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Abstract: Collecting pavement texture information is crucial to understand the characteristics of a
road surface and to have essential data to support road maintenance. Traditional texture assessment
techniques often require expensive equipment and complex operations. To ensure cost sustainability
and reduce traffic closure times, this study proposes a rapid, cost-effective, and non-invasive surface
texture assessment technique. This technology consists of capturing a set of images of a road surface
with a mobile phone; then, the images are used to reconstruct the 3D surface with photogrammetric
processing and derive the roughness parameters to assess the pavement texture. The results indicate
that pavement images taken by a mobile phone can reconstruct the 3D surface and extract texture
features with accuracy, meeting the requirements of a time-effective documentation. To validate the
effectiveness of this technique, the surface structure of the pavement was analyzed in situ using a
3D structured light projection scanner and rigorous photogrammetry with a high-end reflex camera.
The results demonstrated that increasing the point cloud density can enhance the detail level of
the real surface 3D representation, but it leads to variations in road surface roughness parameters.
Therefore, appropriate density should be chosen when performing three-dimensional reconstruction
using mobile phone images. Mobile phone photogrammetry technology performs well in detecting
shallow road surface textures but has certain limitations in capturing deeper textures. The texture
parameters and the Abbott curve obtained using all three methods are comparable and fall within
the same range of acceptability. This finding demonstrates the feasibility of using a mobile phone for
pavement texture assessments with appropriate settings.

Keywords: pavement texture assessment; close-range photogrammetry; structured-light scanner; 3D
image analysis; sustainable road maintenance

1. Introduction

Pavement texture, as a key indicator of pavement structure, has a direct impact on
driving safety, driving comfort, noise levels, and pavement durability [1–4]. Specifically, the
roughness of pavement texture affects the grip of tires, which, in turn, affects the braking
performance and handling of vehicles [5–7]. In addition, good pavement texture can
effectively reduce the risk of skidding by effectively removing water from the road surface,
as well as improve driving comfort by absorbing the noise generated between tires and
the road surface [8–10]. Therefore, the accurate acquisition and assessment of pavement
texture is crucial for road maintenance and management. Traditional pavement texture test
methods often use the sand patch method, which is a contact-based approach that is prone
to human error [11–13]. However, this method has certain drawbacks, such as the potential
for sand residues to remain on the analyzed road surface. Furthermore, it necessitates the
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interruption of vehicular traffic during testing, which can be disruptive and impractical in
high-traffic areas. Thus, non-contact detection technologies have been developed, such as
laser scanners, structured-light projection 3D scanners, and high-end reflex cameras [14–18].
These non-contact test methods rely heavily on precision instrumentation. These devices
can provide highly accurate measurements, but they are expensive to use and complicated
to operate. For example, laser and 3D scanners require professional personnel to operate,
and traffic often needs to be closed to conduct tests [19]. While high-end reflex cameras
can provide high-resolution images, they are more expensive compared to mobile phones
and require time-consuming procedures to collect data [20]. These traditional methods are
often incompatible with the need for rapid surveys and timely road reopening, which are
essential for properly managing and monitoring pavement conditions.

With the rapid development of mobile devices and image processing technology, using
portable devices such as mobile phones for 3D reconstruction has become a new research
topic [21–23]. Mobile phones are equipped with high-resolution cameras and powerful
computing capabilities, making it possible to achieve 3D reconstruction based on mobile
phone imagery [24]. Photogrammetry using mobile phones has achieved remarkable
results in fields such as geological exploration and tunnel measurement. Fang et al. [25]
used multiple mobile phone images to reconstruct a 3D model of a tunnel, obtaining
an error margin within 0.3 cm. Similarly, Fang et al. [26] employed a similar strategy
to monitor rock slopes, by effectively analyzing rock deformation behavior and failure
mechanisms. These studies show that photogrammetry is highly reliable and applicable
in reconstructing complex terrains and structures. Mobile phone images can be used not
only for the 3D reconstruction of geological structures but also for reconstructing coarse
particles. An et al. [27] quickly determined particle size and shape through mobile phone
photogrammetry, indicating that photogrammetry can be applied to smaller areas for
texture analysis, thus providing the potential for pavement texture reconstruction. Wan
et al. [28] used three different mobile phones and image processing technologies to obtain
concave distribution characterization of the pavement, which can effectively reflect the
segregation condition of the pavement surface. Slavkovic and Bjelica [29] also extracted
pavement texture features from the image. However, their analysis was not conducted
by transforming the photo into a 3D point cloud. Farhadmanesh et al. [30] used mobile
photogrammetry to reconstruct the pavement for pavement crack assessment, but the
error reached 1 cm, and accuracy could not be used for texture assessment. Kogbara
et al. [31] attempted to reconstruct pavement in 3D and evaluate pavement texture using
a professional full-frame DSLR camera with success, but the camera body alone is costly.
These studies suggest that photogrammetry has significant potential in assessing road
pavement texture, particularly in monitoring and asset management contexts, as it can
reduce both costs and road closure times when evaluating the efficacy of maintenance
interventions. Moreover, using mobile phones for this purpose is feasible and can further
reduce equipment-related costs. Although existing research indicates that photogrammetry
based on mobile phone images hold significant potential in pavement texture assessments,
current technological methods still have notable limitations. Factors such as the shooting
angle, distance, and algorithm for reconstruction greatly affect the 3D reconstruction
results [27,32,33]. Additionally, the low resolution of mobile phone images makes it difficult
to achieve detailed measurements [34,35].

In response to these issues, this study proposes an innovative and standardized
method for evaluating pavement texture based on mobile phone images and photogram-
metry. This method is characterized by its speed, cost-effectiveness, and non-invasiveness,
making it suitable for various application scenarios. Its accelerated process reduces road
closure times compared to traditional, point-based tests, cutting costs and minimizing
disruptions. Using a mobile phone with a camera, the method is cost-effective while still
providing data quality comparable to more expensive equipment. Environmentally, it
minimizes waste generation and simplifies waste management.
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Firstly, to improve the reliability of the assessment, a standardized shooting platform
was developed that stabilizes the shooting distance, minimizing the impact of environ-
mental factors and human error on the 3D reconstruction process. Then, the effect of the
number of point clouds on the texture parameters and computational speed were compared,
in order to select the appropriate point cloud density. Finally, a comparative analysis of
various techniques was performed by analyzing the Abbott curves and various texture
parameters to demonstrate the reliability and practicality of the method based on mobile
phone imagery. Additionally, tests were also carried out on pavements with water residue
to determine the feasibility of the method in complicated environments.

2. Materials

In this study, a new thin layer of asphalt concrete measuring 20 m × 4 m (80 m2)
with a thickness of 5 cm was placed on the existing pavement in a parking area located
at Autodromo Enzo and Dino Ferrari of Imola. A layer of bitumen emulsion was laid to
ensure continuity between the two pavement surface layers. The asphalt mixture was made
by traditional unmodified bitumen (50/70) with aggregates (passing through a 12.5 mm
sieve) at approximately 160 ◦C. The pavement grading curve is shown in Figure 1. After
laying, core samples were taken from the pavement to test the basic performance of the
asphalt mixture and its constituent materials. The characteristic of the newly laid asphalt
concrete are shown in Table 1.
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Table 1. The basic performance of the asphalt mixture and its constituent materials.

Density (g·cm−3)
Percentage of Bitumen (%) Percentage of Filler (%)

Aggregates Bitumen Asphalt Mixture

2.651 1.025 2.455 5.73 6.08

3. Methods
3.1. Close-Range Photogrammetry Based on Mobile Phone

Close-range photogrammetry (CRP) is a technique used to reconstruct the three-
dimensional shape and structure by capturing multiple photos of the object from different
angles. The overall workflow of CRP is shown in Figure 2. The first step is image acquisition,
and the quality of the images directly affects the quality of the 3D reconstruction. The
quality of the images depends on the tools used for capturing them, the settings of the
relevant parameters, and the surveyor skills. In this study, a mobile phone with a Sony
IMX315 CMOS (Complementary Metal-Oxide-Semiconductor) sensor with a diagonal of
6.15 mm, an image resolution of 4032 × 3024 pixels, and a pixel size of 1.22 µm was chosen
as the camera tool. A sensor is a type of image sensor used in digital cameras, converting
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light into electronic signals to create digital images. CMOS sensors are known for their
high image quality and low noise levels, which are crucial for capturing detailed and high-
resolution images that can improve the quality of the photogrammetric reconstruction. The
camera settings were as follows: no zoom, portrait mode, 3 s selfie timer, f/10 aperture, and
focus on the specimen (black object). To reduce the impact of manual operation on image
quality, two shooting platforms were designed on which the mobile phone was placed to
avoid issues like shaking and shooting distance. The shooting strategy is another factor
affecting the quality of the 3D point cloud. The strategy used in this study is convergent
axis capture, with circular shooting at two different heights. The schematic diagram is
shown in Figure 3a. The heights of the platforms were set at 50 cm and 30 cm from the
ground to ensure consistent shooting distances. The use of different acquisition heights
and angles is crucial in photogrammetric data acquisition, for these main reasons:

� Overall Scene Coverage and Detailed data capture: Capturing images from a higher
elevation allows us to obtain “framing” shots that include the entire pavement area.
These images ensured that the full extent of the scene was covered, providing context
and spatial reference for the detailed images. In contrast, images taken from a lower
elevation focused on close-up details of the pavement surface. These images captured
finer textures and small-scale features that may not be resolved in the images acquired
from higher viewpoints. In fact, the spatial resolution of the images (or Ground
Sampling Distance, GSD) was affected by the camera–object acquisition distance (do)
and focal length (f ), as stated by the formula:

GSD =
do × Pixel Size

f

Therefore, the closer the camera is to the surveyed object, the smaller the Ground
Sampling Distance (GSD) value will be. A smaller GSD means that each pixel in
the digital image represents a shorter distance on the physical object, allowing finer
details to be captured.

� Enhanced Robustness of Photogrammetric Reconstruction: combining images from
different heights and angles improves the robustness of the image acquisition scheme
for 3D reconstruction with photogrammetry. The different perspectives increase image
overlap and parallax, which enhance feature matching and tie-point generation during
Structure-from-Motion photogrammetry processing. Shooting at multiple tilts and
angles, in addition, enables a better completeness of the information captured in the
images. However, for this initial test, only nadiral (or images captured perpendicularly
to the main surface of interest) were collected.

A height of 50 cm can provide good image overlap, while a height of 30 cm allows
for better detail capture with sufficient overlap. While capturing images, both shooting
platforms were rotated to ensure that images were taken from different angles. The shooting
platforms are shown in Figure 3b. To capture finer details, after rotating the 30 cm platform
for a full circle, horizontal movement shooting was conducted.

The second step in CRP is 3D reconstruction, which depends on the algorithms and
computational power. In this study, the Structure from Motion (SfM) software 3DF Zephyr
(v. 6.509) was used for reconstruction because its Samantha and Stasia algorithms are more
suitable for architecture and urban monitoring [36]. Regarding computational power, a
laptop was used for this study. The reconstruction of the dense 3D point cloud typically
takes less than 10 min, meeting the computational requirements. The 3D reconstruction
process first determines the relative positions and orientations of the cameras based on
feature points. In Figure 2, the blue conical shapes represent the relative positions of the
cameras, which are mainly distributed on both layers in a circular pattern, corresponding
to the shooting platforms and strategies. Next, a sparse point cloud was constructed. The
software uses the Samantha algorithm, which is a sparse reconstruction technique based on
multi-view analysis, recovering 3D structures by analyzing images from multiple camera



Sustainability 2024, 16, 9630 5 of 19

perspectives and building the sparse point cloud. The final step is to construct a dense
point cloud, utilizing the 3DF Stasia algorithm, which excels at reconstructing details [37].
In addition to the above steps, to ensure that the distance between points in the dense
point cloud corresponds to the actual distance, two points were marked on the pavement
before taking the photos. The distance between these two points was 5 cm. After the
reconstruction of the 3D model, the software’s calibration function was used to scale the
model to its real proportions.
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Finally, texture analysis was performed based on the point cloud data obtained from
the 3D reconstruction. In this study, the analysis was conducted using the software Moun-
tainsMap (v. 10.1). A series of operations were performed with this software, including
rotation, cropping, leveling, and shape removal, to obtain the Abbott curve, roughness
parameters, and 3D images of the road surface. The leveling process was handled using
the least squares method. Subsequently, data obtained from structured light scanners and
high-end cameras were analyzed using the software.

3.2. Photogrammetry Techniques Using High-End Reflex Camera

High-end camera photogrammetry technique is also a type of CRP, but the method of
image acquisition differs, using more advanced cameras. In this study, a high-end reflex
camera was used, featuring a CMOS sensor with dimensions of 36 × 24 mm, an image
resolution of 5472 × 3648 pixels, and a pixel size of 6.54 µm, with an aperture value of
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f/8. Both camera and sensor are manufactured by Canon Ink. (Tokyo, Japan). To ensure
that the size of the reconstructed 3D images was more accurate and the results were better,
coded targets were used in this study. The SfM software Agisoft Metashape (v. 2.1.2) was
employed. The coded targets allowed computational optimization during reconstruction,
leading to improved results. The coded targets, as shown in Figure 4, were placed in the
scene before taking the photos and could be used as reference points for coordinate systems
and scale definitions, or as effective matches between images. This method enhanced image
quality by using a professional camera, and the introduction of coded targets improved the
reconstruction results.
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3.3. Structured-Light Projection Scanning

In this study, a structured-light scanner (SLS) was used to scan pavement textures and
obtain point cloud data, which were then compared with the results from CRP based on
the mobile phone. The structured-light scanner used in this study was the Artec Space
Spider from Artec 3D (Senningerberg, Luxembourg), with detailed technical specs shown
in Table 2. The scanner is shown in Figure 5a, and its point cloud results are shown in
Figure 5b. Structured-light scanners emit a precisely calibrated blue or white light pattern.
Typically, this pattern forms a set of parallel lines, stripes, or grids. When this “structured
light” contacts the surface of the object, the light is distorted due to the surface’s shape,
with its depressions or protrusions. Simultaneously, the camera of the scanner captured
the reflected light information frame by frame, recording the degree of distortion. By
calculating these deformations, the 3D shape of the object was obtained, generating a 3D
point cloud.

Table 2. Structured-light scanner technical specs.

Scanner Model 3D Accuracy 3D Resolution 3D Reconstruction Rate Tracking Markers

Artec Space Spider 0.05 mm 0.1 mm 7.5 FPS Markerless
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3.4. Simulation of Contaminated Pavement

Hazardous liquid substance spills after road accidents can cause the chemical and
structural decomposition of asphalt particles within the pavement texture. A study con-
ducted by Girelli et al. emphasized that the longer the spilled substances remain on the
road surface, the greater the damage assessed on the pavement texture [38]. Therefore, the
timely removal of such substances from the road surface is of critical importance.

In this study, a contamination of the road surface by applying diesel, oil, and other
pollutants was conducted and followed by a cleaning process. During the cleaning, sand
was initially used to absorb the liquid contaminants, after which the surface was washed
and air-dried, as shown in Figure 6. After cleaning, most of the sand was removed, but
oil stains and water residues remained on the surface, creating a more complex texture
condition. Under these conditions, various methods were employed to test the pavement
texture in the same area to evaluate their performance in a challenging environment.
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4. Results and Discussion
4.1. The Effect of the Point Cloud Size on CRP Result Based on Mobile Phone

Typically, a higher number of elements in a point cloud corresponds to greater accu-
racy in the representation, which generally leads to better results. However, when photo
resolution is limited, increasing accuracy through software will only increase point cloud
sparsity and data processing complexity and amplify noise, without significantly improv-
ing measurement results, or even making the results worse. Because a large amount of
error data or noise may be treated as correct information for texture evaluation, selecting
an appropriate point cloud size is crucial. This study first analyzed the impact of various
computational settings on point cloud data to determine the optimal sparsity settings. The
software operation settings and point cloud sizes results are shown in Table 3. It can be
observed that a different number of point clouds can be obtained through software settings,
with the maximum size of point cloud data reaching 519,367, although the runtime is
significantly longer than other tests. Comparing image resolution and acceleration levels
shows that higher image resolution and lower acceleration levels led to more data points
and a correspondingly longer runtime. For example, in Procedure B, with a high acceler-
ation level and 100% resolution, the number of data points is 156,284. When the speed
level is adjusted to low, the point cloud size reaches 5,139,367. When the resolution was
adjusted to 75%, the number of data points dropped below 50,000, resulting in excessively
low accuracy.
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Table 3. Results of the point cloud size and software settings.

Procedure Number of Points Image Resolution Speed Up Level Running Time

A 80,308 50% Low 2 m 24 s
B 156,284 100% High 3 m 2 s
C 230,271 75% Low 3 m 16 s
D 519,367 100% Low 8 m 21 s

4.1.1. Results of Different Point Cloud Sizes Based Mobile Phone

The results of different size of point clouds are shown in Figure 7. It can be observed
that, as the number of point cloud data elements increased, the point cloud more accurately
reflected the surface details of the pavement. With the increase in the number of point
cloud data points, the fine features and complex structures of the pavement can be better
represented, and the color of the result also becomes more like the road surface. Comparing
Procedure A and Procedure D in Figure 7, significant differences can be observed. The
number of point clouds for Procedure A is the least, as fine surface details may be smoothed
out or overlooked, resulting in the 3D model that may not accurately reflect the actual
roughness of the pavement. This outcome can distort the calculated roughness value or
cause critical roughness features to be missed. On the other hand, Procedure D had the
highest number of elements in the point cloud, and the pavement texture can be reflected
solely through the point cloud data. It is clear that high-resolution models were more
detailed, and the generated 3D models would be closer to the real surface, although the
computation time was longer. However, a roughness analysis should be compared using
the Abbott curve and roughness parameters to quantify the impact of number of point
clouds; the quality of CRP based on a mobile phone cannot be determined solely by point
cloud models.
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In this study, the point cloud results were processed, and a 240 mm × 75 mm area was
selected for quantitative comparison with the scanner results of the same area. The cloud
map results are shown in Figure 8. During texture calculation, the relevant software settings
and procedures were kept completely consistent. It can be observed that the differences
in the cloud map results due to variations in the number of points are not significant.
However, Procedure D displays a finer texture effect, visually superior even to the scanner
results, despite the scanner results containing more data points. This result may be due to
the fact that the reconstruction process in Procedure D better reconstructs the details, but
the correctness of the details is in doubt. Due to the presence of significant deep valleys in
the pavement, these regions can be difficult to reconstruct from some angles due to lighting
issues and to the absence of tilted photos that could capture the innermost areas. If the
viewing angles are not diverse enough, some areas may lack information. In cases where
high accuracy is required, the software often compensates through point interpolation
algorithms, where the reconstruction algorithm might infer the shape and details of these
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regions. This inference can make the result appear finer, potentially making it look better
than the scanner results, but it may also lead to inaccurate results.
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4.1.2. The Effect of Point Clouds Size on Roughness and Abbot Curves

To quantify the impact of number of elements of the point cloud on pavement texture
results, this study plotted the Abbott curves (Figure 9) and calculated the roughness
parameters (Table 4), including the arithmetic mean height (Sa), root mean square height
(Sq), maximum height (Sz), kurtosis (Sku), and skewness (Ssk). The roughness parameter
calculation formula is shown in Equations (1)–(5). The Abbott curves show that changes in
number of point clouds have a minimal effect on the differences from the scanner results.
Even with the lowest number of point clouds, Procedure A, the results still performed
well. Procedure B is most consistent with the scanner results, while the Abbott curve for
Procedure D shows some deviation from the scanner results. This result may be due to the
excessive inference of local details and an increase in the size of point cloud during the
3D reconstruction process, leading to distorted results. Additionally, high accuracy often
comes with increased noise, resulting in the inclusion of more invalid points in the statistics,
which affects the performance of the Abbott curve. The roughness parameter results show
that the Sa and Sq values in Procedure D are significantly higher than in other groups, and,
although there are some differences in Ssk and Sku, they remain within a reasonable range.
Sz gradually becomes larger as the accuracy increases, which is supposed to be due to more
noise. This finding further indicates that higher accuracy does not necessarily yield better
results. Based on the above analysis, the settings used in Procedure B were adopted for
subsequent CRP reconstructions in this study.

Sa =
1
A

x

A

|Z(x, y)|dxdy (1)

Sq =

√
1
A

x

A

|Z2(x, y)|dxdy (2)

Sz = Sp + Sv (3)
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Sku =
1

Sq4

[
1
A

x

A

∣∣∣Z4(x, y)
∣∣∣dxdy

]
(4)

Ssk =
1

Sq3

[
1
A

x

A

∣∣∣Z3(x, y)
∣∣∣dxdy

]
(5)
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Figure 9. Abbott curves from different point cloud sizes and from the scanner.

Table 4. Roughness parameters from different point cloud sizes and from the scanner.

Procedure Sa (mm) Sq (mm) Sz (mm) Ssk Sku

A 0.303 0.4237 3.947 −1.967 8.516
B 0.3092 0.4334 4.084 −2.098 9.238
C 0.2892 0.4012 4.021 −1.829 8.194
D 0.382 0.5257 5.160 −1.86 8.169

Scanner 0.3116 0.4208 3.221 −1.75 7.110

4.2. Comparison of Results for Different Texture Assessment Techniques
4.2.1. Comparison of Abbott Curves for Different Texture Assessment Techniques

In this study, five representative locations on a newly paved road were selected for
texture analysis with the three methods (CRP with mobile phone, CRP with professional
camera, and Scanner), and Abbott curves were plotted based on the collected point cloud
data, as shown in Figure 10. The results indicate that, with the exception of Location 4,
the Abbott curves from different methods are generally consistent. For Location 4, the
Abbott curves from the scanner and the professional camera are fairly consistent, while the
curve derived from the mobile phone shows significant differences. This result suggests
that, although CRP based on a mobile phone offers a low-cost solution, its accuracy in
road pavement texture detection may be limited. In contrast, CRP using high-end cameras
proves to be more reliable, with results comparable to those obtained by the scanner.

Further analysis of the Abbott curves reveals that points corresponding to a texture
height of 0–0.7 mm constitute over 50% of the total, with some pavement locations reaching
up to 80%, indicating that the surfaces are relatively flat. This finding can be attributed
to the fact that the maximum aggregate size is only 12.5 mm, and the road is newly
constructed, resulting in high smoothness. When the pavement texture height is low, the
Abbott curves obtained by different methods closely overlap. However, as the texture
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height increases, significant discrepancies occur among the curves. This trend indicates that,
while different methods perform well in capturing shallow pavement textures, they exhibit
varying effectiveness when detecting deeper textures. This discrepancy may be due to the
challenges in capturing points at greater depths on pavement. Therefore, future research
should focus on improving the detection of deeper pavement textures and optimizing CRP
based on a mobile phone to enhance its reliability.
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Figure 10. Abbott curves for results of different methods in five locations.

4.2.2. Comparison of Roughness Parameters for Different Texture Assessment Techniques

This study calculated the roughness parameters at five locations with the results
shown in Figure 11. Comparing the height distribution parameters Sa, Sq, and Sz, the
differences between the results from different methods are minimal, except for Location
4. This outcome further confirms the feasibility of CRP methods for pavement texture
detection. Specifically, Sa values range from 0.1 to 0.4 mm, Sq values range from 0.1 to
0.6 mm, and Sz values are around 4 mm, indicating that the roughness at different locations
is relatively consistent, because the road has just been paved and is quite smooth. For
Location 4, the roughness parameters obtained using a mobile phone are significantly
higher than those obtained using other methods, possibly due to the deeper texture at
that location, which makes it difficult for the mobile phone’s CRP to accurately capture
the depth information. This action would overestimate the pavement texture depth. In
contrast, the professional camera performs well, likely because its larger CMOS sensor can
capture faint light better, while the mobile phone’s smaller sensor and lower resolution
result in less detailed images, leading to reduced reconstruction accuracy.

When comparing the Sku and Ssk parameters, the differences among the five locations
across different methods are minimal. Even at Location 4, the results from the mobile
phone, professional camera, and scanner are generally consistent. The Sku values are all
greater than three, indicating that the height distribution is more peaked. Typically, Sku = 3
suggests a normal distribution, while Sku > 3 indicates a sharper height distribution. This
may be due to the fact that the asphalt concrete has recently been laid, and the aggregate has
not yet worn down, resulting in sharp texture. The Ssk values are all less than 0; typically,
Ssk = 0 indicates that the height distribution of the pavement texture is symmetrical, while
Ssk < 0 suggests that the texture distribution is skewed upwards. The results show that the
pavement texture is indeed skewed upwards, consistent with the Abbot curve analysis,
where the curve changes rapidly at low texture heights. Overall, these findings indicate
that the pavement roughness data obtained by CRP methods are reliable and can effectively
reflect the pavement texture.
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Figure 11. Roughness parameters for different locations.

4.2.3. Comparison of Cloud Maps for Different Locations

To investigate the reasons for inaccuracies in results based on mobile phone image
reconstruction, this study compared the point cloud results from five locations, as shown in
Figure 12. The results indicate that the point cloud at Location 4 is distinctly different from
the other four locations. Location 4 has deeper textures with many deep valleys, some of
which exceed 3.0 mm in depth. These deep valleys are likely the cause of the decreased
accuracy that CRP based on the mobile phone. Due to the lower resolution of mobile
phone images and the reduced light reflection in deep valley areas, the mobile phones
struggle to accurately capture the height variations in these regions. When reconstructing
the three-dimensional structure of the pavement surface based on mobile images, this
action inevitably leads to fewer point cloud data in these areas and even reconstruction
errors, where deep valleys are misjudged as being deeper than they actually are, resulting
in an overestimation of pavement roughness.
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Figure 12. The results of cloud maps at different locations by CRP based on mobile phone.
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The pavement surface at Location 5 is also relatively rough, but the three-dimensional
reconstruction is more accurate. This finding may be because, although Location 5 has
many valleys, they are not very deep. The blue and black areas are significantly fewer
than in Location 4, and more areas are shown in blue, indicating that the depth is within
3 cm. Therefore, the CRP based on the mobile phone is still feasible in this case. The
other three locations have noticeably flatter pavement surfaces, and the method images are
sufficient to reflect the roughness, with reconstruction results closely matching those from
the scanner. In summary, the CRP based on mobile phone technology is more suitable for
pavement surfaces with smaller roughness and fewer deep valleys. For pavements with
numerous deep valleys, the reliability of the results obtained using this method should be
carefully assessed.

This observation was also confirmed by another test conducted to compare the out-
comes obtained with the tested methods. The five different point clouds, for all the test
areas considered, were imported in the free software for point cloud processing CloudCom-
pare, and a cloud-to-cloud distance calculation was performed using as a reference the
SLS cloud, to which the mobile-phone CRP clouds were compared. This operation allows
us to understand the distribution of the inter-distance between the points of two aligned
clouds, selecting a distance range and also a direction along which to compare the points
(X, Y, or Z). In this case, the point inter-distance was first computed along the X and Y axis,
not showing significative differences among the clouds obtained with the three devices.
Then, the distances along the Z axis were calculated to compare the points representing the
depth, hence understanding the differences in the reconstruction of the innermost areas
among the two surveying techniques (scanner vs. mobile phone).

The Z value differences ranged from −5.24 mm to +2.40 mm, with the worst-case
being Location 4, confirming what was mentioned above. The best situation, instead, was
observed for Location 1 (−1.49 mm to +0.88 mm). Table 5 reports the results obtained for
each test area, while Figure 13 shows the mobile phone-based point cloud of Location 4,
represented with a color gradient showing the differences in the distance values (in mm)
in the Z direction. As mentioned before, the innermost areas in the aggregate concavities
present points with a significant discrepancy in the Z values between the two surveying
techniques. This finding demonstrates again that mobile-phone photogrammetry is more
suitable for shallow surfaces, as it is not sufficiently able to reconstruct the innermost and
hard-to-capture areas of the aggregate. The SLS, instead, despite presenting some problems
with the wet and oiled surfaces after spilling, was more able to “penetrate” inside the most
hidden morphological features of the scanned areas.
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Table 5. Distance values differences in the Z direction for all the test areas considered (mobile phone
vs. structured-light scanner).

Location Z Values Distances (min–max)
with Respect to the SLS Scanned Clouds

1 −1.49 (min) +0.88 (max)

2 −2.82 (min) +1.52 (max)

3 −3.05 (min) +1.92 (max)

4 −5.24 (min) +2.40 (max)

5 −2.56 (min) +1.01 (max)

4.3. Effects of Pavement Contamination on Results

To investigate the performance of CRP in complex environments, this study conducted
texture measurements on four samples with small amounts of oil and water stains, and the
point cloud results are shown in Figure 14. It can be seen that the CRP based on images
was able to capture the pavement textures in these areas completely, whereas the three
sets of data obtained using the scanner were incomplete. Comparing the details, it is
evident that the scanner results in some areas differ significantly from the point cloud data
obtained by other methods, which may be due to two factors. First, the structured- light
scanner relies on projecting stripes or patterns to measure the surface of objects, making
the quality and stability of the light source crucial. The bright daylight environment may
have interfered with the operation. Second, the high reflectivity of the oil and water stains
on the pavement surface could have caused intense specular reflection, making it difficult
for the camera to accurately capture the stripes or patterns, leading to incomplete areas
in the point cloud results. This finding demonstrates that, although the scanner offers
high precision, its effectiveness can be compromised in complex environments, potentially
resulting in distorted data and difficulties in detecting certain areas.
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To further analyze the impact of environmental factors on pavement texture detection,
this study conducted a statistical analysis of the point cloud results and plotted Abbott
curves, as shown in Figure 15. The Abbott curves obtained from different testing methods
are generally similar, with some curves even nearly overlapping. However, there are also
some differences, particularly with the Abbott curve from the scanner, which is relatively
higher than those from the other two methods. This discrepancy may be related to the
incompleteness of the scanner data. Even in the case where the scanner data are complete, as
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shown in Figure 15 (Sample 2), the Abbott curve remains higher than that obtained through
CRP, indicating that the presence of water on the road surface may impact the scanner’s
accuracy, leading to deviations in the results. Therefore, even when the scanned area is
complete, the authenticity of the data needs further validation in complex environments.
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Figure 15. Abbott curves for results of different methods of four samples.

This study calculated pavement roughness based on point cloud data, with the results
shown in Figure 16. Comparing the parameters Sa, Sq, and Sz, it is evident that the
results obtained from the scanner are consistently lower than CRP methods. The CRPs
based on mobile phone and professional camera measurement results are more closely
aligned, indicating that, in the presence of water, the scanner may primarily capture
shallower areas, while deeper valleys, affected by the water, are either difficult to scan or
experience distortion due to the adverse effects on structured light. This result leads to an
underestimation of the pavement roughness. The Sku values are all greater than 3, and Ssk
values are all less than 0, indicating that the pavement surface remains relatively sharp,
with the overall point cloud distribution skewed upward. When comparing Sku and Ssk
values across different methods, there is a noticeable increase in dispersion compared to
tests conducted on dry pavement surfaces. This finding indicates that the presence of water
impacts the testing results, leading to some variation between the methods used.

These findings indicate that, while scanners offer high precision, CRP may have
an advantage in pavement surface reconstruction under certain conditions, particularly
when contaminants or strong lighting are present. To address such issues, many high-
precision scanners on the market today are designed as hybrid systems, incorporating
both structured-light emitters and cameras. This design allows them to generate 3D
point clouds through structured-light scanning and simultaneously capture 3D structures
through imaging techniques, ultimately optimizing and merging the two results for a more
accurate representation of the scanned object. This outcome demonstrates that, although
CRP is not as precise as scanning, it may offer distinct advantages in specific scenarios and
can be more efficient in the field since it only requires taking photographs, making it faster
than using a scanner.
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5. Conclusions

This study introduces a CRP technique based on mobile phone images, firstly ana-
lyzing the effect of the number of point clouds on the texture image, the Abbott curve,
and the roughness parameters. Then, it compares the differences in pavement texture
reconstruction results between a mobile phone, professional camera, and structured-light
scanners. Finally, this study assesses the effects of water presence and contamination on
these three testing methods. Based on the comprehensive analysis and comparison, the
following conclusions can be drawn:

(1) The CRP technique using mobile phone images can effectively detect pavement
textures, and, through photogrammetric expertise and practice, algorithmic adjustments
and software settings can produce high-precision 3D point cloud results. However, too
many points can affect the authenticity of the pavement texture. While more points would
better reflect the details of the pavement, it may also introduce noise and redundant
information, leading to distorted results. Abbott curves and roughness parameters may
vary with changes in accuracy, indicating that an increased number of points does not
always result in more precise measurements. Therefore, selecting an appropriate setting
is crucial.

(2) The Abbott curves and roughness parameters obtained by different detection
methods are generally consistent, indicating that these methods perform well in detecting
shallow pavement textures. However, the CRP technique based on mobile phones struggles
with deep texture detection due to lower image resolution and insufficient light capture in
deep valleys. This challenge affects the 3D reconstruction and leads to an overestimation of
roughness on surfaces with significant valleys. Hence, this technique is more suitable for
analyzing textures on flat surfaces, and caution is advised when evaluating its accuracy on
complex surfaces.

(3) Although scanners typically offer greater accuracy than CRP, this study found
that, in environments with water and oil presence, scanners are more susceptible to the
effects of light and surface reflections, leading to incomplete or distorted data. In contrast,
close-range photogrammetry demonstrates a greater advantage under such conditions,
capturing pavement details more completely. This technique exhibits better adaptability in
complex environments and holds specific advantages under certain conditions.
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In terms of sustainability, this study presents a method for rapid and cost-effective
assessments of road pavement surface conditions. Compared to traditional methods
for analyzing road pavements after a maintenance event, the proposed method is more
economically sustainable. This property is primarily due to its expedited nature, which
significantly reduces the time required for road closures compared to traditional, point-
based, and static testing methods. Additionally, the method is cost-effective because
it utilizes a simple mobile phone equipped with a camera, allowing the acquisition of
data that is comparable in quality to that obtained with more expensive equipment. The
proposed methodology also offers greater environmental sustainability by minimizing
waste production and reducing the overall waste management burden. Moreover, if the
pavement is found to be inadequate in terms of functional parameters, the method allows
for a rapid and targeted plan for reusing the bituminous mixture that needs to be removed,
further contributing to resource efficiency.

Further studies will be conducted on different types of pavements, with enhanced
control over factors that may interfere with image acquisition.
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