
Environmetrics

RESEARCH ARTICLE OPEN ACCESS

Entropy-Based Assessment of Biodiversity, With
Application to Ants’ Nests Data
L. Altieri | D. Cocchi | M. Ventrucci

Department of Statistical Sciences, University of Bologna, Bologna, Italy

Correspondence: L. Altieri (linda.altieri@unibo.it)

Received: 30 October 2023 | Revised: 12 October 2024 | Accepted: 17 October 2024

Keywords: ants’ nests data | Batty’s entropy | entropy estimation | Leibovici’s entropy | SpatEntropy | spatial entropy

ABSTRACT
The present work takes an innovative point of view in the study of a marked point pattern dataset of two ants’ species, over an
irregular region with a spatial covariate. The approach, based on entropy measures, brings new insights to the interpretation of
the behavior of such ants’ nesting habits, which can be exploited in the general area of biodiversity evaluation. We make proper
use of descriptive entropy measures and inferential approaches, performing a comparative study of their uncertainty and inter-
pretability in the context of biodiversity. For the first time in the study of these ants’ nests data, all the available information is fully
exploited, and interpretation guidelines are given for assessing both the observed and the latent biodiversity of the system, with a
simultaneous consideration of spatial structures, covariate and interpoint interaction effects. Computations are supported by the
new release of our R package SpatEntropy.

1 | Introduction

One relevant part of current challenges in environmental stud-
ies consists of monitoring the diversity of life on the planet,
and how it is affected by the consequences of human activi-
ties, such as climate change issues, over-harvesting, pollution,
habitat loss, and invasive species. Biodiversity studies are one
of the bases of any ecological analysis, as biological diversity
is fundamental for a wide variety of ecosystems services, such
as “natural harvests, carbon sequestration, pollination, and soil
formation” (Magurran 2004). The UN Convention on Biologi-
cal Diversity1 set a target to significantly reduce the rate of bio-
diversity loss, which has led to new developments in measur-
ing biodiversity with appropriate syntheses (see, e.g., Hoskins
et al. 2020; Drechsler 2020). Measurements of biological diversity
may simply count species richness (Fisher et al. 2012) or mea-
sure the abundance of species in ecological communities (Scar-
nati et al. 2009), up to very recent and complex model-based
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approaches for counting individuals based on capture-recapture
data (Altieri, Farcomeni, and Alunni-Fegatelli 2023). Entropy
measures represent a largely used approach for properly measur-
ing biodiversity (Leinster and Cobbold 2012).

Many data examples concerning biodiversity and the study of
the behavior of animals and plants are available. One has been
selected for this work, as it has raised a lot of interest in the liter-
ature, but presents both computational challenges and issues in
methods, consistency, and interpretation of the results. The data
consist of the spatial locations of nests built by two species of ants,
Messor wasmanni (from now on Messor) and Cataglyphis bicolor
(from now on Cataglyphis), recorded at a site in northern Greece
and firstly described in Harkness and Isham (1983). Since nests
usually have a single opening in the ground, they may be treated
as a point pattern. The total number of nests is 𝑛 = 97, divided
into 𝑛1 = 29 Cataglyphis nests and 𝑛2 = 68 Messor nests. They are
collected over a polygonal region, the observation window 𝑊, of
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size ∣ 𝑊 ∣= 107.230.4 square feet. An environmental covariate 𝐶

is also available, that is, the type of soil inside the region, with
two levels: 𝑐1 = field and 𝑐2 = scrub. The dataset is displayed in
Figure 1.

The harvester ant Messor builds nests mainly by piling
seed husks, which constitute its main food source; instead,
Cataglyphis ants eat dead insects and other arthropods, which
reflects on the material used for building nests. Messor ants,
once dead, may be part of the Cataglyphis diet, but the two
species do not have a predator–prey relation, as Cataglyphis
ants do not kill Messor ants. This dataset is a very interesting
example for ecological studies, regarding both computations
and interpretation. Previous studies Harkness and Isham (1983),
Isham (1984), Takacs and Fiksel (1986), Särkkä (1993), Högman-
der and Särkkä (1999), and Baddeley and Turner (2000) focused
on rectangular subsets of the observation window (shown in
Figure 1) for computational simplicity, and offered conclusions
based on descriptive summary statistics or very simple models,
often lacking proper checks; results are inconsistent across stud-
ies and scarce explanation is given about final findings. Moreover,
such works only focused on the within- and between-species
interaction, without deepening the role of the soil type and of
other spatial effects in determining the ants’ distribution. The
presence of interaction within each species is expected in the
form of repulsive behavior, due to competition for food. Also,
association between the two species is believed to be positive,
because of a preference for Cataglyphis ants in building nests
close to Messor nests, in order to collect dead Messor ants. The
evidence for interactions was investigated by the aforementioned
works with different methods, with contrasting conclusions.

One contribution of our work is to approach the research ques-
tions with a different perspective, by using entropy-based indica-
tors and models. Our aim is to show that particular entropy-based
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FIGURE 1 | Ants’ nests data—A point pattern with nests of two
species of ants over a polygonal area with two soil types. The two rect-
angles A and B mark the subsets of the region studied in the literature
until now.

measures, those including spatial information, can provide new
insights about the spatial distribution of nests and consider
the role played by the covariate field/scrub. After reviewing the
existing works on the same data, we show how our proposal over-
comes the issues and inconsistencies in their results, by provid-
ing more exhaustive and interpretable conclusions. We believe
that the ants case study provides an interesting example to illus-
trate the benefit of using spatial entropy-based indicators and
how these can be applied more generally to the study of bio-
diversity assessment. We make the novel proposal of employ-
ing entropy-based descriptive approaches to investigate both the
influence of the covariate and the presence and type of interpoint
interaction. For instance, the spatial measure known as Batty’s
entropy (Batty 1974) has been largely employed over adminis-
trative boundaries, but has an unexplored potential in investi-
gating the influence of environmental covariates. Similarly, the
co-occurrence-based index known as Leibovici’s entropy (Lei-
bovici et al. 2014) is here reinterpreted to detect within/between
species interaction at given distances. The two entropy-based
approaches have been developed separately and have never been
confronted; a further contribution of the present work is to show
how a combination of the two measures is a useful exploratory
way of evaluating what spatial components may play a role in
determining the data behavior, and point toward the most appro-
priate model class for the data. A further innovation of this paper
is that all descriptive measures are sided by simulation-based
tests to assess the departure of the results from the reference sit-
uation of independence (intended as spatial randomness), thus
providing an intuitive but well-founded tool for the interpretation
of entropy indicators. In addition, the analysis is extended to more
formal model fitting; for the first time over the ants’ nests data, a
model selection procedure is used to choose the best option, and
the chosen model is properly interpreted and satisfactorily evalu-
ated in terms of its goodness-of fit. We show how a model-based
entropy approach can be used not only to evaluate the latent
biodiversity of the system, by including the role of the covariate
and of other spatial structures, but also to interpret the presence
of interpoint interaction and give a comprehensive understand-
ing of the ants’ nests data. The latent biodiversity is intended as
the underlying behavior of the unknown complex natural pro-
cess, of which data represent a partial picture. This inferential
conceptualization might provide interesting insights about the
structure of the available data. The literature has already pro-
posed entropy estimation methods, but the available estimators
return a single number for the whole observation area, that is a
good synthesis in very simple contexts, but oversimplifies a com-
plex natural phenomenon. We illustrate how, under some condi-
tions, entropy may be estimated locally: a measure that is allowed
to vary over space may be informative about heterogeneity, as a
trade-off between capturing the main data behavior and allow-
ing for local variations. Furthermore, we show how to exploit the
estimators’ variances (or their upper bounds) to build intervals
of plausible values and quantify uncertainty of the results. The
present work also contributes to the existing software and com-
putational tools, in order to make advanced statistical methods
available for applied scientists. We introduce the novel version of
our R package SpatEntropy,2 stressing the related advantages
in practical studies. We provide the complete code to reproduce
the entire practical work of this paper as Supporting Information.
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The paper is organized as follows: Section 2 summarizes the state
of the art regarding both the ants’ nests data and the compu-
tational tools for biodiversity measurements. Section 3 presents
the necessary background for all the descriptive and inferential
entropy-based measures. The practical Section 4 collects all the
results about the ants’ nests data. Lastly, Section 5 summarizes
the paper contribution, and contains comparative and conclusive
comments. An exhaustive R script with the practical work of the
present paper is available as Supporting Information attached to
the paper3; the case study can be downloaded in R, as part of the
spatstat package, under the name ants.

2 | State of the Art and Motivation

Previous works on such ants’ nests data, though providing inter-
esting contributions, present limits due to the complexity of
the data structure. A marked point pattern over an irregular
observation window with the presence of a covariate has consti-
tuted a challenging data example up to recent years; the advanced
tools that are needed and used in the present work have never
been applied over the considered dataset. All previous works,
except for Baddeley and Turner (2006), focus on a rectangular
subset of the observation window, and the study of the species
(i.e., the point pattern marks) interaction is always separated
from a study of the covariate effect. A joint evaluation of the two
aspects has never been faced in such ants’ nests data studies. This
Section presents a comparative review of the previous works on
the ants’ nests data. Moreover, it summarizes the available com-
putational tools for the analysis of this type of data. The combina-
tion of recent methodological and computational progress in this
field is exploited in the present work to contribute to the study of
the ants’ nests data.

2.1 | Literature on the Ants’ Nests Data

Several papers have analyzed the ants’ nests data of Figure 1:
Harkness and Isham (1983), Isham (1984), Takacs and Fik-
sel (1986), Särkkä (1993), Högmander and Särkkä (1999), and
Baddeley and Turner (2000, 2006). All contributions, apart from
Baddeley and Turner (2006), reduce the analysis to a subset of
the observation window. Harkness and Isham (1983) propose two
overlapping rectangles, shown as A and B in Figure 1, where B
follows the field-scrub border in an attempt to grasp influence
of this covariate. The works by Isham (1984), Takacs and Fik-
sel (1986), Särkkä (1993), Högmander and Särkkä (1999), and
Baddeley and Turner (2000) focus on rectangle A, discarding rel-
evant information: only 61 out of 97 nests are considered, where
the relative presence of the Messor nests is higher with respect
to the original dataset. The reason for such choice is computa-
tional complexity: the first work presenting a software able to deal
with irregularly-shaped window is Baddeley and Turner (2005),
which presents the ants’ nests data as a challenging case study.
The only available study on the irregular window is in Badde-
ley and Turner (2006), and leads to different results than those
obtained over rectangle A.

Harkness and Isham (1983) and Isham (1984) use the 𝐺, 𝐾, and
𝐿 distance-based functions and Pearson’s chi-square test (Dig-
gle 2014) to capture significant deviations from complete spatial

randomness (aka spatial homogeneity or stationarity). The first
model-based approach is proposed in Takacs and Fiksel (1986),
where a simple Gibbs process (Illian et al. 2008) is used to
measure the interpoint interaction; no model diagnostics are run.
Särkkä (1993) employs a Strauss, or hard-core, model (Bondesson
and Fahlén 2003) to investigate repulsion, with an unsatisfying
fit. In Högmander and Särkkä (1999), the interaction between the
two species is assumed to have a direction, in order to moder-
ately improve the goodness-of-fit; parameters are estimated with
Maximum Likelihood, that is computationally demanding, and
Maximum PseudoLikelihood, that the authors declare unreliable
when the interaction is strong. Baddeley and Turner (2000) only
show the implementation of the previous works in R, as part of a
set of examples.

The above listed approaches lead to divergent results. For
Harkness and Isham (1983), Messor ants have a repulsive
within-species behavior, while Cataglyphis nests appear to be
randomly scattered; interspecies interaction is detected with the
𝐺 function, but not with the 𝐾 function. Isham (1984) finds
that there is no interaction in the pattern. According to Takacs
and Fiksel (1986), instead, Messor nests are random, while
Cataglyphis nests form a repulsive pattern. Särkkä (1993) and
Högmander and Särkkä (1999) find a repulsive behavior both
within and between species. Many results are unexpected, but no
insights are provided. Baddeley and Turner (2006) find a substan-
tial difference in the results both for the distance-based functions
and for the model results when using the polygonal area instead
of the rectangle. They propose hypothesis testing for the indepen-
dence within and across species, and again results are inconsis-
tent; in particular, when considering the polygonal window, the
directional dependence found in Högmander and Särkkä (1999)
disappears. A simple model for the covariate effect finds no sig-
nificance for the Messor nests, but a significant preference of the
Cataglyphis species to build nests over the field area, rather than
the scrub one. Baddeley and Turner (2006) underline the overall
inconsistency, the need for more formal methods and a more gen-
eral approach able to consider other aspects, such as the covari-
ate soil type. Though a question about the importance of the soil
type is mentioned across the papers, no work up to Baddeley and
Turner (2006) discusses such factor, nor any other possible influ-
ence in determining the ants’ nesting behavior.

In the present paper, the specific questions on the ant case
study are approached under a new perspective, using spatial
entropy measures. Regarding dependence on the type of soil,
we propose to use a partition-based approach (Batty 1974)
detailed in Section 3.1, while to assess interactions we propose
a distance-based approach (Leibovici et al. 2014), illustrated in
Section 3.2. Uncertainty evaluation will be done via Monte Carlo
simulations. In Section 3.3, we use a Bayesian model based
approach (Altieri, Cocchi, and Ventrucci 2023) and argue that
this may represent a unified framework to produce estimates
of entropy, with the inclusion of spatial and covariate effects,
and give a general understanding of the structure of the ants’
nests data.
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2.2 | Software for Biodiversity Evaluation

A comparative review of software and programming languages
is out of the scope of this work. One excellent tool for statisti-
cal analysis with the major advantage of being open-source is the
R software (R Core Team 2017). In this paper, we highlight the
power and potential of theR software for biodiversity studies, and
we overcome its difficulties by providing a ready-to-use script as
Supporting Information.

In the field of biodiversity studies, a large number of R packages
on CRAN4 is available. One reference package is vegan, which
contains both diversity indices and interesting data examples.
Some packages focus on specific diversity measures, such as
alpha and beta diversity (abdiv, betapart, BAT) or Hill’s
number (hilldiv, hillR). Others focus on specific applica-
tions, as forests (fgeo) and oceans (robis). Many packages
are meant for biological data downloading, cleaning and visual-
ization (bdc, bdchecks, bdvis, galah, KnowBR, occCite).
There are packages for prediction of the number of species in
a system (DivE, SpadeR), others give tools for easy computa-
tions of the frequencies of species (divo), or focus on phylo-
genetics (adiv). The number of packages is large, and many
of them considerably overlap. The main goal in most packages
is description, and basic inferential tools are used to associate
uncertainty to descriptive measures (such as bootstrap samples
or leave-one-out validation), while model-based approaches are
hardly mentioned, probably because of their complexity. A fur-
ther major drawback of these measures is the lack of spatial com-
ponents; despite some indices may be computed separately for
different areas or at different scales, space is not included in the
available functions.

When the focus is on entropy measures, the most common R
packages are entropart, entropy and EntropyEstima-
tion. With any of them, Shannon’s entropy may be computed
and decomposed into the two terms known as mutual infor-
mation and conditional entropy (Cover and Thomas 2006). The
entropart package also provides computation of 𝛼, 𝛽, and 𝛾

diversity indices, together with Simpson’s index. The package
entropy contains functions for some popular entropy estima-
tors, which are recalled in the remainder of the present work.
The package EntropyEstimation includes functions which
do the same job as the other packages, in addition to general-
ized Simpson’s indices. There is no consideration of the spatial
arrangement of data.

The first release of the R package SpatEntropy5 was in 2018,
with a related publication (Altieri, Cocchi, and Roli 2021); it pro-
vides functions for all the main available spatial approaches to
entropy measures. The only overlap between the SpatEntropy
package and the aforementioned ones consists of the function
for computing Shannon’s entropy (shannon); all other func-
tions (batty, battyLISA, oneill, leibovici, altieri,
and further related/auxiliary functions) constitute an original
contribution of the present package to the R software commu-
nity. The package has been progressively improved up to the
newly released version 2.2-4 (November 2023), to become easier
to approach by applied scientists. All functions work with point
and gridded data, and return useful plots for easier interpretation

of the results; the computational efficiency has been substantially
improved. Some environmental data examples can be found in
the SpatEntropy package, regarding both point and gridded
data. When the input data are point patterns, the package relies
on auxiliary functions from the spatstat package (Baddeley,
Rubak, and Turner 2015).

3 | The Use of Entropy in Biodiversity
Assessment

This Section summarizes the theoretical background for a solid
approach to the evaluation of the biodiversity of the ants’ data
and a general understanding of their spatial structure. We show
how the available descriptive approaches to spatial entropy
may evaluate the influence of a single covariate, or the inter-
action between ants’ species; they can be used as exploratory
tools, and give useful suggestions when moving to inferential
approaches.

The first diversity measure based on entropy diffused in ecologi-
cal studies was proposed by Shannon (1948). Given a variable 𝑋

with 𝐼 possible categories, Shannon’s entropy is:

𝐻(𝑋) =

𝐼∑
𝑖=1

𝑝(𝑥𝑖) log 1
𝑝(𝑥𝑖)

, (1)

where 𝑝(𝑥𝑖), for 𝑖 = 1, . . . , 𝐼, is the probability of occurrence of
category 𝑖. The index 𝐻(𝑋) ranges in [0, log 𝐼], and expresses the
average amount of heterogeneity across observations of a vari-
able 𝑋. The probabilities 𝑝(𝑥𝑖) are usually estimated by the data
relative frequencies 𝑛𝑖∕𝑛, where 𝑛 is the total number of obser-
vations and 𝑛𝑖 is the number of observations presenting the 𝑖-th
category.

Shannon’s entropy only considers the probabilities of the cate-
gories. In biodiversity studies, this may be a major limit, since
often abiotic (e.g., environmental covariates) and biotic factors
(such as interactions between or within species) affect the occur-
rence of a specific species in the sense that its distribution is
not homogeneous in space. The indicator in Equation (1) does
not assume any notion of spatial structure, thus it gives poor
insights regarding the questions of interest in the ants case study.
A dataset with randomly scattered observations over space should
have a higher entropy than one with the same observations
arranged according to a spatial structure; moreover, entropy can
potentially vary over space. Shannon’s entropy is not able to catch
these differences and variations; such limit is widely discussed in
the literature (see, e.g., Altieri, Cocchi, and Roli 2019). Consider-
ing the spatial structure in the data may improve the monitoring
of the distribution of species.

3.1 | A Partition-Based Approach for the
Dependence on Covariates

The partition-based approach to spatial entropy, briefly named
Batty’s entropy (Batty 1974, 1976, 2010), is originally meant
for geographical applications, where the area of interest is par-
titioned by administrative boundaries, such as municipalities.
Batty’s entropy starts from the identification of a phenomenon
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of interest 𝐹, for example the occurrence of nests of one specific
ant species, and from a partition of the area into 𝐺 sub-areas.
Such entropy index assesses the distribution of the phenomenon
𝐹 across sub-areas, and includes a measure of the sub-area size
𝑇𝑔, where

∑
𝑔 𝑇𝑔 = 𝑇. The intensity over a sub-area is 𝜆𝑔 = 𝑝𝑔∕𝑇𝑔,

with 𝑝𝑔 being the probability of having observations over area
𝑔, with

∑
𝑔 𝑝𝑔 = 1; in practice, 𝑝𝑔 is the relative frequency of

observations over area 𝑔 with respect to the total number of obser-
vations over the window. Battys’ entropy is:

𝐻𝐵(𝐹) =

𝐺∑
𝑔=1

𝑝𝑔 log 1
𝜆𝑔

(2)

and ranges in
[
log 𝑇𝑔∗ , log 𝑇

]
, where 𝑔∗ indicates the smallest

sub-area. If the phenomenon is equally intense over the area,
𝜆𝑔 = 𝜆 for 𝑔 = 1, . . . , 𝐺, and Batty’s entropy is at its maximum;
if observations are concentrated over one or few sub-areas, the
entropy decreases, especially when observations occur over the
smallest areas. Computational issues arise when the sub-areas’
size is smaller than 1 measurement unit, since the logarithm in
(2) takes negative values, while entropy is not allowed to be nega-
tive. One option is to tune the measurement unit, for example, by
using meters instead of kilometers, so that the numbers involved
in the computations are larger. If it is not possible to rescale the
observation area prior to computations, SpatEntropy offers an
automatic solution: the observation area is rescaled by a factor
𝑐 > 1, so that each sub-area has a new size equal to

(
𝑇𝑔 × 𝑐

)
> 1

for all 𝑔; Batty’s entropy is computed over the rescaled area, and
then log 𝑐 is subtracted from the entropy result, to obtain the
entropy referring to the original area.

To our knowledge, this approach has only been applied to area
partitions based on administrative boundaries. We argue that
such measure has a potential in determining whether the inten-
sity of a phenomenon varies according to a spatial covariate: this
can be done by partitioning the area into tiles according to the cat-
egories or values of the available covariate, and computing (2) on
such partition. In Section 4, we implement such partition-based
entropy to investigate the effect of the soil type on the ants’ nests
occurrence.

3.2 | A Distance-Based Approach for the
Detection of Interaction

The second approach considers the distance between occurrences
of the categories, and evaluates the level of heterogeneity of
couples (co-occurrences) at some chosen distance; it is known
as distance-based entropy, co-occurrence-based entropy or Lei-
bovici’s entropy (Leibovici 2009; Leibovici et al. 2014). The vari-
able denoting species is 𝑋, with 𝐼 categories, while the variable
classifying the types of co-occurrences is named 𝑍. The number of
categories of 𝑍 is 𝐼2, as ordered couples are considered; the prob-
abilities of each co-occurrence category is 𝑝(𝑧𝑟) for 𝑟 = 1, . . . , 𝐼2.

The first proposal in such direction is O’Neill’s entropy (O’Neill
et al. 1988) for gridded data and contiguous couples, that is, pixels
sharing a border. Leibovici’s entropy extends O’Neill’s proposal
by substituting the notion of contiguity with that of distance,
that is, by considering couples placed within a chosen distance 𝑑,

which can also apply to point data. The entropy is:

𝐻𝑑(𝑍) =

𝐼2∑
𝑟=1

𝑝(𝑑)(𝑧𝑟) log 1
𝑝(𝑑)(𝑧𝑟)

, (3)

where 𝑝(𝑑)(𝑧𝑟) is the probability of finding the co-occurrence cat-
egory 𝑧𝑟, for 𝑟 = 1, . . . , 𝐼2, at the fixed distance 𝑑 (for a more
formal definition, see Altieri, Cocchi, and Roli 2019). Measure
(3) can be computed for any distance within the observation
window, according to the researcher’s choice. The index ranges
in

[
0, log 𝐼2], where the maximum is reached when all possible

couples of categories of 𝑋 are equally represented, while 0 is
reached when one single category is present (Altieri, Cocchi, and
Roli 2018).

In our opinion, this measure also has an unexplored potential for
biodiversity studies. In Section 4, we show how it can be used to
investigate possible presence of interaction between and within
species.

3.3 | Model-Based Approaches for a
Comprehensive Biodiversity Study

Inferential approaches start from the assumption that the
observed data are a realization of an underlying stochastic pro-
cess, with parameters governing the species probabilities. Esti-
mating the parameters of the process allows to compute an esti-
mate of the entropy of the system.

The existing literature about entropy estimation mainly con-
sists of model-based approaches, both frequentist and Bayesian
(Paninski 2003); a non-parametric approach is also among the
main competitors for estimation (Zhang 2012). The common
starting point is the maximum likelihood (ML) estimator, which
substitutes the unknown probability distribution of interest with
the observed relative frequencies. Such estimator is known to be
negatively biased (for details, see section 3.3 in Paninski 2003).
All proposals focus on improving the performance of the ML esti-
mator as regards the estimator bias; they are based on the sim-
plest model, where no auxiliary information is considered and,
most importantly, independence among realizations is assumed.
In the literature, it is not common to find models accounting
for spatial dependence and addressing biodiversity estimation via
entropy measures, as opposed to what is done in species distri-
bution modeling, where the focus is on the relationship between
species abundance and environmental factors or temporal/spatial
effects (Ventrucci et al. 2020; Martinez-Minaya et al. 2018).

A recent proposal to entropy estimation, named BMB (Bayesian
model-based), relaxes the independence assumption (Altieri,
Cocchi, and Ventrucci 2023). In order to include data structures,
a model-based approach is taken for the estimation of the main
components of an entropy index, that is, the species probabil-
ities; the entropy function is successively derived. Following a
multinomial-logit model, the occurrence probabilities for each
species 𝑖 and spatial location 𝑢 can be expressed as:

𝑝ui =
exp

(
𝒄′

ui𝜷𝒊 + 𝜙ui
)

∑
𝑖 exp

(
𝒄′

ui𝜷𝒊 + 𝜙ui
) , 𝑖 = 1, . . . , 𝐼, (4)
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where the linear predictor 𝑔ui = 𝒄′
ui𝜷𝒊 + 𝜙ui is a function of

species-specific covariates cui and species-specific random effects
𝜙𝑢1, . . . , 𝜙uI at location 𝑢; several priors can be assumed for the
random spatial effects, to impose some degree of smoothing, can
be applied. As examples of smooth spatial effects, we mention
the Intrinsic Conditional AutoRegressive (ICAR) model, where
the spatial influence is extended to the 4 nearest neighbors, and
the Random Walk in 2 dimensions (RW2d), with a neighborhood
system including 12 neighbors. These are two popular spatial
smoothing priors belonging to the class of Gaussian Markov Ran-
dom Fields (GMRFs); for the theory on GMRFs, we refer to Rue
and Held (2005). The parameters of our models are estimated
via a Bayesian approach, using the R-INLA package (Rue, Mar-
tino, and Chopin 2009). To fit a multinomial regression with
R-INLA, the multinomial likelihood is transformed into a Pois-
son likelihood with extra parameters; such approach is known as
the “multinomial-Poisson trick” and is detailed in Serafini (2019)
and in Barmoudeh, Baghishani, and Martino (2022). For practical
implementation of the ICAR and the RW2d models in R-INLA,
see Lindgren and Rue (2013) and Bivand, Gómez-Rubio, and
Rue (2015).

Finally, the entropy estimate, denoted as �̂�BMB
𝑢

(𝑋), is derived
by sampling from the model posterior in two steps: first, sam-
pling from the marginal posterior distribution of the quanti-
ties in Equation (4), that is, the 𝜷′

𝒊
and the random effects 𝜙ui,

would give us a sample of the occurrence probabilities 𝑝ui for
each location and species; second, plugging-in the sampled 𝑝ui
in Equation (1), we obtain a sample from the posterior distribu-
tion of the entropy indicator. From this posterior sample, we can
compute any summary (mean, median, quantiles, . . . ); assume
𝑠 = 1, . . . , 𝑆 indexes the draws from the posterior and let �̃�uis be
the 𝑠-th draw for the occurrence probability for species 𝑖 at loca-
tion 𝑢; we take the posterior mean as the estimated entropy:

�̂�BMB
𝑢

(𝑋) =
1
𝑆

𝑆∑
𝑠=1

𝐼∑
𝑖=1

�̃�uis log 1
�̃�uis

. (5)

The estimate �̂�BMB
𝑢

(𝑋) varies with 𝑢 and represents the local
entropy. Therefore, for spatial data, a two-dimensional surface
evaluating the latent biodiversity of the considered system may
be obtained.

4 | An Entropy-Based Study of the Biodiversity
of Ants’ Nests

In this Section, we propose an alternative approach to those of the
literature of Section 2 to analyze the ants’ nests data and inter-
pret their spatial arrangement in the context of biodiversity eval-
uation. The entropy measures presented in this work are given
both in absolute and relative terms, where relative means that we
divide the measure by its maximum value; this is meant to facil-
itate comparison across studies and also interpretation, since the
level of heterogeneity may be given in proportional terms with
respect to the maximum possible level. Along the Section, we
mention some of the most relevant R functions, and we refer to
the Supporting Information for details.

Traditional entropy-based measures are not accompanied by the-
oretical or empirical confidence intervals, therefore conclusions

are very subjective. For a more formal evaluation of the results,
we borrow standard tools of point process studies. In such field,
it is common to compare empirical values with a large set of val-
ues computed over random generations under a homogeneous
process with the same number of points as the case study; this
allows to check whether there is a significant departure from the
situation of spatial randomness. Thanks to the SpatEntropy
package, such approach is now possible, with quickly available
results.

4.1 | Non-Spatial Heterogeneity

Shannon’s descriptive entropy is computed based on the global
relative frequencies of the two ants’ species: 𝑓1 = 𝑛1∕𝑛 = 0.299
for Cataglyphis and 𝑓2 = 𝑛2∕𝑛 = 0.701 for Messor. The entropy
value is 𝐻(𝑋) = 0.61, returned by the functionshannon(ants)
of the SpatEntropy package, and its relative value is 𝐻rel(𝑋) =

0.61∕ log 2 = 0.88, meaning that the level of heterogeneity is
equal to 88% of the maximum possible entropy. We can exploit the
simulation-based approach to check whether this value marks a
significant departure from the reference situation, which, in the
case of Shannon’s entropy, is the uniform distribution for the two
types of ants. We generate 1000 replicates of point patterns with
𝑛 = 97 points, where the two ants’ species are randomly assigned
to the points with equal probabilities. The resulting 95% confi-
dence interval for Shannon’s relative entropy of the ants species is
[95.9%; 100%]; the data value is 88%, which indicates a significant
departure from the uniform distribution, with a predominance
of the Messor nests. Shannon’s entropy has been used in the past
to measure the level of biodiversity in the area; nevertheless, a
spatial rearrangement of the nests would not affect the species’
relative frequencies. Thus, Shannon’s entropy has very limited
information power for measuring biodiversity.

4.2 | Evaluation of the Covariate Influence

The environmental covariate is a binary variable with levels field
and scrub, available in the auxiliary file ants.extra in the
package spatstat. We choose a very fine resolution of 100 ×

100 = 10000 pixels over the window enclosing rectangle, where
values are 0 for field (fixed as the reference category) and 1 for
scrub.6

We can compute Batty’s entropy (2) on the overall dataset, as
if they all were simply nests with no distinction, or on each of
the two species separately. Once the phenomenon of interest is
selected, the probabilities of occurrence 𝑝𝑔 are computed for each
sub-area defined by the environmental covariate (𝐺 = 2), using
the data relative frequencies over the areas. Then, probabilities
are divided by the sub-area size 𝑇𝑔 to obtain the intensity for each
sub-area 𝜆𝑔 = 𝑝𝑔∕𝑇𝑔; finally, Batty’s entropy is computed over
the intensities: the main quantities are reported in Table 1; the
intensity is multiplied by 106 for easier reading, but the original
number is stored for computations. The values are automatically
reported in the output of the R function batty belonging to the
SpatEntropy package and provided in the Supporting Infor-
mation.
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TABLE 1 | Batty’s entropy and related quantities for ants’ nests data.

Sub-area Size 𝒏𝒈 𝒑𝒈 𝝀𝒈106 Batty Rel. Batty

Overall data
Field 126881.3 59 0.608 2.397

12.969 0.99995
Scrub 87684.8 38 0.392 2.234

Cataglyphis
Field 126881.3 21 0.724 2.854

12.931 0.99705
Scrub 87684.8 8 0.276 1.573

Messor
Field 126881.3 38 0.559 2.202

12.967 0.99983
Scrub 87684.8 30 0.441 2.516

Overall Messor Cataglyphis

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

* *
*

FIGURE 2 | Batty’s relative entropy for the covariate-based area par-
tition on 1000 simulated homogeneous datasets. The red dots mark
Batty’s entropy for the original data.

In order to assess the preference of the ants for a certain soil type,
we need to understand whether the two intensity values linked to
the two soil types, and thus Batty’s entropy, are significantly dif-
ferent from the ones computed over a homogeneous pattern, that
is, where points are randomly scattered irrespective of the covari-
ate value. We generated 1000 homogeneous point patterns with
the same number of points as the overall, Messor and Cataglyphis
datasets, and computed Batty’s relative entropy for all genera-
tions. Results are shown in Figure 2, where the interpretation is
that if the empirical values lies within the boxplot, then its spatial
arrangements is considered as not influenced by the covariate.
As can be seen, the overall pattern and the Messor nests’ distri-
butions are identified as randomly scattered and not affected by
the soil type, while the Cataglyphis pattern produces a value for
Batty’s entropy that lies outside the empirical interval computed
over the 1000 simulations. This is an alternative, entropy-based
way of assessing a significant dependence of the Cataglyphis nest-
ing habits on the type of soil, with a preference for the field area,
which has a higher intensity. Such results provide a motivation
for including the covariate in a comprehensive evaluation of the
ants’ nesting behavior.

4.3 | Evaluation of the Interpoint Interaction

In traditional point pattern exploratory analysis, and in many of
the papers mentioned in Section 2, the distance-based summary
functions 𝐺, 𝐹, 𝐾 and 𝐿 (Diggle 2014) are a standard tool to
point out the evidence of a spatial structure and the presence
of interpoint interaction, as opposed to a spatially homogeneous
(randomly scattered) pattern. For completeness, we have run sev-
eral tests based on such functions over the data, and results are
reported in the Appendix A. In general, the collection of the
results in Figures A1 and A2 of the Appendix A shows that, with
the current version of such tools computed over the polygonal
window, there is no particular suggestion for interaction within
or between ants species, as regards their nesting habits. The only
evidence is obtained for the Messor species with the 𝐺 and 𝐿 func-
tions: since the data curve goes slightly below the gray band, it is
a weak indication of a repulsive intra-species behavior.

The alternative approach we propose makes use of the
co-occurrence-based entropy measures. For Leibovici’s entropy,
the new variable 𝑍 identifying couples of ants over the win-
dow has 𝑅 = 4 categories, that is, (Cataglyphis, Cataglyphis),
(Cataglyphis, Messor), (Messor, Cataglyphis), and (Messor, Mes-
sor). The distance 𝑑 is specified by the researcher and becomes
the radius of a disc that is placed around each of the ants’ nests to
search for all its neighboring nests and build the co-occurrences;
the same operation is repeated for all nests. Eventually, the
overall counts of the co-occurrences at distance 𝑑, for each of the
4 categories, are available over the area, and their relative fre-
quencies are used as 𝑝(𝑧𝑟|𝑑) in (3). A plot showing the width of
the disc is automatically produced by the leibovici function
of SpatEntropy. Couples are counted right- and downward
within the chosen distance, as in Leibovici et al. (2014).

Our idea is to use Leibovici’s entropy as an alternative approach
for evaluating the presence of interpoint interaction. Such
measure considers the different types of nests’ pairs at vari-
ous distances, and may identify whether there is an over- or
under-representation of one pair category. We can compare the
entropy results over the data with those obtained by randomly
scattering the same data over the area, to check whether there
is a significant deviation from the results expected under a ran-
dom spatial structure. An advantage of such measure with respect
to the distance based functions is that it considers all types of

7 of 15

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2885 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



pairs simultaneously, and all pairs within distance 𝑑, not only
one nearest neighbor as, for example, the 𝐺 function; therefore
it may detect any type of inter- or intra-species at the same time;
deviations may be investigated by checking the pairs’ relative fre-
quencies and finding out which category is predominant.

Leibovici’s relative entropy is computed for 20 distance val-
ues equally spaced between 10 and 200 ft; results are shown in
Figure 3. As for the previously computed measures, the empirical
results are supported by a band of plausible values under spa-
tial randomness, obtained by computing entropy for 1000 gen-
erated datasets with the same number of Messor and Cataglyphis
nests randomly scattered over the region. Leibovici’s entropy lies
within the bands for most distances, meaning that results are
consistent with what expected under spatial randomness, and do
not show evidence for interpoint interaction, except for two dis-
tances, that is, 70 and 100 ft, marked with red dots in the Figure.
A low entropy value indicates a significant predominance of one
specific couple of ants’ nests. Table 2 reports the detailed results
for the two distances with evidence for interpoint interaction. By
comparing the frequencies with the one based on the random
simulations, we found that the pair that is significantly predomi-
nant is Messor-Messor (marked by a star in the Table). Since this
happens at large distances (70 and 100 ft), the interpretation is
that there is a repulsive behavior in the nesting habits of the
species Messor, that is, that Messor ants tend to build their nests at

50 100 150 200
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FIGURE 3 | Relative Leibovici’s entropy for different co-occurrence
distances. The red dots mark the distances where there is a deviation from
the results expected under a random spatial scattering of the nests, based
on 1000 simulations (gray band).

TABLE 2 | Co-occurrences distributions for Leibovici’s entropy at
distances 70 and 100 ft.

Dist = 70 ft Dist = 100 ft

Couple 𝒏(70) 𝒇(70) 𝒏(100) 𝒇(100)

Cataglyphis-Cataglyphis 22 0.079 39 0.071
Cataglyphis-Messor 46 0.165 96 0.176
Messor-Cataglyphis 59 0.212 115 0.210
Messor-Messor 151 0.543* 297 0.543*
Total 278 547

Note: The star marks the frequency that determines the signifcant departure from a
uniform distribution shown in Figure 3.

a large distance from other Messor nests. Such result overcomes
the inconsistencies found in previous works (see Section 2), and
is supported by the evidence for repulsion detected with the
simulation-based tests over the distance based summary func-
tions 𝐺 and 𝐿 (see the Appendix A). Using the proposed tool,
we can be precise about the spatial scale at which repulsion may
take place. In conclusion, we argue that Leibovici’s entropy may
provide richer information than the traditional distance based
summary functions; for instance, if a significant predominance
of Messor-Messor pairs were found at small distances, this would
be interpreted as attraction instead of repulsion.

4.4 | Inferential Biodiversity Evaluation

A selection of available entropy estimators is computed on the
ants’ nests data for comparison purposes. The first two fol-
low a frequentist approach: the Maximum-Likelihood estima-
tor (MLH) substitutes the probabilities in (1) with the relative
frequencies of the ants’ species; the Miller-Madow correction
(MMH) is a well-known adjustment to the MLH to improve its
bias. Then, we take Zhang’s non parametric estimator (ZhH) and
two Bayesian estimators with different priors to tune how much
a uniform distribution for the ants’ species is favored, that is, a
Laplace’s prior (BLH) and a Jeffrey’s prior (BJH). For details, we
refer to Paninski (2003); Altieri, Cocchi, and Ventrucci (2023).
The existing estimation methods are implemented in R by using
functions provided by the packages entropy and EntropyEs-
timation.

The BMB approach is applied to the data by discretizing the
original point pattern into a grid of 100 × 100 cells, each of size
4.14 × 3.83 feet.7 For each pixel, we have 0 or 1 nests, so we do not
lose information about the exact number and species of the ants’
nests. For the BMB estimation approach, there is no available
package, and the necessary code can be found in the Supporting
Information.

Results for a global (absolute and relative) value for each of the
literature estimators are shown in black in Figure 4. The MLH
coincides, by construction, with Shannon’s descriptive entropy;
the variations of the other estimation proposals produce very sim-
ilar results, as is the case for most applications (differences may

0.
0

0.
4

0.
8

1.
2

En
tro

py

MLH MMH ZhH BLaplH BJeffH BMB

Global Field Scrub

Shannon maximum

FIGURE 4 | Global entropy estimates and local estimates conditional
on the covariate value—point estimates and confidence intervals.
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be appreciated for a very large number of species 𝐼). The interpre-
tation is analogous to the one of Shannon’s entropy, since all mea-
sures are based on the species’ relative frequencies. Therefore,
despite the interesting efforts in improving the performance of
entropy estimators, the resulting numbers do not add useful con-
clusions to the study at hand. The frequentist and non-parametric
entropy estimators MLH, MMH, and ZhH are asymptotically
normal, provided that the estimators for the probabilities may be
considered normal (Paninski 2003). The standard criteria for the
normality assumption (detailed in the Appendix A) hold here,
therefore we can compute the upper bounds of the confidence
intervals for the frequentist and non-parametric entropy esti-
mators, which are the same for all estimators. For coherence
and comparison, the upper bounds are also computed for the
Bayesian estimators BLH and BJH. The upper limits of all inter-
vals must be bounded by the entropy maximum log 2 = 0.693.

A stimulating extension of the available approaches consists of
estimating local entropies conditional on the covariate value. In
this context, local computations are feasible, because the covari-
ate has only two values, and each sub-area contains a lot of
ants of both species; therefore, local relative frequencies may be
considered reliable. Results for the local estimates are shown
as green and orange lines in Figure 4, and show a difference
between the biodiversity of the field area, higher, and the biodi-
versity of the scrub area, lower. According to the upper bounds for
the confidence intervals, though, the difference is not significant
between the two sub-areas. Remember that, being upper bounds,
results are very conservative; they offer anyway one step forward
in the analysis of differences in biodiversity across sub-areas,
impossible with descriptive approaches.

The counterpart of the literature estimators in the BMB approach
is the estimate coming from the independence model, where
probabilities 𝑝ui of Equation (4) only depend on a global
species-specific intercept: the linear predictor is 𝑔ui = 𝛽𝑖 . By fit-
ting such model to the data and then drawing 𝑆 = 1000 poste-
rior samples, following the full Bayesian approach outlined in
Section 3.3, the BMB point estimator is equal to 𝐻(ind)

BMB = 0.605,
which, in relative terms, is 0.873. The number, as expected, is
very similar to the available estimators. An advantage of the BMB
approach is the possibility to compute the actual 95% credible
interval8 based on the simulations from the entropy posterior dis-
tribution, which is equal to [0.52; 0.676]; it does not need trunca-
tion because it is, by construction, below the entropy maximum.
Note that an additional advantage of a model-based approach
is the availability of model selection tools; information criteria9

may be obtained by the software and are DIC(ind) = 565.986 and
WAIC(ind) = 11843.6.

The model with a dependence on the soil covariate can be con-
sidered as the first departure from independence; the linear pre-
dictor for the probabilities in Equation (4) is 𝑔ui = 𝑐𝑢𝛽𝑖 , where
𝑐𝑢 = 0 for field and 𝑐𝑢 = 1 for scrub. The estimates give evidence
for a difference between the two sub-areas: the entropy for the
field area is 0.692 [0.691; 0.693], while for the scrub area it is 0.508
[0.355; 0.652] with no overlap. Therefore, based on this model we
could say that the biodiversity of the ants over the area is influ-
enced by the soil type. For the covariate model, though, DIC(cov) =

566.441 and WAIC(cov) = 11859.2; since values are larger than

those of the independence model, according to such criteria there
is no sufficient motivation for a more complicated model.

A summary of the global and covariate-specific results for the
literature estimators on ants’ nests data, compared to the BMB
approach, is displayed in Figure 4. The horizontal red line rep-
resents the global value of Shannon’s entropy as a benchmark,
while the dashed red line marks the maximum value for entropy,
that is, log 2 = 0.693; then, for each estimator, the black square is
the global value, the green square is the entropy of the ants on the
field area, while the brown square is the local entropy conditional
on the scrub area. The segments are the upper bounds for the
confidence intervals, apart from the BMB approach, where the
credible intervals are reported. If we focus on the global values,
which measure the overall latent biodiversity of the system under
the assumption of independence, we see that all conclusions are
very similar and close to the observed biodiversity (Shannon’s
line), but we can link the BMB estimator to a far smaller inter-
val than the other ones. Let us now focus on the two local values
for each estimator (which, in the case of the BMB approach, come
from the covariate model). For all the literature estimators, con-
sidering the upper bounds for the confidence intervals shows that
the difference between the two local values given the soil type
is non-significant, while the BMB approach gives evidence for a
difference in the latent biodiversity between the two sub-areas;
moreover, all confidence intervals need to be truncated at the
entropy maximum, while the BMB interval only covers realistic
values and is more reliable in associating the uncertainty to the
results.

Lastly, we exploited the complete model of Equation (4), includ-
ing the covariate effect and a random spatial effect, and we tried
the alternative priors RW2d and ICAR (Lindgren and Rue 2013)
introduced in Section 3.3 on the vector collecting the spatial
effects 𝜙i = (𝜙1𝑖 , . . . 𝜙Ni)

𝑇 , applied to each of the ants’ species.
According to the Information Criteria, the best performing one
is the RW2d model applied to Messor. Therefore, a possible final
model for the ants’ nests data includes such spatial effect and a
dependence on the soil covariate, and has the best performance in
terms of DIC(spat) = 498.689 and WAIC(spat) = 11243.61. Results
are shown in Figure 5. The top-left panel shows the entropy sur-
face, whose values range from 0.394 to 0.692, which is pretty
consistent to the results and intervals mentioned in the previ-
ously presented approaches. This panel shows the behavior of the
potential biodiversity of the ants’ nests, which depends both on
the soil type and on a spatial structure. The other panels decom-
pose and investigate results. The top-middle panel shows the esti-
mate based on the fixed effect coefficients for the influence of the
covariate soil type, which has a substantial effect on entropy, as
there is a clear difference between scrub and field (coefficients are
significant and confidence intervals do not overlap) Therefore,
the soil type plays a role in the biodiversity of the system, with
field increasing the heterogeneity of the ants and scrub decreasing
it. By looking at the relative frequencies of ants conditional on the
soil type, we see that 𝑓Cat ∣ field = 0.373 and 𝑓Mes ∣ field = 0.627,
while 𝑓Cat ∣ scrub = 0.184 and 𝑓Mes ∣ scrub = 0.816. Matching
such information with the model output, we can say that the soil
type field is favored by ants of species Cataglyphis with respect
to species Messor, and this affects the latent biodiversity in that
sub-area. On the top-right panel, the spatial effect shows a lin-
ear trend that increases from right to left, suggesting that there
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FIGURE 5 | BMB approach with covariate and spatial effect—upper panels: Entropy surface, covariate effect, spatial effect; lower panels: Standard
deviation, extremes of the 95% credible interval.

may be other unobserved spatial factors influencing the diver-
sity of the ants over the region. It would be interesting to study
this further, but this will require collecting more data. How-
ever, using the BMB approach one is able to visualize spatially
varying patterns of biodiversity and this may be advantageous
in an exploratory analysis to generate hypotheses on the rea-
sons behind such spatial variation in the entropy levels. Since
the spatial effect is so smooth and almost linear, an alternative
model with a linear trend on the spatial coordinates was tested,
but returned worse values for the Information Criteria. On the
bottom-left panel, we see the standard deviation, which gives an
idea of the reliability of the estimates. High entropy values are
more prone to estimation errors, and values in the center of the
area are linked to a smaller error, because their estimate bene-
fits from the information of the neighborhood, which is reduced
at the area edges. The middle and right bottom panels show the
lower and upper limit of the credible intervals that can be derived
from the simulation from the entropy posterior distribution; they
give us an idea about the extremes of the plausible values for the
latent biodiversity of the system.

Our proposal must be accompanied by a goodness-of-fit test
for the selected model. We rely on the standard 𝜒2 test (Illian
et al. 2008): the window is divided into 𝑃 equivalent areas; for
each area, the local component of the test statistic evaluates the
difference between the observed and the expected number of
nests under the model. Under the hypothesis of a good model
for the data, the statistic is distributed as a 𝜒2 with (𝑃 − 𝑏)

degrees of freedom, where 𝑏 is the number of parameters. We
ran the test with 𝑃 = 3,4,5,6, both on the overall dataset and
on each species, and we obtained consistent and satisfactory

results about the goodness of the model, which is a further
step forward with respect to the literature works summarized in
Section 2.

5 | Concluding Remarks

In this paper, we used a marked point pattern dataset of two ants’
species over an irregular region to illustrate an approach to bio-
diversity evaluation based on entropy measures, with novel use
and extensions of the existing methods; the proposed approach
can provide new insights on the considered case study and con-
tribute to the general area of biodiversity assessment.

Harkness and Isham (1983) ants’ nests data have been stud-
ied by several papers over the years; the methods used are now
obsolete and require simplifications, such as the reduction of
the observation window to a rectangle, or the use of basic mod-
els; moreover, conclusions over the data behavior in the litera-
ture are inconsistent and lack explanation. The present paper
faces the research questions under a different perspective, and
exploits recent methodology and computational tools to over-
come the difficulties. Using Batty’s entropy in a novel way, that is,
by partitioning the area according to the soil type, we evaluated
the influence of the covariate over the nesting habits. We pro-
pose a new simulation-based assessment of the departure from
the situation of independence from the covariate, which allowed
to show that Cataglyphis ants have a significant preference for
the soil type field. Then, we proposed a new way of using Lei-
bovici’s entropy to evaluate interpoint interaction, the most dis-
cussed research question about the ants’ data. We argue that
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TABLE 3 | Summary of the approaches’ characteristics: Each column shows whether they allows for covariate inclusion, space consideration, uncer-
tainty assessment and checking of the underlying assumptions.

Entropy Covariates Space as variable Uncertainty Checking

Descr. Batty Yes, limited No No No
Leibovici No Yes, limited No No

Inf. Literature Yes, limited No Yes, limited No
BMB Yes Yes Yes Yes

Leibovici’s entropy is a competitive alternative to the traditional
distance-based functions for measuring interpoint interaction, as
it is not limited to one or few nearest neighbors of a specific
type, rather it considers all couples of categories jointly, within a
specific distance. We found that there is no inter-species interac-
tion, which is supported by the computation of the distance-based
summary functions over the pattern (shown in Figure A1 of the
Appendix A); this can be motivated by the very different food
requirements of the two ants’ species (Isham 1984) and by the
absence of a predator–prey relationship, since Cataglyphis ants
eat dead insects, but do not kill them. The novel proposal of a
simulation-based evaluation of Leibovici’s entropy allowed us to
detect a repulsive behavior within the Messor species, most likely
due to competition for food. Altogether, these findings highlight
the need for a more formal approach based on modeling, able to
grasp the general structure of the ants’ nesting habits consider-
ing not only the relationship between the species, but also the
influence of the soil type and of other unknown factors.

Our BMB approach allows to fit complex models with spatial
effects and covariates, which improves our understanding of the
entropy of the system, compared to descriptive approaches; such
models have never been applied to the ants’ nests data, and have
substantial advantages, because their results can be explained
in detail and all assumptions can be checked. We can conclude
(Figure 5) that the ants’ nests latent biodiversity covers a pretty
wide range of values from average to very high, and depends on
the soil type, with scrub decreasing the biodiversity level, as it sees
a predominance of Messor over Cataglyphis. The model allows to
show the behavior of the spatial effect that accounts for unmea-
surable sources of spatial heterogeneity. For uncertainty evalua-
tion, we plot the standard deviation of the estimates, that depends
on the extent of the spatial neighborhood system set in the model,
and the point-wise credible intervals to help the researcher under-
stand the plausible values for the latent biodiversity of the ants’
system. Moreover, after selecting the best model for the data with
the Information Criteria, a goodness-of-fit test is run to check
the adequacy of the model to the data. The whole set of diagnos-
tics allows to safely disseminate the results, overcoming another
weak aspect of previous works on the same data.

A few more general comments must be given, that extend the
contribution of this work beyond the results over the ants’ nests
data. We offer a way to properly use descriptive and inferen-
tial approaches; we propose a joint use of separate descriptive
approaches in the literature, that is, partition- and distance-based
entropies, with new insights on their interpretation for biodi-
versity assessment. A combination of the two can provide an
exhaustive perspective for the description of the heterogeneity

and biodiversity of a system. We also propose a new, intuitive,
but rigorous, way of interpreting the significance of the results
thanks to simulations. In addition, we shed a new light on litera-
ture entropy estimators, which are currently used at a global level
for the whole dataset under study. We have shown that they may
be used locally and provide interesting information when applied
to sub-areas defined by covariate levels/quantiles. We also show
how the BMB approach outperforms the literature entropy esti-
mators. A major limit of such measures is that they are com-
puted under the strong assumption of independence, as the
whole dataset contributes to the computation of global relative
frequencies for the ants’ species, that substitute the probabilities
𝑝𝑖 as the main components of Shannon’s entropy (1). Even when
relative frequencies are computed conditional on the type of soil
in order to estimate local entropies, the assumption is that, con-
ditional on each covariate value, there is independence between
nests. This appears as an unrealistic simplification in the study of
ants’ biodiversity, which is nevertheless taken in all the available
approaches. The more flexible BMB approach is able to grasp the
actual structure of a complex phenomenon where independence
should not be assumed, by improving the way probabilities are
estimated. A final comparative Table 3 summarizes the pros
and cons of each entropy-based measure considered in this
work.

The availability of advanced computational tools is a final impor-
tant aspect of the present work. Thanks to the new release of
our SpatEntropy package for the R software, user friendly
computational tools are provided: for Batty’s entropy, results are
immediate; Leibovici’s entropy may take a few minutes for large
datasets (details about the computational time may be found in
Altieri, Cocchi, and Roli 2023). The computational complexity
may be the only drawback of the BMB approach, as it needs
some more code-writing by the user. Nevertheless, the provided
Supporting Information facilitates the reproduction of the main
analyzes in the present work with a minimum effort by the user.
Model-based entropy estimation is immediate for fixed effect
models, and may take up to a few minutes for spatial mod-
els; thanks to INLA’s computational efficiency, it is very easy
to fit many model options and select the best performing one
for the case study. We believe this might be of great help for
applied scientists interested in well-grounded results in biodiver-
sity monitoring.
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Data Availability Statement

The data that supports the findings of this study are available in the
Supporting Information of this article.

Endnotes
1 http://www.cbd.int.
2 https://CRAN.R-project.org/package=SpatEntropy.
3 For the model-based approach parameter estimation of Section 3.3,
R-INLA is the reference software for working with INLA (Rue, Martino,
and Chopin 2009). Such package can be downloaded from the website
www.r-inla.org, where examples and tutorials are also available.

4 https://cran.r-project.org.
5 https://CRAN.R-project.org/package=SpatEntropy.
6 Missing values are assigned to the pixels outside the polygonal boundary

(stored as NA values in R).
7 Note that we do not have to worry about building square cells, as the

software deals with any type of cells. The chosen grid resolution is the
same as the resolution of the covariate image.

8 Credible intervals are based on posterior densities, and are the Bayesian
counterpart of the more popular frequentist confidence intervals: they
give a plausible range of values for the quantity of interest.

9 Information Criteria are well-established methods for model selection,
as they are a trade-off between good fitting to the data (likelihood
value) and complexity (number of parameters). The rule for using Infor-
mation Criteria for model selection is “the smaller, the better.” DIC
stands for Deviance Information Criterion and WAIC is short term for
Watanabe-Akaike Information Criterion. See Casella and Berger (2021)
for details.
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Appendix A

A.1 | Summary Functions for Interpoint Interaction

In traditional point pattern exploratory analysis, and in many of the
papers mentioned in Section 2, the distance-based summary functions
𝐺, 𝐹, 𝐾 and 𝐿 (Diggle 2014) are a standard tool to evaluate the spatial
structure and the presence of interpoint interaction with respect to a spa-
tially homogeneous (randomly scattered) pattern. Simulation based tests
can be run to assess whether the pattern shows a clustering or repul-
sive behavior, which has been used to evaluate interaction within and
between ants species (Harkness and Isham 1983). Figure A1 shows the
results for the overall pattern and for the two sub-patterns separately
for the four distance-based functions as computed by the spatstat
package (see, e.g., Fest and Gest). Such plots are meant to investi-
gate overall interpoint interaction (first column), and intra-species inter-
action (second and third column). Figure A2 shows the “recent cross”
versions of the functions, which are specifically meant to evaluate interac-
tion between the two species of ants, by measuring the distance between
nests of the two species. The empirical functions based on the ants data
(black line) always lie entirely, or almost entirely, within the gray bands,
which represent the plausible range of values for a spatially homogeneous
process.

A.2 | Criteria for Normality Assumption of the Entropy
Estimators

The entropy estimators may be assumed as normal provided that the
probabilities involved in the computations may be considered normal,
that is, under the assumption of a sufficiently large number of observa-
tions for satisfying the Central Limit Theorem. Two criteria are commonly
used in the literature (see, e.g., Durrett 2004; Casella and Berger 2021) to
decide whether the normality assumption holds. The first one is np > 5
and 𝑛(1 − 𝑝) > 5, with 𝑛 being the sample size and 𝑝 being the propor-
tion of any of the categories. In the present study, if 𝑝 is the proportion of
Messor ants’ nests, that is, 𝑝 = 0.701, then np = 68 and 𝑛(1 − 𝑝) = 29; if 𝑝
refers Cataglyphis nests, namely 𝑝 = 0.299, then np = 29 and 𝑛(1 − 𝑝) =

68; all numbers are larger than 5. A second standard criterion is that the

interval
[
𝑝 − 3

√
𝑝(1−𝑝)

𝑛
; 𝑝 + 3

√
𝑝(1−𝑝)

𝑛

]
must lie wholly within the inter-

val [0, 1]. For the Messor species the interval is [0.562; 0.840], while for
the Cataglyphis ants it is [0.160; 0.438]. Under the normality assumption,
we can compute the upper bound for the estimators’ variance, which, for
𝐼 = 2 species, is 1∕𝑛 = 1∕97 = 0.01.
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FIGURE A1 | Simulation-based tests for overall and intra-species interpoint interaction based on summary distance functions.
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FIGURE A2 | Simulation-based tests for inter-species interpoint interaction based on summary distance functions.
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