the positive correlation between clay
content and the abundance of bacteria and fungi. The SEM model indicated that, over
time, clay content had a significant correlation with fungal abundance, which in turn
correlated significantly with the abundance and α-diversity of bacteria. This suggests that
the influence of clay content on the bacterial community may be mediated by fungi, a
relationship that warrants further investigation in future studies. In the current research,
while the fungal community did not demonstrate a direct effect on soil respiration, it played
a crucial role in interacting with other major predictors. This aligns with the growing
body of literature emphasizing the importance of fungal populations in soil functionality,
highlighting their role in enhancing microbial interactions and overall soil health [48–51].

Although there are important discoveries revealed by this study, there are also some
limitations. First, we selected two soils that have similar nutrient compositions but com-
pletely different textures for in-depth study. However, it would be beneficial to conduct
research on several types of soils that are prevalent globally to achieve broader application
goals. In future research, we can collect soil data and metagenomic data from diverse
global habitats and use a meta-analysis to achieve this goal. Second, when adding different
fertilizers, the application rates are determined based on consistent nitrogen content, which
may also introduce other elements. For example, both ACM and ACFA contain phospho-
rus, while DAP contains sulfate. These elements may also influence microbial community
activity; however, we did not consider these factors in the model. This could be why the
existing model only explains 63.69% of the total variance in respiration. Future experiments
could clarify the effects of adding these elements on soil respiration by incorporating
different gradients.
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5. Conclusions

The present study reveals that clay soil (Navarra) exhibits a higher respiration rate
compared to sandy soil (Saponi). Fertilizer addition resulted in more pronounced changes
in the sandy soil. We found a positive correlation between soil respiration rate and bacterial
abundance, confirming that biotic factors play a more significant role in driving soil respi-
ration than abiotic factors. Bacterial communities contributed directly to soil CO2 efflux,
while fungi had an indirect influence. Considering soil respiration as an indicator of soil
activity, our comparative studies across different soil types and fertilizer applications sug-
gest that soil texture may have a more substantial impact on respiration than the fertilizer
addition itself. In the context of sustainable agricultural production, it is essential to not
only address crop nutrient needs but also to determine appropriate fertilizer application
rates, timings, and types based on the specific characteristics of different soil types.
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