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Abstract
After revisiting the properties of generalized trigonometric functions, i.e., the trigonometric
function linked to the planar (Fermat) curve x p + y p = 1, using the tool of Keplerian
trigonometry, introduced in (Gambini et al.: Monatsh. Math. 195, 55–72, 2021), we present
the extension to this class of functions of the Wallis product, discovering connections with
the representations of ordinary trigonometric functions by means of infinite products.

Keywords Generalized trigonometric functions · Keplerian maps · Eulerian functions ·
Infinite products · Wallis product
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1 Introduction

This paper studies generalized trigonometric functions, i.e., functions that parametrize the
planar curve of Cartesian equation x p + y p = 1, where p > 0 is a positive integer. In the
following we will refer to these curves as “Fermat curves”.

This branch of mathematical research, in the case p = 3, was started by Cayley [4] and,
shortly after, continued and extendedbyDixon [5],who studied the cubic x3+y3−3α xy = 1:
the parametrizing functions “cm” and “sm” of that cubic, which were presented there, are
mentioned by Whittaker and Watson in the classic monograph [29], and are known today as
“Dixon’s elliptic functions”.Due to the fact that theybothhave a rhombic fundamental domain
with 60 and 120 degree angles, Dixon’s functions were employed to devise a conformal
projection of the sphere on a regular hexagon by Adams [1] and on a equilateral triangle by
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Lee [16]. More recently, such functions have been deeply studied by Conrad and Flajolet
[28], revealing their combinatorial nature and their link to the stochastic evolution of a Pólya
urn process (see [7] and [13] for further details).

The first paper dedicated to the general case of exponent p is due to Grammel
[10]. Actually trigonometric and hyperbolic functions generated by the Fermat curve
have had visibility, in the entire mathematical community, thanks to the contributions of
[2, 23, 25, 26, 30, 31].

Dixonhimself observed that the variable of functions “cm”and“sm”whenα = 0measures
twice the area swept by the ray from the origin to the moving point on the curve; that idea was
extended in [8] by the authors of this paper to the so called call “Keplerian Trigonometry”,
that is a way to parametrize every curve F of a general family by means of the solution
(cosF , sinF ) of a suitable differential problem.

In this paper,wefirst revisit inKeplerian terms the properties of the trigonometric functions
cosp and sinp , and of their analogous coshp and sinhp , arising from the curve x p − y p = 1.

These preparatory lines will lead us to the main result of our article, which concerns the
extension of the Wallis formula to generalized trigonometric functions, which in turn will
allow us to obtain, probably by what is the most natural route, the formulas for representing
trigonometric sine and cosine in terms of infinite products.

The similarities between the generalized trigonometric functions and the usual sine and
cosine functions led us to retrace successfully the steps leading to the determination of the
Wallis product. We feel it is important to point out that, starting with the integrals defining
the inverses of generalized trigonometric functions, the fundamental tool that allowed us to
carry out the integrations is due to the geometric relation between the integral of a function
and that of its inverse.

In order to regain the expansions of the trigonometric sine and cosine in terms of infinite
products, we point out that the properties of generalized hyperbolic functions also come into
play.

Before starting our discussion, it is important to note that many authors have proposed
generalizations of trigonometric functions close to those examined by us, but not coincident
with them. We limit here to refer at the monograph [15], while for further indications we
refer at the bibliography of [8]. Although we have highlighted this aspect in the introduction
of our article [8] for the sake of completeness, we briefly explain what these non-negligible
differences consist of. The generalized sine function introduced in [15], say sinp(x), being
p ≥ 1, is the inverse of the integral

Jp(u) :=
∫ u

0
(1 − t p)−1/pdt .

The cosine cosp is, then, defined as cosp := sin′
p . In such a way, the identity | sinp |p +

| cosp |p = 1 holds true. To appreciate the difference between this theory and ours, it is
sufficient to observe that the sine function considered by us is based on the inversion of
a different integral, see equation (6) below. Consequently, the sine and cosine functions
obtained in [15] allow to parameterize the curve |x |p + |y|p = 1 while our treatment leads
to the parametrization of x p + y p = 1.

2 Generalized Trigonometric and Hyperbolic Functions

In this section, first we briefly recall concepts and results related to “Keplerian facts”, as
expounded in [8]; then, we define p-generalized trigonometric (hyperbolic) functions as the
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components of the unique Keplerian map that parameterizes the Fermat curve Fp (F ∗
p ,

respectively). The main properties of such functions are then shown. Lastly, equivalents of
π are defined and computed.

2.1 Wedge Operator

The wedge operator � acts on a given smooth planar map m(t) := (x(t), y(t)) to produce
the signed area of the oriented parallelogram of sidesm(t), m′(t), that is,

�m(t) := x(t)y′(t) − x ′(t)y(t).

If a map m(κ), whose domain contains 0, satisfies the axioms{
m(0) = (1, 0),
�m = 1,

then, its variable κ measures twice the signed area swept out by the the ray from the origin to
m(t) when moving from Ux := (1, 0) to P := (x(κ), y(κ)); this fact suggests to us to call
such a map Keplerian (or k-map for short) (Fig. 1).

The image C of any smooth planar map f : I → R
2, satisfying conditions{

�f(t) �= 0 for all t ∈ I ,
f(t0) = Ux for t0 ∈ I

is parametrized by the Keplerian map m(κ) := f(t(κ)), where t(κ) is the inverse of the
function

κ(t) :=
∫ t

t0
�f du.

Fig. 1 Keplerian parametrization of Fp (here, p = 3)
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The implicit curve C := {(x, y) ∈ R
2 | f (x, y) = 0}, where the function f satisfies the

conditions {
f (1, 0) = 0,
x fx + y fy �= 0,

is parametrized by the Keplerian map solution of the problem

⎧⎪⎪⎨
⎪⎪⎩
x ′ = − fy

x fx + y fy
, x(0) = 1,

y′ = fx
x fx + y fy

, y(0) = 0.
(1)

2.2 Useful Identities

The case that interests our discussion concerns the p-Fermat curve Fp := {x p + y p = 1},
being p a natural number such that p ≥ 2 for which, being f (x, y) = x p + y p − 1, we have
that the differential system (1) becomes:

{
x ′ = −y p−1, x(0) = 1,
y′ = x p−1, y(0) = 0.

(2)

Once solved (2)Fp is the image of the keplerain map tp(κ) = (
x(κ), y(κ)

)
, where we used

the letter t to emphasize that the one found generates the “trigonometric system” associated
toFp . It is therefore consistent—as done in [8, 10, 25, 28]—to call the components of tp as
the p-cosine and p-sine functions cosp κ := x(κ), sinp κ := y(κ), with inverses arcosp(x),
arsin(y), also setting

tanp κ := sinp κ

cosp κ
, cscp κ := − 1

cos′p κ
, secp κ := 1

sin′
p κ

. (3)

From identities (2) and (3), the following ones are derived1:

sin′
p 0 = 1, sin′′

p 0 = sinp 0 = 0,

tan′
p 0 = 1, tan′′

p 0 = tanp 0 = 0,

tanp κ = sinp κ

cosp κ
= sin′′

p κ

cos′′p κ
, tanp κ =

∫ κ

0

1

cos2p u
du, (4)

tan′
p κ = 1

cos2p κ
, lim

κ→0

sinp κ

κ
= 1.

In the following, in the case p = 2 of the usual trigonometric functions we will continue
to write sin, cos etc. without using the subscript 2. From identities (2) we easily realize,
by induction, that the nth derivatives of functions cosp and sinp are elements of the ring
Z[cosp,sinp]. More precisely, Di cosp and Di sinp are polynomials in the variables cosp and
sinp of degree i(p − 2) + 1, with integer coefficients. Still by induction, we derive the
following relevant result about Maclaurin expansions of cosp and sinp .

1 Actually, such identities are shared by all Keplerian maps.
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Theorem 2.1 For every natural p ≥ 2, there exist sequences of integers Cp := (pci )i∈N and
Sp := (psi )i∈N such that

cosp κ =
∞∑
i=0

pci
κ i p

(i p)! , sinp κ =
∞∑
i=0

psi
κ i p+1

(i p + 1)! .

Proof First of all, we note by recursion that the hth derivative of a monomial cosap sin
b
p is a

polynomial in Z[cosp,sinp] of the form

Dh cosap sin
b
p =

h∑
i≥0

θh,i cos
ah−i(p−2)
p sinbh+i(p−2)

p .

Moreover, still for recurrence we get

bh + h ≡ b (mod p)

and if b < p
bh < p

which, in our cases, provides

Dh cosp(0) = 0 whenever bh �≡ 0 (mod p),

Dh sinp(0) = 0 whenever bh �≡ 1 (mod p),

from which the statement is proved. 
�

Remark 2.2 It is worth noting that for p = 3 and p = 4 the relevant sequencesCp and Sp are
known: they are listed in the famous repertoire [27] as entriesC3 = A104134, S3 = A104133,
C4 = A153300, S4 = A153301.

2.3 The Inverse Functions

Considering the identities cos′p = − sinp−1
p and sin′

p = cosp−1
p , we are able to to express

the inverse functions as follows:

arcosp(x) =
∫ x

1

1

− sinp−1
p

du =
∫ 1

x
(1 − u p)

1−p
p du, (5)

arsinp(y) =
∫ y

0

1

cosp−1
p

du =
∫ y

0
(1 − u p)

1−p
p du. (6)

This enables us to state the following:

Theorem 2.3 For every p ∈ N, p ≥ 2 the inverse of the function sinp has Maclaurin
expansion

arsinp(y) = y +
∞∑
i=1

∏i
j=1( j p − 1)∏i

j=1 j p

yip+1

i p + 1
.

Proof Thesis follows by a straightforward, but tedious, induction argument from (6). 
�
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2.4 pth Hyperbolic Functions

The solution hp = (x, y) of the problem
{
x ′ = y p−1, x(0) = 1,
y′ = x p−1, y(0) = 0,

is the Keplerian parametrization of the p-Fermat* curve F ∗
p := {x p − y p = 1, x ≥ y}; the

components of hp are called the hyperbolic p-cosine and p-sine functions

coshp κ := x(κ), sinhp κ := y(κ),

with inverse functions arcoshp(x), arsinh(y), and even in this case we set

tanhp κ := sinhp κ

coshp κ
, cschpκ := − 1

cosh′
p κ

, sechpκ := 1

sinh′
p κ

.

Identities similar to (4), (5), and (6) hold for hyperbolic functions.

2.5 �p and�∗
p

Having generalised hyperbolic and trigonometric functions, it remains now to define the
analogues of π :

– for oddvalues of p,πp will denote the area of the regionboundedbyFp and its asymptote;
π∗
p is defined in a similar way, being πp = π∗

p;
– for even values of p,πp denotes the area of the region bounded byFp, whileπ∗

p measures
the area of the region bounded byF ∗

p and their asymptotes; note thatF ∗
2 is unbounded.

In order to compute the values of these new π ′s, we will simply evaluate two additional
parameters:

– the area of the region bounded by Fp and positive semi-axes, denoted by λp , and
– the area of the region bounded by the curveF ∗

p , the positive semi-axis and its asymptote,
denoted by λ∗

p (Figs. 2 and 3).

Fig. 2 F3 andF4
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Fig. 3 F ∗
3 andF ∗

4

From the symmetries of the curves Fp and F ∗
p , we get the following identities:

– for every even p

πp = 4λp, (7)

π∗
p = 2λ∗

p, (8)

– for every odd p
πp = π∗

p = λp + 2λ∗
p. (9)

Before computing the values of πp and π∗
p , we point out that, following Knut [12, (2.12)]

therein, in these pages the rising factorial is used in place of the so-called Pochhammer
symbol, that is

xn :=
n−1∏
i=0

(x + i) = Γ (x + n)

Γ (x)
.

We will also use the falling factorial

xn :=
n−1∏
i=0

(x − i) = Γ (x + 1)

Γ (x − n + 1)
.

Lemma 2.4 For every natural p, we have:

λp = 1

2p
B

(
1
p , 1

p

)
= 1

2p

Γ 2
(
1
p

)

Γ
(
2
p

) . (10)

Proof The computation is straightforward: if follows from the basic properties of Euler
Gamma and Beta functions. 
�
Remark 2.5 Identity (10) provides also a geometric meaning of the Gamma function that
extends the identity Γ 2

( 1
2

) = π = 4λ2 to

Γ 2
(
1
p

)
= Γ

(
2
p

)
2p λp.
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Remark 2.6 We notice that λ4 = √
2L/4, where L is the lemniscate constant, see [17], that

is:

L = Γ 2
( 1
4

)
2
√
2π

= √
2 K

(
1√
2

)
.

Remark 2.7 A result similar to Lemma 2.4 recently appeared in [22], where the L p—measure
of the disk |x |p + |y|p = 1 equals 4λp .

Lemma 2.8 For every p ≥ 3 we have:

λ∗
p = 1

2p
B

(
1
p , 1 − 2

p

)
= 1

2p

Γ
(
1
p

)
Γ

(
1 − 2

p

)

Γ
(
1 − 1

p

) . (11)

Proof In this case, we propose a detailed proof that is based on integration by series, using
properties of Gauss hypergeometric functions. We have:

λ∗
p = 1

2
+

∫ +∞

1

(
x − (x p − 1)

1
p

)
dx (12a)

= 1

2
+

∫ 1

0

1 − (1 − t p)
1
p

t3
dt

= 1

2
+

∫ 1

0
t−3

⎛
⎜⎝1 −

+∞∑
n=0

(
− 1

p

)n
n! tnp

⎞
⎟⎠ dt (12b)

= 1

2
−

∫ 1

0

+∞∑
n=1

(
− 1

p

)n
n! tnp−3 dt (12c)

= −
+∞∑
n=0

(
− 1

p

)n
(np − 2) n! = 1

2

+∞∑
n=0

− 2
p

(
− 1

p

)n
(
n − 2

p

) 1

n! (12d)

= 1

2

+∞∑
n=0

(
− 2

p

)n (
− 1

p

)n
(
1 − 2

p

)n
1

n! = 1

2
2F1

(
− 2

p ,− 1
p

1 − 2
p

∣∣∣∣∣ 1
)

(12e)

= 1

2

Γ
(
1 − 2

p

)
Γ

(
1 + 1

p

)

Γ
(
1 − 1

p

) = 1

2p

Γ
(
1 − 2

p

)
Γ

(
1
p

)

Γ
(
1 − 1

p

) (12f)

= 1

2p
B

(
1
p , 1 − 2

p

)
.

We give, for the reader’s convenience, a brief explanation of the steps: in (12a) we change
variable setting t := x−1, in (12b) we use the binomial series expansion, in (12c) we elim-
inated the first term of the series, in (12d) we integrate term by term, in (12e) we use the
identity (

− 2

p

)n

= − 2

np − 2

(
1 − 2

p

)n

and finally (12f) follows from a well-known Gauss result on the hypergeometric function,
see [6, pp. 352–353]. Then the proof of (11) is completed. 
�
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Remark 2.9 Unlike Lemma 2.4 this result has no analogy with what is described in [22]
because since we have considered the Fermat curve x p + y p = 1, the part of the plane
described by λ∗

p is unbounded when p is odd, and this cannot happen in the case considered
by [22] which is related to the curve |x |p + |y|p = 1. Nevertheless, it allows us to widen the
geometric interpretation of the Gamma function.

Corollary 2.10 The following identity holds:

λ∗
p

λp
= 1

2
sec π

p .

Proof Comparing identities (10) and (11) we have:

λ∗
p

λp
=

Γ
(
1
p

)
Γ

(
1 − 2

p

)

Γ
(
1 − 1

p

) Γ
(
2
p

)

Γ 2
(
1
p

) =
Γ

(
1 − 2

p

)

Γ
(
1 − 1

p

) Γ
(
2
p

)

Γ
(
1
p

) .

Now, the Euler’s reflection formula Γ (z)Γ (1 − z) = π
sin(π z) gives

λ∗
p

λp
= sin π

p

sin 2π
p

= 1

2
sec π

p .


�

By identities (7), (8), and (9), we can conclude:

Theorem 2.11 (The value of π and π∗) For every even p ≥ 2, we have

πp = 4λp = 2

p

Γ 2
(
1
p

)

Γ
(
2
p

) ,

and for every even p ≥ 2

π∗
p = λp sec

π

p
= 1

2p

Γ 2
(
1
p

)

Γ
(
2
p

) sec
π

p
.

For every odd p ≥ 3

πp = π∗
p = λp

(
1 + sec

π

p

)
= 1

2p

Γ 2
(
1
p

)

Γ
(
2
p

)
(
1 + sec

π

p

)
.

Proof The proof is straightforward, indeed it follows by direct integration and gamma func-
tion well-known properties. 
�

Remark 2.12 It should be noted that in case p = 2, the relation for π∗
p returns, correctly,

+∞.
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3 TheWallis Product for � p

In this section, we treat for a generic exponent p, the relationships between Wallis integrals
and generalized trigonometric functions. The Wallis product, which dates back to 16552,
comes from p = 2:

π

2
=

∞∏
i=1

(
2i

2i − 1
· 2i

2i + 1

)
. (13)

Wallis’s original demonstration starts with the observation that π
2 , which is our 2λ2, is the

area intercepted byF2 and the first quadrant3, and then, the proof is based on the calculation
of the integrals of integer powers of the trigonometric functions sine and cosine.

The original scheme can be successfully replicated in the case of generalized trigonometric
functions. First, using the Euler Beta function, we will find formulas for integrating powers
of binomials of the type cosmp sinnp in the interval [0, 2λp].

This fact will allow us to express the Wallis integrals in terms of infinite products, being
intimately related to a classical property of the Gamma function, which below and for the
benefit of the reader, we will report in Rainville’s formulation4.

Theorem 3.1 If
∑s

i=1 a1 = ∑s
i=1 bi and none of the ai , bi is a negative integer, then

∞∏
n=1

(n + a1)(n + a2) . . . (n + as)

(n + b1)(n + b2) . . . (n + bs)
= Γ (1 + b1)Γ (1 + b2) . . . Γ (1 + bs)

Γ (1 + a1)Γ (1 + a2) . . . Γ (1 + as)
.

3.1 Wallis p-Integrals

The Wallis integral, rewritten in the notation of this paper, reads as

w
(m)
2 :=

∫ π/2

0
cosm κ dκ =

∫ π/2

0
sinm κ dκ = 1

2

Γ
( 1
2

)
Γ

(m+1
2

)
Γ

(m+2
2

) .

The upper boundary π/2 of the integral verifies identities sin(π/2) = 1 and cos(π/2) = 0,
and it should be read as twice the area of the plane region intercepted by the first quadrant
and x2 + y2 ≤ 1.

Therefore, to generalize this notion to the p > 2 case, it is natural to define the Wallis
p-integrals by setting

w(m)
p :=

∫ 2λp

0
cosmp κdκ =

∫ 2λp

0
sinmp κdκ.

Observe that we have, as in the case of usual trigonometry, i.e., p = 2, that for every m ∈ N,
w

(m+1)
p < w

(m)
p . As in case p = 2, the integralsw

(m)
p can be expressed in terms of the gamma

function, in fact, we can state the following theorem.

Theorem 3.2 For every p ≥ 2 and m ≥ 0, we have

w(m)
p = 1

p

Γ
(
1
p

)
Γ

(
1+m
p

)

Γ
(
2+m
p

) . (14)

2 For a quick, but accurate historical overview see [9].
3 See [11, pp. 65–66].
4 See [24, Theorem 5 of Section 14]
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Moreover,

lim
m→∞ w(m)

p = 0, (15a)

lim
m→∞

w
(m+1)
p

w
(m)
p

= 1. (15b)

Proof Given that the functions cosp and sinp map bijectively the interval [0, 2λ] to [0, 1],
we are driven to calculate such integrals through the inverse function integration rule,

∫ f (1)

f (0)
f inv(x)dx = sgn( f ′)

∫ 1

0
t f ′(t)dt,

and its generalization to the powers of the inverse function:
∫ f (1)

f (0)

(
f inv(x)

)m
dx = sgn( f ′)

∫ 1

0
tm f ′(t)dt .

Recalling that the inverse of cosp is

arcosp(x) =
∫ 1

x

dξ

(1 − ξ p)
1− 1

p

,

we infer that

w(m)
p =

∫ 2λp

0
cosmp udu = −

∫ 1

0
xmarcos′p(x) dx

=
∫ 1

0
xm(1 − x p)

1
p −1 dx = 1

p

Γ
(
1
p

)
Γ

(
1+m
p

)

Γ
(
2+m
p

) .

showing (14). Limits (15a) and (15b) follow, recalling Stirling formula

ex
√
x√

2π xx
Γ (x) = 1 + 1

12 x
+ O

(
1

x2

)
as x → +∞.

We have

w(m)
p = m−1/p

(
p

1
p −1

Γ

(
1

p

)
+ O

(
1

m

))

proving (15a), and
w

(m+1)
p

w
(m)
p

= 1 − 1

m p

proving (15b). As it is easy to guess, computer algebra has allowed us to manage the calcu-
lations just presented with great speed and precision. 
�
Remark 3.3 We would like to point out that the technique we used provides the primitive of
sinmp on the first quadrant; indeed, fixing 0 < x ≤ 1, we get

∫ arsinp(x)

0
sinmp (s) ds =

∫ x

0

um

(1 − u p)
1− 1

p

du =
∫ 1

0

xm+1vn

(1 − x pv p)
1− 1

p

dv

= xm+1

m + 1
2F1

(
m+1
p ,

p−1
p

m+p+1
p

∣∣∣∣∣ x p

)
.
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Remark 3.4 In analogy to the case of usual trigonometric functions, we can put t = cospp(κ)

in the definition of Beta function B(x, y) = ∫ 1
0 t x−1(1 − t)y−1dt , x, y > 0, thus obtaining

B(x, y) = p
∫ 2λp

0
cospx−1

p (κ) sinpy−1
p (κ) dκ

from which we get

∫ 2λp

0
cosmp (κ) sinnp(κ) dκ = 1

p
B

(
m + 1

p
,
n + 1

p

)
.

This formula reduces to (14) for n = 0. Therefore, it is a generalisation, but equation (14) is
of some interest because of the direct method by which we obtained it.

From identity (14) we easily evaluate the following special cases:

w(0)
p = 2λp, w

(p−1)
p = 1, w

(p)
p = λp, (16)

and thanks the Euler’s reflection formula

w
(p−2)
p = π

p
csc

π

p
, (17)

w
(p−3)
p = 2λ∗

p = λp sec
π

p
. (18)

Also (14) allows to write down the table of values of the Wallis p integrals, which we report
to order p = 5 and for powers from m = 0 to m = 4 (Table 1).

3.2 Themod p Lowering

To better understand the nature of the generalization we are going to present, let us start with
the classic formulation in terms of semifactorials of Wallis integrals w

(m)
2

w
(2m)
2 =

∫ π
2

0
cos2m udu = 2m − 1

2m

2m − 3

2m − 2
· · · 1

2
· π

2
= (2m − 1)!!

(2m)!! · π

2

w
(2m+1)
2 =

∫ π
2

0
cos2m+1 udu = 2m

2m + 1

2m − 2

2m − 1
· · · 2

3
· 1 = (2m)!!

(2m + 1)!! .

Table 1 Table of values of the Wallis p integrals, for 1 ≤ p ≤ 5 and 0 ≤ m ≤ 4

m = 0 m = 1 m = 2 m = 3 m = 4

p = 1 1

p = 2 π
2 1

p = 3 Γ 3(1/3)
2
√
3π

2π
3
√
3

1

p = 4 Γ 2(1/4)
4
√

π

√
πΓ (1/4)
4Γ (3/4)

π

2
√
2

1

p = 5 2
√

πΓ (1/5)
21/55Γ (7/10)

21/5Γ (1/10)Γ (2/5)
10

√
π

Γ (1/5)Γ (3/10)
22/55

√
π

√
2 + 2√

5
π
5 1
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Ascending factorials are also linked to double factorials, see [3, p. 20] so that

w
(2m)
2 = π

2

( 1
2

)m
(1)m

= w
(0)
2

m−1∏
i=0

2i + 1

2i + 2
,

w
(2m+1)
2 = (1)m( 3

2

)m = w
(1)
2

m−1∏
i=0

2i + 2

2i + 1
.

In a very similar way, the Wallis integrals w
(m)
p fall into p families, according to the

residual classes mod p.

Theorem 3.5 (The mod p lowering) For every m, k ∈ N, m > 1, the Wallis integral w(mp+k)
p

can be lowered to wp(k) as follows

w
(mp+k)
p = w(k)

p

(
1+k
p

)m
(
2+k
p

)m = w(k)
p

m−1∏
i=0

i p + 1 + k

ip + 2 + k
. (19)

Proof From identity (14) we get, for every k ∈ N,

w
(p+k)
p = 1

p

Γ
(
1
p

)
Γ

(
1+k+p

p

)

Γ
(
2+k+p

p

) = 1

p

Γ
(
1
p

)
Γ

(
1+k
p

)
1+k
p

Γ
(
2+k
p

)
2+k
p

= w(k)
p

k + 1

k + 2
,

and the identity (19) follows by induction. 
�

3.3 TheWallis p-Product

From identities (19) and (16), we get the identities

w
(mp+p)
p = λp

m∏
i=1

i p + 1

i p + 2
, w

(mp+p−1)
p =

m∏
i=1

i p

ip + 1
,

which yield
w

(mp+p)
p

w
(mp+p−1)
p

= λp

m∏
i=1

i p + 1

i p + 2

i p + 1

i p
,

and, by (15b)

1 = lim
m→∞

w
(mp+p)
p

w
(mp+p−1)
p

= λp

∞∏
i=1

i p + 1

i p + 2

i p + 1

i p
,

from which we obtain the expression of λp as an infinite product.

Theorem 3.6 (The Wallis p-product) For every integer p ≥ 2, the area λp of the region
bounded by F positive semi axes, can be expressed as an infinite product as follows

λp = w
(p)
p =

∞∏
i=1

i p

ip + 1

i p + 2

i p + 1
. (20)
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Proof The previous discussionmotivates the structure of the formula (20), it remains to verify
its effective convergence, which follows, see for example [19, Chapter 7] or [18, Chapter 2],
in fact the infinite product

∞∏
i=1

(1 + ai )

converges if and only if the series
∞∑
i=1

ai

converges. In the case of (20) we have

i p

ip + 1

i p + 2

i p + 1
= 1 − 1

(i p + 1)2
,

hence the convergence of (20) follows front the convergence of the harmonic series. 
�

Remark 3.7 Equation (20) yields for p = 2 the usual Wallis product for π , in fact taking
p = 2 we obtain

λ2 = π

4
=

∞∏
i=1

2i

2i + 1

2i + 2

2i + 1
. (21)

Then, multiplying by 2 (21) we get, after an index rescaling which allows to incorporate the
factor 2 into the infinite product:

2λ2 = π

2
=

∞∏
i=0

(2i + 2)2

(2i + 1)(2i + 3)
. (22)

Now is it evident how and why the classical formulation of Wallis product (13) fits with our
findings (21) and (22). Finally, we observe that the original formulation of theWallis product
for π

2 emerges by multiplying both sides of (20) by 2.
The convergence rate of infinite products (20) is the same as in the classical case of p = 2,

for example, cases p = 3, 4, 5 need 100 factors to obtain an accuracy of three decimal
figures, in accordance with what has been illustrated, of course for the case of p = 2, in
the introduction of [20]. For the classic case of the Wallis product, an interesting piece of
research is devoted to methods of speeding up the convergence of the infinite product. By the
nature of our result, we are confident that the methods presented in [14, 20, 21] and many
others will adapt to this new situation.

3.4 Other p-Products

The procedure we used to express λp as an infinite product inQ allows us to find an analogous
result for every other mth Wallis integral.

Theorem 3.8 For every p ≥ 2, the mth Wallis integral equals

w(m)
p = m + 2

m + 1

∞∏
i=1

i p

ip + 1

i p + m + 2

i p + m + 1
. (23)
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Proof By induction. For m = 0 the statement is true (see (16) and (20)). Suppose now the
identity holds for m ≥ 0, then

1 = lim
h→∞

w
(hp+m+1)
p

w
(hp+m)
p

= w
(m+1)
p

w
(m)
p

∞∏
i=0

i p + 1 + m + 1

i p + 2 + m + 1

i p + 2 + m

ip + 1 + m
,

from which

w(m+1)
p = w(m)

p

∞∏
i=0

i p+m+3
i p+m+2

i p+m+1
i p+m+2 = m+2

m+1

∞∏
i=1

i p
ip+1

i p+m+2
i p+m+1

∞∏
i=0

i p+m+3
i p+m+2

i p+m+1
i p+m+2

= m+2
m+1

m+3
m+2

m+1
m+2

∞∏
i=1

i p
ip+1

i p+m+2
i p+m+1

∞∏
i=1

i p+m+3
i p+m+2

i p+m+1
i p+m+2 = m+3

m+2

∞∏
i=1

i p
ip+1

i p+m+3
i p+m+2 .


�
Remark 3.9 Comparing identities (18) and (10), we re-discover easily the well-known for-
mula

cos π
p =

∞∏
i=1

4−i2 p2

1−i2 p2
. (24)

Analogously, we get the representation of the sine as an infinite product.

Remark 3.10

sin π
p =

∞∏
i=0

4(i p+1)(i p+p−1)
(2i p+p)2

. (25)

Proof We start from identities (17) observing

w
(p−2)
p = π

p

1

sin π
p

= 4w(2)
2

p

1

sin π
p

then use (21) and (23) to arrive at

sin
π

p
= 4

p

w
(2)
2

wp(p − 2)
= 4

p

∞∏
i=1

2i

2i + 1

2i + 2

2i + 1

p − 1

p

(1 + i p)(p(1 + i))(p(1 + i) − 1)

i p(p + pi)
.

Eventually restarting the index from i = 0 we obtain (25). 
�
Of course (24) and (25) are consistent with the classic infinite product representations of

the sine and the cosine, indeed taking x = π
p we find

cos x =
∞∏
i=1

π2i2 − 4x2

π2i2 − x2
, sin x =

∞∏
i=1

4(π i − x)(π(i − 1) + x)

(π − 2π i)2
.
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