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Abstract—This paper proposes a procedure for optimizing the
electromagnetic finite element analysis of synchronous electric
motors. The methodology allows for the retrieval of the solution of
the problem in an entire rotor rotation starting from simulations
carried out within a reduced angle range, corresponding to the
half of the electrical period divided by the number of phases of
the motor winding. This is achieved by exploiting the geometrical
periodicities of the motor and by dividing the static and rotating
parts of the model in homologous sectors, which will undergo
the exact same magnetic state, but with shifted waveforms with
respect of the rotor angle. By properly rearranging the parts
of the waveform taken from the different sectors, it is possible
to reconstruct the full waveform in each part of the motor. A
method to determine the waveform reconstruction sequence, i.e.
the order in which the information should be taken from the
different stator and rotor sectors, is defined as a function of the
motor parameters. While a similar approach has been already
presented in literature for specific motor designs and with the
purpose of estimating iron losses, in this paper the methodology
is generalized for motors with an arbitrary number of phases
and is valid both for integer and fractional winding motors.

Index Terms—Finite Element, Electromagnetic Simulation,
Multi-phase, Waveform Reconstruction

I. INTRODUCTION

The design procedure of electric motors often relies upon fi-
nite element (FE) electromagnetic simulations, which allow to
achieve accurate results and to take into account the non-linear
magnetic properties of the ferromagnetic materials. However,
even with modern computer hardware, electromagnetic FE
simulations result computationally intensive and may even-
tually lead to several hours of simulation time, which means
that the optimization of the simulation procedure is still very
valuable. One of the solutions used to reduce the computation
time is to simulate only a fraction of the motor geometry, ex-
ploiting the geometrical symmetries of the motor and imposing
periodic or anti-periodic boundary conditions at the boundaries
of the simulated portion, which is already widely implemented
in most electromagnetic FE software packages, such as Altair

Flux™ [1] or JMAG® [2]. In addition, the characterization
of a motor requires to run multiple simulations at different
rotor angle positions, in order to retrieve the waveforms of
the main quantities of interest, such as torque or flux linked
with the windings. Therefore, another very important aspect is
to determine the minimum angle range to be simulated, as well
as the number of rotor positions to simulate within this range,
which will determine the waveform resolution. Regarding the
angle range to be simulated, one of the possible approaches
would be to set it equal to the period of the quantity to be
retrieved. For example, if torque is the only parameter of
interest, simulations could be run within the torque ripple
period only, while if iron losses have to be calculated in post-
processing, the angle range has to be set at least equal to the
flux density waveform period, which is always higher. This
approach however does not take into account the geometrical
periodicities of the electromagnetic solution of the motor. In
fact, if certain geometrical periodicity constraints, that will be
specified in section II, are met, the motor geometry can be
divided into homologous sectors that are geometrically equal
and feature the same flux density distribution waveforms, but
simply shifted in phase with respect to the rotor angle. This
allows to reconstruct the overall waveform of any variable
of the electromagnetic solution starting from an angle range
corresponding to only half of the electrical period divided by
the number of phases, as it will be demonstrated in section
IV. The benefit given by this procedure is that the number of
steps to be simulated with a given angular resolution can be
reduced, or that the angular resolution can be increased for a
given total number of simulated steps. A similar approach has
already been implemented for determining iron losses from FE
simulations in [3], specifically for a yokeless axial flux motor,
and in [4], for a generic radial-flux synchronous generator. In
[5], the geometrical periodicities has been similarly exploited,
but for the purpose of reconstructing an approximate waveform
from a single static simulation, instead of reducing the number



of steps required by an angle stepping simulation with a given
resolution. While the mentioned papers also hinted at possible
applications of such approach for other motor topologies, in
this paper the procedure is generalized for different motor
layouts, both for integer and fractional slot windings, and
for any number of phases. The generalization allows for the
potential inclusion of the procedure in FE software packages,
especially in cases where the motor geometry is derived from
a template already available within the software.

II. MOTOR MULTIPLICITIES

Synchronous electric motors with a number of pole pairs
higher than one may feature geometrical symmetries that allow
to retrieve the electromagnetic solution of the complete motor
while actually solving one portion of its geometry. This is
commonly exploited in FE software packages, which offer
the possibility of simulating only a slice of the motor using
periodic or anti-periodic boundary conditions, as explained in
[6]. The fraction of the motor to be simulated is defined by the
number of multiplicities (i.e. the number of times the motor
geometry repeats itself angularly). For example, for slotted
motors, the multiplicity m is given by the greatest common
denominator (GCD) between the number of stator slots per
phase and the rotor pole number, as reported in (1).

m = GCD
(

Ns

nph
, 2p

)
→ θs =

2π

m
(1)

In (1), Ns is the number of stator slots, nph is the number of
phases, p is the number of pole pairs, and θs is the mechanical
angle representing the portion of the motor to be simulated.
It can be noted that for winding configurations featuring an
integer number of slots per-pole per-phase, m will result equal
to the number of poles 2p, as Ns/nph will be proportional to
2p, meaning that a multiplicity will correspond to one pole
pitch only. This will allow for significant simplification of the
waveform reconstruction procedure for integer-slot windings,
as it will be explained later.

III. GEOMETRICAL PERIODICITY

Within the simulated motor portion, another level of geo-
metrical periodicity is required to allow for the reconstruction
of the flux density in both the stator and rotor regions.

The geometrical periodicities required are
• for the stator: the geometry should be periodical within

the motor multiplicity a number of times equal to the
number of phases. Therefore, the geometry should be
composed by nph equal sectors with an angular extension
corresponding to θph: the angular extension of one motor
multiplicity divided by the number of phases, (see (2)).

θph =
2π

m

1

nph
(2)

• for the rotor: the geometry should be periodical within
the motor multiplicity a number of times equal to the
number of poles present in a single multiplicity. There-
fore, the geometry should be composed by 2p/m equal

Fig. 1. 12 slot, 10 poles double layer concentrated winding motor.

sectors with an angular extension corresponding to θp:
the angular extension of one motor pole (see (3)).

θp =
π

p
(3)

These conditions are typically inherently met unless details
due to non-electromagnetic requirements, such as stator lami-
nation retention grooves or holes, are included in the geometry.
It is also worth to remind that, for the practical implementation
of the waveform reconstruction method described in this paper,
the geometrical periodicities listed above must be guaranteed
also at the mesh level. Moreover, since the mesh in the stator
and rotor regions should not vary as the rotor rotates, the
stator-rotor interface at the air gap should be implemented
using techniques that avoids the re-meshing of the stator and
rotor regions during rotation. For this purpose, both sliding
band and moving band methods can be used [7] [8]. The
suggested solution is to use the sliding band method while
imposing a constant segment length at the air gap boundary,
and, when possible, to set the rotor rotation angle step as
a multiple of the angle corresponding to the boundary air
gap mesh segment. In such way, the stator and the rotor
mesh always snap coherently avoiding interpolation and thus
minimizing numerical noise in the results.
Figure 1 shows the geometry of a generic 12 slots, 10 poles
double-layer concentrated winding (DLCW) motor that will
be used as an example in this paper. Colors identify the
different stator and rotor yoke sectors. The following sector
nomenclature and the reference frame are also introduced:

• the naming of the stator sectors is given by letters in
alphabetical order assigned in anti-clockwise direction;

• the naming of the rotor sectors is given by integer
numbers assigned in anti-clockwise direction;

• the mechanical rotation angle of the rotor is considered
positive if anti-clockwise.

IV. FLUX DENSITY WAVEFORM RECONSTRUCTION

In this section, the periodicity of the flux density will be
analyzed separately for the stator and rotor regions, with
the purpose of determining the minimum angle range to be
simulated. Then, a generalized method to determine the order
and the polarity in which the information should be taken from



the various sectors will be presented. Before proceeding, it is
worth reminding that to ease the physical understanding of
the approach the flux density is the only mentioned variable.
Nevertheless, all of the assumptions are actually valid for
any variable derived from the electromagnetic solution of the
problem, which is defined by the magnetic vector potential,
from which the magnetic field and the flux density itself are
derived quantities.

A. Reconstruction of stator waveform

The stator region undergoes magnetic flux density oscilla-
tions due to both the supplied current and the interaction with
the rotating rotor. The first depends on the electrical frequency
of the supply, the second on the rotor speed. Being the motors
under study synchronous, both effects cause flux oscillations
which are equally repeating in one electrical period of time.
The waveform is also symmetric, and thus, is sufficient to
obtain half of it to retrieve the complete one. Considering
the geometrical periodicities listed in section II, it can be
demonstrated that the flux density waveforms taken in its radial
and tangential coordinates, in any point of a given stator sector,
are equivalent to those of the homologous points found in the
other sectors, which are at the same radial coordinates and
spaced by the angular extension of a stator phase sector, θph.
The waveforms, consequently, will also result shifted in phase
by an angle corresponding to θph, but in opposite direction,
as it can be appreciated in Fig. 2. Exploiting this aspect, the
full waveform in any point of the stator geometry can be
reconstructed performing simulations within an angle range
θsim corresponding to half of the electrical period divided by
the number of phases of the motor winding, as given in (4).

θsim =
π

p

1

nph
(4)

The reconstruction sequence, i.e. the order in which the
information should be taken from the various stator sectors and
their respective polarity, can be determined in a generalized
form as a function of the motor characteristics. In this paper,
such sequence will be defined by a vector containing the
nph letters identifying the different stator sectors, with the
minus sign used for indicating inverted polarity. Such sequence
leads to the reconstruction of half of the waveform, while
for the complete one, it is sufficient to repeat the sequence
with inverted polarity due to the symmetry property previously
mentioned. The reconstruction sequence will be presented only
for the first stator sector, labeled “A” according to the adopted
nomenclature. Once the waveform is reconstructed for one
sector, it will be trivial to retrieve it for the remaining ones by
applying the proper phase shift. The solution is presented both
for the specific configurations which feature an integer number
of slots per pole per phase, such as traditional distributed
winding layouts, and in a generalized form, valid also for
configurations with a fractional number of slots per pole per
phase, such as the DLCW motor shown in Fig. 1.

For integer-slot windings, which according to (1) feature
one pole per multiplicity, a sector shift is equivalent to a

Fig. 2. Example of flux density waveforms in the three phase sectors of
the stator. Waveforms refer to the points highlighted in the top figure. Motor
supplied with Iq current only.

negative rotor rotation of θsim, since in such case θph = θsim.
Therefore, according to the nomenclature specified in sec-
tion II, the reconstruction sequence for section A proceeds
in reversed alphabetic order and with inverted polarity. For
example, the reconstruction sequence for the first stator sector
of a six-phase motor with distributed winding would result as
[+A,−F,−E,−D,−C,−B].

For fractional-slot windings, which feature multiple poles
per multiplicity, the phase shift angle corresponds to 2p/m
times the simulation angle θsim, which makes the definition
of the reconstruction sequence less trivial. For such purpose,
the following methodology is proposed.
First of all, the number of phase sector shifts kph that leads
to an equivalent waveform shift corresponding either to θsim,
or to θsim + θp if with reversed polarity (since θp is half of
the waveform period) is identified solving (5), where kp is an
integer number.

−kphθph + kpθp = θsim (5)

Substituting in (5) θph, θp, and θsim from (2), (3) and (4),
equation (6) is obtained, where a dependency on the number
of poles per multiplicity 2p/m and the number of phases nph

only is observed.

−kph
2p

m
+ kpnph = 1 (6)

Equation (6) represents a linear Diophantine equation in
the form: ma + nb = gcd(a, b) where a = 2p/m, b = nph,
m = −kph, n = kp, and gcd(a, b) = 1 since 2p/m and
nph are inherently co-prime due to the multiplicity definition.
Such problem, according to Bézout’s identity, has a family
of possible solutions and can be solved using the Euclidean
algorithm [9]. The pair of coefficients to be taken from the



family of solutions is the one that minimizes kph = −m from
the ones that have m < 0 and n > 0, since both kph and kp
must be positive integers. By a practical point of view, such
solution can also be found by searching via a nested for cycle
the only kph and kp combination that satisfies eq. (6) with
1 ≤ kph < nph and 1 ≤ kp < 2p/m.

Once kph is determined, the sequence in which the
information should be taken from the nph stator sectors can
be retrieved. Starting from the known simulated part, the
other nph − 1 parts composing the first half of the waveform
can be reconstructed by taking, step by step, the information
from the stator sectors placed kph positions away from
the previous, respectively, in the positive direction of the
mechanical angle. This procedure will eventually lead to
sector positions that are outside of the simulated portion of
the motor, if it features more than one multiplicity. However,
this is not an issue since the electromagnetic solution repeats
periodically, if the number of poles per multiplicity is even,
or anti-periodically, if the number of poles per multiplicity
is odd, leading to an inverted waveform polarity in the
respective stator sectors. Once this is considered, the letters
identifying the various sectors in the sequence can be
determined, while for the final assignment of the polarity
also the term kp has to be evaluated. If kp results an even
number, the kph sector shift will be equivalent to θsim, so
the same polarity is maintained, while if kp results an odd
number the shift will be equivalent to θsim + θp, which
means that the polarity will be inverted at each step since θp
corresponds to half of the stator flux density waveform period.

Considering the above, a general procedure to determine
the reconstruction sequence is developed and is presented
step-by-step in the following example. For the ease of
explanation, the example is not made on the reference motor
shown in Fig. 1, but for an hypothetical 8 poles, 6 slots
DLCW three-phase motor, which, having kph = 2 and kp = 3
both different from 1, represents one of the least trivial cases.
The workflow for determining the reconstruction sequence is
as follows:

• At first, solve (6) in function of nph and 2p/m

nph = 3, p = 4, m = 2,
2p

m
= 4

to retrieve the coefficients kph and kp.

kph = 2, kp = 3

• Determine the vector composed by the nph letters iden-
tifying the stator sectors in alphabetical order, as

[A,B,C]

• Concatenate this vector kph times while maintaining
the same polarity if 2p/m is even (periodic boundary
conditions) or with alternated polarity if 2p/m is odd
(anti-periodic boundary conditions).

[+A,+B,+C,+A,+B,+C]

Fig. 3. Reconstructed flux density waveform for the point highlighted in Fig.
2 in phase sector A.

• Select one every kph terms from the vector, starting from
the first, for a total of nph terms.

[+A,+C,+B]

• Finally, invert the polarity of the even terms of the
sequence if kp resulted an odd number.

[+A,−C,+B]

Referring to the 12 slots, 10 poles motor example of Fig.
1, it is instead obtained:

nph = 3, p = 5, m = 2,
2p

m
= 5

kph = 1, kp = 2

Leading to a reconstruction sequence of

[+A,+B,+C]

While the angle range to be simulated results as

θsim =
π

p

1

nph
=

π

5

1

3
=

π

15
(12◦)

An example of the reconstructed flux density waveform for
the generic point in sector A, as highlighted in Fig. 2, is finally
shown in Fig. 3.

B. Reconstruction of rotor waveform

The flux density vector in the rotor region is periodical
within an angle that corresponds to one stator phase
periodicity θph, which is equal to the angular extension of
one motor multiplicity divided by the number of phases.
This occurs because, in a real motor, the flux density as
seen from the rotor is not stationary as it would be in the
ideal case, which would require an isotropic stator and a
perfectly synchronous MMF generated by the stator windings.
In an actual motor, the stator anisotropy (always present in
slotted, iron-core stators), and the non-synchronous harmonics
generated by the stator winding, will create oscillations of the
flux density with a period corresponding to θph, angle within
which both the stator geometry and the MMF generated by
the windings will result periodical if seen from the rotor
reference frame.
In an analogous way as for the stator, the full flux density

waveform in the rotor region, having a periodicity of θph,
can be actually retrieved by simulating an angle range



Fig. 4. Example of flux density waveforms in the five pole sectors of the rotor.
Waveforms refer to the points highlighted in the top figure. Motor supplied
with Iq current only.

corresponding to θsim, since the angle θph is 2p/m times
the angle θsim, and 2p/m geometrically symmetrical rotor
pole sectors are present within the multiplicity, from which
the waveform information can be retrieved with different
equivalent phase shifts (see (7)).

θph =
2π

m
· 1

nph
=

2p

m
· π
p
· 1

nph
=

2p

m
· θsim (7)

More specifically, the flux density waveforms of each of the
homologous points found in the 2p/m pole sectors are shifted
by an angle corresponding to the pole pitch θp, and have
alternated polarity, as it can be appreciated in Fig. 4. In
this case the reconstruction sequence will be defined by a
vector containing the 2p/m terms identifying the different
rotor sectors, with the minus sign used for indicating inverted
polarity.
For integer-slot windings, the solution is trivial since there is
one pole per multiplicity and the flux density waveform results
to have the same periodicity as the angle to be simulated, θsim,
meaning that no reconstruction procedure is actually required.
For fractional-slot windings, the solution is less trivial and
requires the identification of the number of pole sector shifts
kp that leads to an equivalent waveform shift corresponding to
θsim. As similarly done for the stator, the linear Diophantine
equation is defined in (8), then resulting in the expression
reported in (9), where kph is the number of times an angle
corresponding to θph, which is the period of the flux density
waveform in the rotor that needs to be subtracted to satisfy
the equality.

kp · θp − kph · θph = θsim (8)

Fig. 5. Reconstructed flux density waveform for the point highlighted in Fig.
4 in pole sector 1.

kp · nph − kph · 2p
m

= 1 (9)

It can be observed that equation (9) is equivalent to
equation (6) defined for the stator, so the problem has to be
solved only once and the same kp and kph coefficients can
be used to determine the rotor reconstruction sequence. In
this case, the variable kp defines the number of pole sectors
steps that lead to an equivalent shift angle of θsim, while kph
is irrelevant since shifts of an angle corresponding to θph do
not change the polarity of the flux density waveform in the
rotor, being θph equal to its period.

A procedure for retrieving the reconstruction sequence is
proposed, again, aided with the 6 slots, 8 poles motor example.

• Consider kph and kp coefficients found solving (6)

kph = 2, kp = 3

• Determine the vector containing the sequence of integer
numbers identifying the various pole sectors with alter-
nated polarity, as

[+1,−2,+3,−4]

• Concatenate this vector kp times while maintaining the
same polarity if 2p/m is even (periodic boundary con-
ditions) or with alternated polarity if 2p/m is odd (anti-
periodic boundary conditions).

[+1,−2,+3,−4,+1,−2,+3,−4,+1,−2,+3,−4]

• Finally, select one every kp terms from the vector, starting
from the first, for a total of 2p/m terms.

[+1,−4,+3,−2]

Referring to the 12 slots, 10 poles reference motor of Fig.
1, it is instead obtained:

kph = 1, kp = 2

leading to a reconstruction sequence of

[+1,+3,+5,−2,−4]

An example of the reconstructed rotor flux density waveform
for the generic point in sector 1 highlighted in Fig. 4, is finally
shown in Fig. 5.



TABLE I
ANGLE RANGE REDUCTION FACTORS AND RECONSTRUCTION SEQUENCES FOR DIFFERENT DLCW MOTOR CONFIGURATIONS

Ns/2p nph 2p/m θFlux/θsim Stator reconstruction sequence Rotor reconstruction sequence
6 / 4 3 2 3 +A -B +C +1 -2
6 / 8 3 4 4 +A -C +B +1 -4 +3 -2
9 / 8 3 8 8 +A -B +C +1 -4 +7 -2 +5 -8 +3 -6
9 / 10 3 10 10 +A -C +B +1 -8 +5 -2 +9 -6 +3 -10 +7 -4
12 / 10 3 5 5 +A +B +C +1 +3 +5 -2 -4
12 / 14 3 7 7 +A -C -B +1 -6 -4 -2 +7 +5 +3
12 / 10 6 5 6 +A -B +C -D +E -F +1 -2 +3 -4 +5
12 / 14 6 7 7 +A +F -E +D -C +B +1 +7 -6 +5 -4 +3 -2
9 / 8 9 8 9 +A -B +C -D +E -F +G -H +I +1 -2 +3 -4 +5 -6 +7 -8
9 / 10 9 10 10 +A -I +H -G +F -E +D -C +B +1 -10 +9 -8 +7 -6 +5 -4 +3 -2

V. CASE STUDY: CALCULATION OF IRON LOSSES

The benefit of minimizing the rotor angle range to be
simulated is particularly evident in the case of the calculation
of iron losses. Since these are derived from the flux density
waveforms in the iron regions of the motor, tools included in
FE software for their estimation may require a higher angle
range to be simulated if a waveform reconstruction technique
is not used. For example, in Altair Flux™ the tool included
for the calculation of iron losses in post-processing requires to
simulate an angle range corresponding to the full period of the
flux density waveform in the region where the losses have to be
calculated. Only if the the flux density waveform is symmetric,
as it happens in the stator region of an electric motor, just
half of the period can be simulated enabling an advanced
mode feature which reconstructs the waveform antiperiodically
[10]. This means that, if losses have to be calculated both
in the stator and rotor regions, the required angle range to
be simulated is either equal to half of the electrical period,
corresponding to the pole pitch θp, if θp > θph, or equal to
the rotor flux density period, corresponding to the phase sector
pitch θph, if θph > θp. Therefore, the angle range reduction
factor, defined as the ratio between the angle range required by
Flux™, θFlux, and the minimum one according the waveform
reconstruction technique proposed in this paper, θsim, will be
either determined by half of the stator waveform period as in
(10), if θp > θph, or determined by the rotor waveform period
as in (11), if θph > θp.

θFlux

θsim
=

θp
θsim

= nph (10)

θFlux

θsim
=

θph
θsim

=
2p

m
(11)

Examples of the reduction factors that can be achieved are
listed in Tab. I for few suitable (i.e. with reasonable winding
factor) multi-phase DLCW configurations, along with the
corresponding reconstruction sequences for the stator and rotor
regions. Being the reduction factor given by the maximum
between nph and 2p/m, the benefit of the reconstruction
procedure is particularly significant for motor configurations
with high number of phases and/or high number of poles per
multiplicity. The listed reduction factors can be also seen as a
theoretical metric to evaluate the reduction in computational
load, while the actual reduction in terms of simulation times

is not listed as it depends on the software used, the solver
settings, and on the actual number of steps simulated itself. In
the software used in this analysis for example, Altair Flux™,
simulation times tends to increase linearly with respect to the
number of steps simulated but with an additional fixed time
offset. This means the higher the number of steps computed,
the lower the constant time offset is with respect to the overall
time, and consequently the closer the simulation speedup will
be to the one suggested by the angle range reduction factor.
Nevertheless, high angle reduction factor will still lead to
significant simulation time reduction even if simulation times
do not scale linearly with the number of steps.

VI. CONCLUSIONS AND POSSIBLE APPLICATIONS

In this paper, a methodology for optimizing the FE analysis
procedure of an electric motor has been proposed. The solution
allows to retrieve the complete waveform of any variable of
the FE electromagnetic solution, e.g. flux density, starting from
simulations performed within a reduced rotor angle range,
reducing thus the number of steps to be simulated. This is
achieved by exploiting additional periodicity conditions of
the motor geometry and mesh, as defined in section III.
Once those are respected, the motor can be divided into
different sections which are subject to the same magnetic
conditions, but at a shifted rotor angle. Then, the waveform
can be reconstructed from a reduced angle range by properly
combining the information retrieved from the different motor
sections. Since the order in which the different parts of the
waveform have to be combined is not trivial, and is dependent
on the specific motor configuration, a generalized procedure
for retrieving the correct reconstruction sequence as a function
of the motor characteristic has been defined in section IV.
Finally, a comparison between the rotor angle span required
by a state-of-the-art commercial software for computing iron
losses and the one required by the proposed solution is shown.
The angle range reduction factor is equal to the maximum
between the number of phases and the number of poles per
multiplicity. Hence, it is at least three times for all types
of three-phase motors and higher for configurations with a
greater number of phases and/or poles per multiplicity. In
conclusion, the proposed waveform reconstruction procedure
has demonstrated significant potential for reducing the com-
putational load of motor analysis, and can find its application
into FE motor analysis software. Thanks to its generalization



for different motor topologies, its inclusion should be partic-
ularly convenient for solutions which already rely on motor
templates, which can be easily adapted to satisfy the additional
geometrical periodicity conditions required.
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