

С

# Light stimuli



## **Tapping stimuli**



## Suppl. Figure 1: DanioVision protocol setting for behavioural analysis in zebrafish larvae

(A) Flowchart protocol for behavioural analysis in zebrafish larvae using a 24-well plate. Temperature was set to 28°C with the DanioVision Temperature Control Unit. FW: Fish Water. Created with BioRender.com.(B) Trial Control Settings for the light stimuli protocol. (C) Trial Control Settings for the tapping stimuli protocol.



D



## Suppl. Figure 2: Genotyping of the zebrafish *polg2<sup>ia304</sup>* mutant line

(A-C) Chromatograms corresponding to *polg2*<sup>+/+</sup>(A), *polg2*<sup>+/ia304</sup> (B) and *polg2*<sup>ia304/ia304</sup> (C) individuals, aligned with SeqMan Ultra, DNASTAR Lasergene. (D) Representative gel image of PCR genotyping using genomic DNA from tail fins of larvae from a cross between *polg2*<sup>+/ia304</sup> heterozygotes.





### **Birefringence 3 dpf**

С



Suppl. Figure 3: Analysis of heart rate and skeletal muscle organization in polg2 mutant larvae

Α

(A) Heart rate measurements in *polg2<sup>+/+</sup>*, *polg2<sup>+/ia304</sup>* and *polg2<sup>ia304/ia304</sup>* individuals at 2, 3, 4 and 8 dpf. Data are reported as heartbeats from 3 biological replicates and analysed by two-way ANOVA; polg2+/+ 2 dpf (n=30), *polg2+/ia304* 2 dpf (n=50), *polg2<sup>ia304/ia304</sup>* 2 dpf (n=17); *polg2+/+* 3 dpf (n=30), *polg2+/ia304* 3 dpf (n=50),  $polg2^{ia304/ia304}$  3 dpf (n=16);  $polg2^{+/+}$  4 dpf (n=30),  $polg2^{+/ia304}$  4 dpf (n=50),  $polg2^{ia304/ia304}$  4 dpf (n=16); polg2+/+ 8 dpf (n=31), polg2+/ia304 8 dpf (n=51), polg2ia304/ia304 8 dpf (n=20). (B) Light microscopy images of muscle birefringence in wt, heterozygous and homozygous polg2<sup>ia304</sup> embryos at 3 dpf (scale bar: 400 µm). (C) Quantification of muscle birefringence in the three genotypes. Values from 3 independent biological replicates are shown as RI: Relative Intensity ± SEM and analysed by Kruskal-Wallis test followed by Dunn's multiple comparisons test; polg2+/+ (n=19), polg2+/ia304 (n=32), polg2ia304/ia304 (n=13); \* p<0.05.



## Suppl. Figure 4: Histological analysis of liver and gut in *polg2* mutants at 20 dpf.

(A) Histological analysis of gut and liver in 20 dpf zebrafish larvae. No significant alterations were found regarding their size (being isometric) and composition (scale bar: 5 mm). (B) Confocal images of the liver-expressed *Tg(lfabf:dsRed;elaA:EGFP)*<sup>gz15</sup> transgene at 6 dpf (scale bar 100 µm). (C) Scatter-plot showing the relative quantification of the liver-expressed transgene in the three genotypes at 6 dpf. Data are expressed as the mean  $\pm$  SEM and analysed by Kruskal-Wallis test followed by Dunn's test for multiple comparisons; *polg2*<sup>+/+</sup> (n=11), *polg2*<sup>+/ia304</sup> (n=40), *polg2*<sup>ia304/ia304</sup> (n=11).



## Suppl. Figure 5: Histological analysis of brain in *polg2* mutants at 20 dpf

(A) Histological sections of  $polg2^{+/+}$  and  $polg2^{ia304/ia304}$  brain at 20 dpf, revealing allometric reduction of the brain size in mutants (scale bar: 5 mm). (B) Histological section at lower magnification of 20 dpf  $polg2^{+/+}$  and  $polg2^{ia304/ia304}$  larvae (scale bar: 200 µm). (C) Scatter-plot showing the quantification of brain size normalized to body length from different sections in  $polg2^{+/+}$  and  $polg2^{ia304/ia304}$  at 20 dpf larvae. Values are reported as the mean ± SEM and analysed by unpaired t-test;  $polg2^{+/+}$  (n=15),  $polg2^{ia304/ia304}$  (n=11); \*\*\*\* p<0.0001.

TMRM 4 dpf



Α

## Suppl. Figure 6: Analysis of mitochondrial membrane potential in *polg2* mutant larvae.

(A) Fluorescence imaging of TetraMethylRhodamine Methyl ester (TMRM) accumulation in active mitochondria, monitored in the head of  $polg2^{+/+}$ ,  $polg2^{+/ia304}$  and  $polg2^{ia304/ia304}$  individuals at 4 dpf (scale bar: 100 µm). (B) Quantification of mitochondrial TMRM accumulation in zebrafish embryos at 4 dpf. Data are expressed as mean ± SEM, analysed by ordinary One-way ANOVA and corrected by Tukey's multiple comparisons test;  $polg2^{+/+}$  (n=18),  $polg2^{+/ia304}$  (n=21),  $polg2^{ia304/ia304}$  (n=17); RI: Relative Intensity.

| Oligomer name         | Gene / Accession No.            | Туре                                                          | Sequence (5' - 3')                                                                   | Effect; Product                                        |
|-----------------------|---------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| polg2-specific oligo  | <i>polg</i> / ZDB-GENE-060303-1 | CRISPR/Cas9 DNA oligomer for gRNA<br>( <b>gRNA sequence</b> ) | ATTTAGGTGACACTATA <b>GGGCGA</b><br><b>TGAGAGTTTGAAAG</b> GTTTTAGAG<br>CTAGAAATAGCAAG | CRISPR/Cas9-induced<br>polg2 mutagenesis               |
| polg2-F               | polg2 / ZDB-GENE-060810-116     | DNA primer for <i>ia304</i> genotyping                        | TAGGCCCGTCTGACTTCAAC                                                                 | Normal product: 137 bp<br>Deleted product: 127 bp      |
| polg2-R               | polg2 / ZDB-GENE-060810-116     | DNA primer for <i>ia304</i> genotyping                        | TAGTTGTGTGTCTCCCAGGG                                                                 |                                                        |
| <i>polg2-</i> diagn-F | polg2 / ZDB-GENE-060810-116     | DNA primer for <i>ia304</i> sequencing                        | CTGACCACTGAAAGCCACTATG                                                               | Normal product: 252 bp<br>Deleted product: 242 bp      |
| <i>polg2-</i> diagn-R | polg2 / ZDB-GENE-060810-116     | DNA primer for <i>ia304</i> sequencing                        | ACGGATGTTTCTTGGTGAGTCT                                                               |                                                        |
| nucl-polg-F           | polg / ZDB-GENE-060303-1        | primer for mtDNA depletion analysis                           | GAGAGCGTCTATAAGGAGTAC                                                                | Reference nuclear gene<br>Genomic DNA product: 81 bp   |
| nucl-polg-R           | polg / ZDB-GENE-060303-1        | primer for mtDNA depletion analysis                           | GAGCTCATCAGAAACAGGACT                                                                |                                                        |
| <i>mt-nd1</i> -F      | mt-nd1 / ZDB-GENE-011205-7      | primer for mtDNA depletion analysis                           | AGCCTACGCCGTACCAGTATT                                                                | Reference mitochondrial gene<br>Mt DNA product: 143 bp |
| <i>mt-nd1-</i> R      | mt-nd1 / ZDB-GENE-011205-7      | primer for mtDNA depletion analysis                           | GTTTCACGCCATCAGCTACTG                                                                |                                                        |
| <i>mt-nd</i> 2-F      | mt-nd2 / ZDB-GENE-011205-8      | primer for mtDNA depletion analysis                           | GCAGTAGAAGCCACCACAAA                                                                 | Reference mitochondrial gene<br>Mt DNA product: 173 bp |
| <i>mt-nd</i> 2-R      | mt-nd2 / ZDB-GENE-011205-8      | primer for mtDNA depletion analysis                           | GCTAGACCGATTTTGAGAGCC                                                                |                                                        |
| zf-gapdh-F            | gapdh/ZDB-GENE-030115-1         | DNA primer for Real Time RT-PCR                               | GTGGAGTCTACTGGTGTCTTC                                                                | Housekeeping gene<br>cDNA control product: 161 bp      |
| <i>zf-gapdh</i> -R    | gapdh/ZDB-GENE-030115-1         | DNA primer for Real Time RT-PCR                               | GTGCAGGAGGCATTGCTTACA                                                                |                                                        |
| zf-eef1a1a-F          | eef1a1a/ZDB-GENE-030131-8278    | DNA primer for Real Time RT-PCR                               | TGCAGAGATGGGAAAGGGT                                                                  | Housekeeping gene<br>cDNA control product: 161 bp      |
| zf-eef1a1a-R          | eef1a1a/ZDB-GENE-030131-8278    | DNA primer for Real Time RT-PCR                               | GCTGGTCTCAAACTTCCACA                                                                 |                                                        |
| polg-ex3-F            | polg / ZDB-GENE-060303-1        | DNA primer for Real Time RT-PCR                               | ATCTCATCCCGCTGGAAAC                                                                  | Catalytic subunit gene<br>cDNA target product: 320 bp  |
| polg-ex5-R            | polg/ZDB-GENE-060303-1          | DNA primer for Real Time RT-PCR                               | GCTCATGGGAATGGGTTAAT                                                                 |                                                        |
| polg2-ex6-F           | polg2 / ZDB-GENE-060810-116     | DNA primer for Real Time RT-PCR                               | GCTCCATCCTGCTTTAACTCC                                                                | Accessory subunit gene<br>cDNA target product: 141 bp  |
| polg2-ex7-R           | polg2 / ZDB-GENE-060810-116     | DNA primer for Real Time RT-PCR                               | GTGTCCAAGTATCCAGGCCA                                                                 |                                                        |

Suppl. Table 1: List of oligomers used in this study.