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ABSTRACT

Context. Core-collapse supernovae (CCSNe) are expected to emit gravitational wave signals that could be detected by current and
future generation interferometers within the Milky Way and nearby galaxies. The stochastic nature of the signal arising from CCSNe
requires alternative detection methods to matched filtering.
Aims. We aim to show the potential of machine learning (ML) for multi-label classification of different CCSNe simulated signals and
noise transients using real data. We compared the performance of 1D and 2D convolutional neural networks (CNNs) on single and
multiple detector data. For the first time, we tested multi-label classification also with long short-term memory (LSTM) networks.
Methods. We applied a search and classification procedure for CCSNe signals, using an event trigger generator, the Wavelet Detection
Filter (WDF), coupled with ML. We used time series and time-frequency representations of the data as inputs to the ML models. To
compute classification accuracies, we simultaneously injected, at detectable distance of 1 kpc, CCSN waveforms, obtained from recent
hydrodynamical simulations of neutrino-driven core-collapse, onto interferometer noise from the O2 LIGO and Virgo science run.
Results. We compared the performance of the three models on single detector data. We then merged the output of the models for single
detector classification of noise and astrophysical transients, obtaining overall accuracies for LIGO (∼99%) and (∼80%) for Virgo. We
extended our analysis to the multi-detector case using triggers coincident among the three ITFs and achieved an accuracy of ∼98%.
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1. Introduction

Since the discovery of binary black hole (BBH) merger
GW150914 (Abbott et al. 2016b) by the LIGO and Virgo Sci-
entific Collaboration, gravitational wave (GW) astronomy has
gained momentum in the scientific community by providing a
new observational channel in astrophysics. This led to the first
joint electromagnetic (EM) and GW multi-messenger observa-
tion of a binary neutron star (BNS) merger, GW170817 (Abbott
et al. 2017), during the second science run of the Advanced
LIGO (Harry 2010; Aasi et al. 2015) and Advanced Virgo
(Acernese et al. 2015) interferometric detectors, along with a
large number of BBH mergers collected in the first GW tran-
sient catalog GWTC-1 (Abbott et al. 2019). In 2020, LIGO and
Virgo completed the third science run O3; results from the first
part of the run, O3a, which led to the discovery of 39 candidate
binary merger events in 26 weeks of data are presented in the
GWTC-2 catalogue (Abbott et al. 2021a). Currently the LIGO,
Virgo interferometers are following a schedule which will imple-
ment upgrades to increase the sensitivity for the O4 science run,
to begin in 2023. The KAGRA detector (Somiya 2012), which
started its first observing run towards the end of O3 (Akutsu
et al. 2020), will also increase its sensitivity effectively produc-
ing a network of four interferometers with increased capabilities
for future runs.

Among astrophysical sources of GWs, core-collapse super-
novae (CCSNe) are yet to be observed and are an interesting

candidate for multi-messenger analysis due to their EM and neu-
trino emission. However GW signals from CCSNe cannot be
exactly modelled due to the stochasticity involved in the col-
lapse dynamics and the dependency on many parameters such
as the progenitor mass, rotational state, and metallicity. There-
fore alternative detection methods to the usual matched filtering
approach are used which make minimal assumptions on the
signal waveform, such as the wavelet-based coherent Wave-
Burst pipeline (Klimenko & Mitselmakher 2004; Klimenko et al.
2016). Machine learning (ML) techniques have been used to
tackle many aspects of GW astronomy including signal detec-
tion for different types of sources (Baker et al. 2015; Gabbard
et al. 2018; Kim et al. 2020; Morawski et al. 2020), parame-
ter estimation (Varma et al. 2019; Haegel & Husa 2020; Green
et al. 2020; Chua & Vallisneri 2020; Williams et al. 2021), noise
classification (Zevin et al. 2017; Mukund et al. 2017; Razzano
& Cuoco 2018); subtraction (Torres-Forné et al. 2020; Wei &
Huerta 2020), as described in the comprehensive review by
Cuoco et al. (2020). In previous work (Iess et al. 2020), we
showed the efficacy of 1D and 2D convolutional neural net-
works (CNNs) in distinguishing between noise transients, known
as glitches, and waveforms from CCSNe burst signals produced
through 3D hydrodynamical simulations and added to back-
ground noise, using whitened time series and spectrograms as
input features. The background noise was simulated and Gaus-
sian, produced from the theoretical sensitivity curves of Virgo
during O3 science run and the future Einstein Telescope (ET)
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detector (Punturo et al. 2010; Hild et al. 2011). In the same work,
we demonstrated the capability of correctly classifying among
different CCSNe GW emission models. CNNs have also been
used by Astone et al. (2018) to search for g-mode emission in
CCSNe signals in multiple GW detectors using a phenomenolog-
ical model. Cavaglià et al. (2020) used a genetic programming
algorithm which takes as input features a subset of computed
parameters such as central frequency, bandwith and durations to
achieve the same goal on single interferometer data. Chan et al.
(2020) trained a 1D CNN model to search for CCSNe using the
whitened GW time series from a network of GW detectors.

In this analysis, we extended previous work on the subject
(Iess et al. 2020) by using real detector noise from the O2 sci-
ence run instead of simulated noise. We increased the number
of supernova waveforms by adding two higher energy models.
Moreover we explored recurrent neural networks (RNNs) and
compared their performance to CNNs. RNNs are a type of neu-
ral network specialised for processing sequential data due to a
feedback loop mechanism that allows the network to retain in
memory previous inputs and consider these along with the cur-
rent input (Hüsken & Stagge 2003). RNN models are commonly
used in the fields of natural language processing (Nicolaou et al.
2019) and for time-series data. In this work we used a particular
type of RNN, long short-term memory cells (LSTM; Hochreiter
& Schmidhuber 1997), which provide a solution to the vanish-
ing gradient problem and have the capacity to handle long-term
dependencies making them best suited for analysing gravita-
tional wave data. We started our analysis by training and testing
on a piece of data from a single detector and later extended our
approach to a three-interferometer network. The paper is struc-
tured in the following way: Sects. 2 and 3 provide insight on
the real detector data and a brief overview of the waveforms
used in this study. Section 4 describes each of the ML algo-
rithms involved in the analysis. The results are detailed in Sect. 5,
followed by discussions and conclusions in Sect. 6.

2. Dataset

The data analysed in this study was generated by adding selected
CCSNe waveforms, obtained through 3D numerical simulations,
to real interferometer noise. Compared to simulated Gaussian
noise used in Iess et al. (2020), Astone et al. (2018), and Chan
et al. (2020), real noise in GW detectors is subject to a certain
degree of variability as it depends on environmental conditions
which can be monitored but not controlled. When noise artifacts
have long timescales they affect the sensitivity of the detector,
which in the frequency domain corresponds to a non-stationary
noise power spectral density (PSD). Moreover, many classes
of short-lived non-astrophysical transients are also present in
the data and can hinder GW search pipelines by triggering
vetoes or false alarms. Keeping this in mind and in order to
compare results, we selected 44 segments from the O2 public
science run (Abbott et al. 2021b), requiring that they pass the
data quality flags characterised in Abbott et al. (2016a) at least
97% of the time for each detector. Each file contains a 4096 s
long time series sampled at 4096 Hz and is identified by its
initial GPS time. The segments span the period from tGPS =
1185669120 to tGPS = 1186070528. In this analysis, we used
five CCSN models previously tested on simulated data (s11, s13,
he3.5, s18p, s25). Additionally, we included two higher ampli-
tude models with Wolf–Rayet progenitor stars (m39, y20) and
a waveform with the same progenitor mass of s18p, but no ini-
tial density perturbations in the convective oxygen shell (s18np)

(Powell & Müller 2020), to increase the complexity of the classi-
fication problem. The waveforms were downsampled to 4096 Hz,
applying a low-pass filter to suppress aliasing. We simulated
all signals at fixed distance of 1 kpc and uniformly distributed
in the sky. To obtain the latter condition, we sampled from a
uniform distribution in the right ascension α and the cosine of
the declination δ. The polarization angle in the wave frame was
fixed at ψ = 0. In each segment, the first 300 s do not con-
tain injections and were used to estimate the power spectral
density (PSD; Cuoco et al. 2001) and compute the whitening
parameters. The signals were then injected every 10 s taking into
account the antenna pattern functions F+, F× for the two gravita-
tional wave polarizations h+, h× at the different detectors at each
epoch, along with the time shift computed for each interferome-
ter with respect to the geocentric frame (Schutz 2011). The full
dependencies are described in the following formula:

h(t) = F+(α, δ, λ, β, χ, η) h+(t) + F×(α, δ, λ, β, χ, η) h×(t), (1)

where λ, β are the longitude and latitude of the detector, χ defines
the orientation of the bisector of the detector arms, and η the
angle between the two arms. Let s(t) = n(t) + h(t) be the detec-
tor time series, with n(t) interferometer noise and h(t) a possible
signal. The matched filter signal-to-noise ratio (S/N) time series
at time t0 is then computed as in Allen et al. (2012):

( S
N

)2
= 4
∫ fmax

0

s̃( f )
[
h̃( f )∗

]
t0=0

S n( f )
e2πi f t0 d f , (2)

where fmax is the maximum frequency cutoff and S n( f ) is the
one-sided noise PSD. After injecting the signals into the detec-
tor strain data, a whitening step in time domain was applied
by means of the Wavelet Detection Filter (WDF) library, docu-
mented in Cuoco et al. (2001) and Cuoco et al. (2018), in order to
remove the stationary contribution to the noise PSD. The whiten-
ing parameters were computed by fitting the noise PSD using
an Auto-Regressive (AR) model. The total number of CCSN
injected in each segment is 376, 47 for each of the eight models.
A subset of the total 16544 CCSN signals injected in the dataset
will trigger the WDF pipeline by means of a fixed threshold set
on the squared sum of the wavelet transform coefficients. These
will not be the only events detected by WDF, since noise tran-
sients provide additional triggers. Whitened spectrograms for
instances of these two types of instrumental and astrophysical
burst signals are pictured in Fig. 1.

3. Waveforms

3.1. Model s11

Model s11 is the 11 M⊙ zero age main sequence (ZAMS) model
simulated by Andresen et al. (2017) with the PROMETHEUS-
VERTEX code (Rampp & Janka 2002), which employs Newto-
nian gravity. The simulation ends 0.35 s after the core bounce
time. This model does not explode and has the smallest GW
amplitude of all the GW signals considered in this study. It has a
lower peak frequency at ∼600 Hz.

3.2. Model s13

Model s13 is a 13 M⊙ ZAMS model simulated by Radice
et al. (2019) using the Eulerian radiation-hydrodynamics code
FORNAX (Skinner et al. 2019). This model does not explode,
and shows GW emission associated with g-modes. This model
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Fig. 1. Sample whitened spectrograms for the noise and signal classes used in this analysis: a blip glitch (left) and m39 (right), a rapidly rotating
CCSN explosion model. The GW shown for m39 is for emission at the pole. The spectrograms are rescaled to the [0, 1] range for a 2D CNN
classifier.

ends at 0.78 s after core bounce. Due to the lack of shock revival,
this model has low GW amplitude and peaks at a frequency of
∼800 Hz. This model presents a weak standing accretion shock
instability (SASI) component.

3.3. Model s25

Model s25 is a 25 M⊙ ZAMS model simulated by Radice
et al. (2019) using the Eulerian radiation-hydrodynamics code
FORNAX. It explodes at 0.5 s after core bounce and the simula-
tion ends at 0.62 s after core bounce time when the GW emission
is still high. This model exhibits a clear signature of the SASI at
low-frequency as well as high frequency g-modes, with the peak
GW emission at ∼1000 Hz.

3.4. Model s18p

Model s18p is the 18 M⊙ ZAMS progenitor from Powell &
Müller (2019) simulated with the general relativistic neutrino
hydrodynamics code COCONUT-FMT (Müller et al. 2010). The
simulation end time is 0.9 s, at which time the GW emission has
reached very low amplitudes. This model shows a clear g-mode
signal in the spectrogram. This model explodes at ∼300 ms after
core bounce. The GW frequency peaks at ∼850 Hz.

3.5. Model s18np

Model s18np from Powell & Müller (2020) differs from s18 in
the fact that the simulation does not include perturbations from
the convective oxygen shell. As a result, this model develops
strong SASI after collapse.

3.6. Model he3.5

Model he3.5 is the 3.5 M⊙ ultra-stripped helium star from Powell
& Müller (2019) simulated with the general relativistic neutrino
hydrodynamics code COCONUT-FMT. An ultra-stripped star is
a star in a binary system that has been stripped of it’s outer layers
due to mass transfer to the binary companion star (Tauris et al.
2015). The simulation ends at 0.7 s after core-bounce time, well
after the peak GW emission phase. This model shows a clear
g-mode in the spectrogram. The amplitude of the GW signal is
strongest at ∼900 Hz. This model explodes at ∼0.4 s after core
bounce.

3.7. Model y20

Model y20 simulated by Powell & Müller (2020) with the neu-
trino hydrodynamics code CoCoNuT-FMT is a non-rotating,
20 solar mass Wolf–Rayet star with solar metallicity. The sim-
ulation of this model is stopped at 1.2 s after core bounce.
The waveform is characterized by prompt convection after core
bounce, below 200 Hz. Shock revival occurs ∼200 ms after the
bounce and is followed by a strong fundamental mode emission.

3.8. Model m39

Model m39 simulated by Powell & Müller (2020) is a rapidly
rotating Wolf–Rayet star with an initial helium star mass of
39 solar masses. The simulation is performed with the neutrino
hydrodynamics code CoCoNuT-FMT. A large signal amplitude
is produced by the strong neutrino-driven explosion thanks to
rapid rotation (600 km s−1), without the aid of strong magnetic
fields. The simulation ends 0.98 s after core bounce and shock
revival is achieved ∼200 ms after bounce. The main feature is
a a strong fundamental mode emission up to a peak frequency
of ∼800 Hz. The equatorial emission from this model has high
amplitude over all frequencies associated with core bounce of a
rapidly rotating star. However, we only used the polar emission
in our analysis, shown in Fig. 1.

4. Deep learning algorithms

For this analysis we used different types of ML algorithms for
multi-label classification. Two types of inputs are provided: the
whitened time series for the 1D CNN and the LSTM network,
the whitened time-frequency image for the 2D CNN.

4.1. CNN 1D

The 1D CNN takes the whitened timeseries as inputs. It is com-
posed of four convolutional layers with kernels of size 3. The
number of convolutional filters are (120, 80, 80, 40). Max pool-
ing (2, 2) and spatial dropout on 40% of nodes is applied after
each convolutional layer. The output from the CNN architecture
is fed into two Fully Connected (FC) layers of sizes 200 and
100, respectively. The activation function used in these layers
is the rectified linear unit (ReLU). The final layer is FC, with
the number of nodes given by the number of class labels and a
softmax activation function to yield probabilities for each class.
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Table 1. Cumulative number of triggers over all segments analysed
for each interferometer individually, along with number of coincident
triggers over all three detectors.

Triggers

Detector Signal Noise Total

Virgo V1 9273 47 901 57 174
LIGO L1 10 480 3810 14 290
LIGO H1 10 984 4103 15 087

L1, H1, V1 5647 675 6322

The optimizer used is Adam, with a learning rate α = 0.001 and
categorical cross-entropy loss function. We chose a batch size
of 32.

4.2. CNN 2D

The 2D CNN takes the whitened spectrograms as inputs. The
spectrograms centered on the samples were produced with a
kaiser window (β = 5.6), using multiple FFTs of 0.125 s with
overlap. The network is composed of three convolutional layers
with kernels of sizes (4, 4), (3, 3), (2, 2). Max pooling (2, 2) was
applied after each convolutional layer. The output from the CNN
architecture is fed into a FC layer of size 200 and later to a FC
output layer which outputs probabilities. We used the same acti-
vation functions as in the 1D case. The optimizer used is Adam,
with a learning rate α = 0.001 and categorical cross-entropy loss
function. The batch size is 32.

4.3. LSTM

The recurrent model takes the whitened timeseries as inputs. It
is composed of two bidirectional LSTM layers, of dimensions 64
and 32 respectively. Spatial dropout is applied on 10% of the out-
put nodes from the first recurrent layer. The outputs is passed to 4
FC layers of size 1024, 256, 64, 32 with tanh activation functions
and finally onto a FC output layer which outputs probabilities for
each class through a softmax activation function. The optimizer
used is Adam, with a learning rate α = 0.001 and categorical
cross-entropy loss function. The batch size is 256.

5. Search and classification results

We trained each network separately on the same training set.
The full dataset was split as follows: 60% training, 10% vali-
dation, 30% testing. In Fig. 2, we show the matched filter S/N
distribution of injected signals over all 44 files. The S/N of the
signals varies depending on the waveform model and the sim-
ulated source position with respect to the inferferometer. As
expected, the same signals produce lower S/N at Virgo due to
its lower sensitivity. We observed that the matched filter S/N of
lower amplitude models in Virgo amass towards an S/N equal to
4, after which the distribution drops sharply. This is consistent
with the fact that we obtained the S/N as the maximum value
of the matched filter response on a time series of a few seconds
around each trigger. In the absence of a signal, we computed this
value in the region between 3 and 4, therefore weak signals will
almost never have lower S/N. Moreover, noise bursts are respon-
sible for part of the triggers produced by WDF. In Table 1, we
report the cumulative number of triggers produced over all the
segments for each detector separately, along with the number
of triggers coincident in the three detectors. The large excess
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Fig. 2. Matched filter S/N distribution of the signals injected at the ITFs:
Virgo (right) and LIGO Livingston and Hanford (left). The LIGO detec-
tors are grouped due to their similar sensitivity and signal S/N. A dashed
line is drawn at the median S/N value of each waveform model.

number of noise triggers in the Virgo dataset has been obtained
despite the same choice of whitening parameters when running
WDF.

This can be explained by a non-stationary behaviour and
greater variability of the detector’s noise PSD throughout the
individual segments, which makes the whitening procedure less
effective. This issue can be tackled in the future using adap-
tive whitening to track the PSD evolution in real time. For
each interferometer we defined a trigger to be due to a CCSN
signal when the trigger timestamp falls inside the segment cov-
ered by the injected waveform. We applied clustering when the
same signal generated multiple triggers, by averaging the trig-
ger times. Since the large number of background triggers in the
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Table 2. True positive rates for the noise and CCSN signal classes, along with the total sensitivity, computed for the three detectors V1, L1, H1 on
real data from the O2 science run.

Waveform

ITF Model Noise s11 s18p s18np He3.5 m39 y20 s13 s25 Total

V1
LSTM 49.2 * 3.6 58.4 0.0 89.5 69.9 0.0 89.8 73.7

CNN 1D 44.6 * 8.4 10.9 0.0 84.3 73.1 0.0 87.4 68.3
CNN 2D 48.6 * 9.6 39.4 3.6 92.3 72.5 0.0 94.6 75.2

L1
LSTM 90.1 0.0 98.2 92.8 85.4 98.7 96.0 87.1 94.8 93.6

CNN 1D 99.4 0.0 89.5 95.3 82.2 99.2 98.2 75.5 98.8 95.9
CNN 2D 99.8 0.0 99.1 99.3 97.4 100.0 99.7 91.6 99.8 99.3

H1
LSTM 96.2 0.0 95.5 96.8 89.1 99.7 95.9 75.1 97.6 95.4

CNN 1D 99.0 0.0 90.1 99.3 91.6 98.4 100.0 80.6 97.4 96.5
CNN 2D 99.7 0.0 99.6 99.8 96.8 99.7 99.8 96.8 99.2 99.1

Notes. The asterisk indicates that a model is not present in the associated dataset.

V1 datum can skew the training procedure, to train this spe-
cific dataset we used only those triggers which were coincident
in time with L1 and H1. The time window for coincidence was
chosen to take into account the length of the waveforms and the
maximum travel time between interferometers. We underline the
fact that different parts of the same CCSN model can trigger
WDF. Starting from the event timestamps, we chose a symmet-
ric window around the triggers of length given by the Radice s25
model, the second shortest among the waveforms. In this way we
avoided using the tails of the waveforms where the simulations
are stopped due to limited computing time. We noted that the
Andersen s11 waveform did not trigger the WDF pipeline a suf-
ficient number of times in order to be effectively used during
training and testing. Over the whole dataset, only 16 and 12 trig-
gers were found coincident with s11 respectively in the LIGO
H1 and LIGO L1 datasets and none coincident among all three
detectors. This is the reason why we did not choose the time
window for samples equal to the length of s11, while still keep-
ing the model and its label in the training and testing procedure
for completeness.

Before training, the samples were shuffled to have a uniform
dataset. The time needed for training varies for each model as it
is dependent on the number of weights to be optimised in their
architectures. Moreover, it is related to the number of samples in
each dataset and is therefore shorter for Virgo due to the use of
triple coincidence. The number of epochs was separately chosen
for each algorithm in order to avoid overfitting. We trained the
1D CNN on a Tesla k40 GPU for 10 epochs, averaging approx-
imately ∼15 s per epoch on L1. The 2D CNN was trained on a
Tesla k40 GPU for 10 epochs, averaging approximately ∼20 s per
epoch on L1. The LSTM network was trained for 100 epochs on a
Tesla k80 GPU, averaging approximately ∼60 s per epoch on L1,
as shown in Fig. 3. In Table 2, we show the full sensitivities of
the models for all the classes at each detector, which correspond
to the values in the diagonal of the confusion matrices. We recall
that the sensitivity, also known as the true positive rate (TPR),
to a particular class c, is defined as the ratio of the true positives
and the sum of true positives and false negatives:

TPRc =
TPc

TPc + FNc
. (3)

We analyse each dataset in the following subsections, provid-
ing detailed results for the separate models and for the merged
model. The predictions of the merged model were obtained by

Fig. 3. Evolution of the categorical cross-entropy cost function through
different training epochs for the models considered. The dashed lines
are training losses, while the solid lines are the losses computed on the
validation set.

averaging the output probabilities computed by the 1D CNN,
2D CNN and LSTM. In Fig. 4, we show the confusion matri-
ces for the multi-label classification in all three interferometers,
along with the S/N distribution of all the misclassified samples.
In Fig. 5, we illustrate how the different CCSNe models were
classified by the merged model in the LIGO and Virgo datasets
as a function of S/N. The figure highlights the fact that CCSN
signals have higher S/N in the LIGO datasets, with misclassifica-
tions occurring only for weaker signals. On the other hand, only
the most energetic models injected into Virgo datum were cor-
rectly classified. An exception to this is provided by s25, which
exhibits low-frequency SASI emission.

5.1. LIGO L1

After trigger extraction by WDF, the LIGO L1 dataset is
composed in the following way: 3810 noise triggers, 12 s11,
1438 s18p, 1782 s18np, 704 he 3.5, 2052 m39, 1969 y20, 476
s13, 2047 s25. As previously described, the number of Andresen
s11 samples is too low for any algorithm to train to recognise
its characteristics. All ML models are more accurate in classi-
fying the CCSN signals with higher energies, while the worst
sensitivities are exhibited for he3.5 and s13, which are under-
represented in both training and test set compared to the rest.
Specifically, the 1D CNN is less accurate with the s13 and s18p
signals by ∼10% compared to the other algorithms. The LSTM
has a small tendency to misclassify noise into low S/N signal
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Fig. 4. Multi-label classification confusion matrices for the V1 (top), L1 (middle), and H1 (bottom) datasets using the merged output from LSTM,
1D CNN, and 2D CNN, along with the S/N distribution of samples classified correctly and incorrectly. We show only the S/N range below
S/N = 60, where misclassifications occur.

classes, which may be due to the fact that it keeps memory
of small noise peaks in the data. We merged the probabilities
from the three models through averaging and obtained an over-
all sensitivity of ∼99.3%, which is comparable to the best model
(2D CNN). The incorrectly classified signals are at S/N values
below 20.

5.2. LIGO H1

As expected the LIGO H1 dataset is quite similar to that of LIGO
L1. Its composition is: 4103 noise triggers, 25 s11, 1534 s18p,
1803 s18np, 881 he3.5, 2059 m39, 1991 y20, 637 s13, 2054 s25.
The high amplitude models achieve the best classification TPR
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for all the ML models used. As for L1, the s13 and he3.5 achieve
the lowest accuracies for all ML algorithms. However, in this
dataset the LSTM architecture is the less accurate in classify-
ing these signals. While still performing worse than the CNNs,
the same model achieves better accuracy in the noise class com-
pared to the L1 scenario. This may be due to the larger number of
noise samples included. Merging the output from the three mod-
els did not improve the sensitivity compared to the best model 2D
CNN, but achieved similar values (TPR ∼ 99.1%). As for L1,
lower S/N, below 20, contribute to most of the misclassified
samples.

5.3. Virgo V1

The triple-coincident triggers between V1, L1, and H1, which are
used to identify samples in the Virgo V1 dataset, are distributed
as follows: 675 noise, 0 s11, 329 s18p, 491 s18np, 115 he3.5,
1940 m39, 1139 y20, 76 s13, 1557 s25. The lower amplitude
CCSN models are either not present at all (s11) or appear in a
small number of samples, predominantly at lower S/N. None of
the ML algorithms considered were able to effectively classify
s13, he3.5, and s18p signals. The LSTM network fares better than

the CNNs for the mid-amplitude s18np model which presents
a low frequency SASI emission. A possible explanation is that
the LSTM is able to recognize the low frequency emission at
lower S/N. The LSTM performs slightly worse than 1D CNN
and 2D CNN on the y20 test samples. All models achieve good
sensitivities (TPR > 84%) on the m39 and s25 models. The
most common misidentification is with noise triggers at low
S/N and with the y20 model. For V1 data the merged output
improves the overall sensitivity with respect to the 2D CNN, with
a TPR ∼ 79.8% compared to ∼75.3%. As evident from Fig. 4,
lower S/N < 20 contribute to most of the misclassified sam-
ples, although weaker m39 signals misidentifications occur up
to S/N ∼ 30. The S/N distribution of the signals exhibits a gap
in the S/N = 18–30 region: this is due to the different intrinsic
GW amplitudes of the CCSN models used in the analysis and as
a consequence leads to most signals being misclassified in the
corresponding S/N interval.

5.4. Three interferometer analysis

While we managed to obtain good single detector classification
accuracies for the LIGO interferometers for signals at higher
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outputs of LSTM, 1D CNN, and 2D CNN models trained on samples
from a three interferometer network with LIGO (L1, H1) and Virgo (V1)
data.

S/N, a more robust and realistic approach is to exploit data from
all available detectors to ideally increase the accuracy for weaker
signals. This can be achieved training a network on three detector
data by stacking the individual time series or images, increas-
ing the number of dimensions of the inputs by one. The CCSN
signals are defined using time and equatorial coordinates in the
geocentric frame. They are then projected into each interferom-
eter datum taking into account the antenna pattern and the time
shifts between the detectors. We trained and tested the models
on the three interferometer samples obtained using the coinci-
dent triggers previously computed for the Virgo V1 dataset. We
refer to that dataset for a breakdown of the signals used for each
category. As a result the sample size is much smaller than the
single LIGO detectors cases and this negatively affects the per-
formance of the classifier. Despite such caveat, the sensitivities
of the merged model to the individual CCSN models pictured
in Fig. 6, are still very high and comparable to those obtained
for the individual LIGO detectors. In detail, we see a familiar
pattern where the under-represented classes and lower S/N mod-
els (he3.5, s13) have lower accuracies. On the other hand, the
classification sensitivities are significantly higher than those of
the Virgo dataset for all classes. As in the single detector case,
the merged model is more robust in correctly classifying noise
samples with a TPR ∼ 97.7% in the noise class; this statement
holds despite the fact that the noise class amounts to a much
smaller percentage of the overall dataset, as evident in Table 1.
The overall TPR for the merged model is ∼97.8%. The TPR
computed over all classes for the individual models confirms the
single detector results and is, respectively, TPR ∼ 89.5% for the
1D CNN, TPR ∼ 86.7% for the LSTM, and TPR ∼ 98.4% for the
2D CNN. Since the reduced number of triple-coincident samples
hampers the training procedure, a possible solution to increase
the classification accuracy is to rely on the use of generative
adversarial networks (GANs; Goodfellow et al. 2014) to aug-
ment the dataset. GANs have already been successfully applied
in the generation of realistic, synthetic datasets for the variety
of images of people (Gulrajani et al. 2017) or even fingertips

(Yu et al. 2019). The same approach could in principle improve
balance between various CCSN models in the studied datasets
for the spectrogram representation. However, that approach
would require a separate, dedicated research project.

6. Discussion

Among the sources which emit GWs that have yet to be
observed, CCSNe are specifically interesting due to their multi-
ple emission channels that convey different informations on the
collapse mechanisms in play. The current matched filter tech-
niques cannot be applied for a GW search for CCSNe, due to the
large degree of stochasticity in the emitted signal. ML algorithms
are largely agnostic about data and do not make assumptions on
the signal morphology. However, they are well suited at detecting
patterns in timeseries and time-frequency data. We have previ-
ously proven the efficacy of 1D and 2D CNNs in classifying
signals based on their morphology in both domains, assuming
a Gaussian noise background. In this follow-up study we proved
that both CNN architectures and also recurrent LSTM networks
can obtain good accuracies also on classification tasks involving
real detector noise. Compared to Iess et al. (2020), this analy-
sis presents important differences. Firstly, we added three new
neutrino-driven explosion models to increase the complexity of
the multi-label classification problem. Secondly, we grouped real
noise transients in a single class during the training procedure.
Moreover, we fixed the distance of all signals to 1 kpc and car-
ried our single detector analysis on the same sources at each of
the three interferometers, to compare S/N distributions and clas-
sification accuracies. As a result, the signal S/N will only depend
on the sensitivities of the detectors at injection time and on the
direction in the sky relative to the detector plane, through the
antenna pattern functions. All three networks achieved accura-
cies above 90% on the LIGO datasets and the predictions were
consistent for the two detectors with similar sensitivity and ori-
entation. As in the case of simulated noise background, the 2D
CNN showed the best performance among the three and was
very stable in its prediction for separate training runs. 1D CNN
performed slightly better than LSTM for the LIGO datasets, but
worse in the Virgo dataset, largely due to its inability to classify
the s18np model which presents a SASI signature. The perfor-
mance of the merged model is comparable to the 2D CNN, with
a very high accuracy in distinguishing noise instances when fed
with a large number of samples. For the Virgo dataset accu-
racies were expected to be worse due to the smaller sample
size and the lower S/N of the CCSNe signals at the detector.
Nonetheless higher amplitude signals generally achieved moder-
ately good accuracies. On the other hand, results at S/N < 15
for the same dataset are strongly affected by the sample size. To
fully assess this low S/N region, an ad hoc dataset with a larger
number of samples for each waveform can be built to probe the
performance at such S/N. In this study we also extended our pre-
vious analysis (Iess et al. 2020) to a multi-detector framework
as in Astone et al. (2018) and Chan et al. (2020) by stack-
ing the samples for a given signal from each interferometer,
requiring time-coincidence in the WDF triggers. This allowed
us to perform the analysis on a realistic scenario in which the
LIGO datasets contain higher S/N CCSN samples compared
to the Virgo interferometer. We achieved slightly lower accu-
racies than the single LIGO interferometer case due to the
smaller dataset arising from requiring triggers to be coincident.
However, we predict that increasing the number of samples in the
dataset will eventually fill the gap between the two cases. From
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a computational point of view we are limited by dataset size
and GPU memory. While we achieved similar accuracies with
LSTM and 1D CNN architectures, hyper-parameter tuning was
harder for the recurrent model, which also needed significantly
longer training times. Moreover, LSTMs decrease their perfor-
mances when faced with the task of learning longer sequences, a
fact that limits their capabilities when analyzing datasets which
are composed of thousands of timesteps. The better performance
of LSTMs compared to 1D CNNs in the lower S/N region for
some models which exhibit a low frequency emission component
requires further analysis with a larger dataset. Downsampling
may also be implemented to enhance the computational per-
formance of the recurrent model and reduce the length of the
sequence to be learnt. Overall, the above analysis suggests that
convolutional and recurrent NN architectures can play a role in
GW detection pipelines for neutrino-driven CCSN burst signals,
with the added possibility of distinguishing different types of
signal morphologies for sources located in a nearby region of
the Milky Way. The results obtained are consistent with applica-
tions to neutrino-driven CCSN models on simulated (Iess et al.
2020) and real detector noise (López et al. 2021), at the fixed
distance range considered in this study. Past and current esti-
mates have set the rate of galactic CCSN between 1 and 2 events
per century (van den Bergh & Tammann 1991; Cappellaro et al.
1993; Rozwadowska et al. 2021). Taking into account planned
improvements in the sensitivity of the Virgo, LIGO and KAGRA
interferometers, a galactic CCSN detection with deep learning
methods seems possible if an event occurs with a GW signa-
ture that shares some characteristics (g-mode emission, prompt
convection, SASI) with current simulations.
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