Supporting Information

Identification of c[D-Trp-Phe- β -Ala- β -Ala], the First κ -Opioid Receptor-Specific Negative Allosteric Modulator

Junwei Zhao,^a Monica Baiula,^b Elisabetta Cuna,^b Marco Francescato,^a Joanna Matalińska,^c Piotr F.J. Lipiński,^{c,^{//}} Andrea Bedini,^{b,^{//},*} Luca Gentilucci,^{a,d,^{//},*}

^a Dept. of Chemistry "G. Ciamician", University of Bologna, Campus Navile - Ue4, via Gobetti 83, 40129 Bologna, Italy

^b Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.

^c Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.

^d Health Sciences & Technologies (HST) CIRI, University of Bologna, 40064, Ozzano Emilia, Italy.

Contents

Table S1. RP HPLC-ESI MS analyses of the linear precursors and of the CPs					
Preparation of 10		p.S3			
Figure S1. ERK1/2 phosphorylation		p.S4			
Figures S2-S11. ¹ H, ¹³ C NMR		p.S5			
Figure S12. RP HPLC analyses		p.S15			

Linear peptide	Purity (%) ^a	ESI MS [M+1] found/calcd. ^b	СР	CP sequence	Cyclization Yield (%) ^c	CP ES-MS [M+1] found/calcd. ^b	CP Purity (%) ^{c,d}
H-Gly-D-Trp-Phe-GlyOH	80	466.2/466.2090	5	c[D-Trp-Phe-Gly-Gly]	68	448.2/448.1985	94
H-Ala-D-Trp-Phe-GlyOH	85	480.2/480.2247	6	c[D-Trp-Phe-Gly-Ala]	69	462.2/462.2141	96
H-D-Ala-D-Trp-Phe-GlyOH	78	480.2/480.2247	7	c[D-Trp-Phe-Gly-D-Ala]	63	462.4/462.2141	96
H-Gly-D-Trp-Phe-β-AlaOH	81	480.3/480.2247	8	c[D-Trp-Phe-β-Ala-Gly]	80	462.2/462.2141	95
H-D-Trp-Phe-AhaOH ^e	83	465.3/465.2502	9	c[D-Trp-Phe-Aha] ^e	74	447.4/447.2396	95
See Scheme 1	77	472.2/473.2553	10	c[D-Trp-Phe-Ah-3-ea] ^f	75	445.4/445,5430	96
H - β -Ala-D-Trp-Phe- β -AlaOH	83	494.2/494.2403	11	c[D-Trp-Phe-β-Ala-β-Ala]	78	476.2/476.2298	96
H Gly-D-Trp-Phe-GABAOH	81	494.3/494.2403	12	c[D-Trp-Phe-GABA-Gly]	81	476.4/476.2298	98
H-GABA-D-Trp-Phe-GlyOH	79	494.2/494.2403	13	c[D-Trp-Phe-Gly-GABA]	77	476.4/476.2298	96

Table S1. RP HPLC and ESI MS analyses of the linear precursors and of the CPs 5-13, and respective cyclization yields.

^a Determined by analytical RP-HPLC on a C18 column Phenomenex Gemini 3μ C18 110 Å 100 3 3.0 mm, mobile phase from 9:1 H₂O/CH₃CN/0.1% HCOOH to 2:8 H₂O/CH₃CN/0.1% HCOOH in 20 min at a flow rate of 1.0 mL min⁻¹. ^b MS single quadrupole HP 1100MSD detector. ^c Determined after semi-preparative RP HPLC on a C18 RP column ZORBAX Eclipse XDBC18 PrepHT cartridge 21.2 3x150 mm 7μ, mobile phase from 8:2 H₂O/CH₃CN to 100% CH₃CN, in 10 min, flow rate 12 mL min⁻¹. ^d Determined by analytical RP-HPLC, same stationary phase as for ^a, mobile phase from 9:1 H₂O/CH₃CN to 2:8 H₂O/CH₃CN in 20 min, flow rate 1.0 mL min⁻¹. ^e Aha, 6- aminohexanoic acid. ^f Ah-4-ea, 6-aminohex-4-enoic acid.

c[D-Trp-Phe-Ah-3-ea] (**10**). Boc-Phe-OH (0.29 g, 1.1 mmol) was dissolved in DCM/DMF (3 mL/1 mL), then HOBt (0.15 g, 1.1 mmol) was added and the mixture was stirred for 10 min, followed by EDC hydrochloride (0.21 g, 1.1 mmol), allylamine (63 mg, 1.1 mmol), triethylamine (0.32 mL, 2.2 mmol). The mixture was stirred overnight at RT. Afterwards, the reaction was concentrated at reduced pressure and the residue was suspended in EtOAc (30 mL). The mixture was washed with 1M HCl (6 mL), and with saturated Na₂CO₃ (6 mL). The organic layer was collected and dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure to obtain crude Boc-Phe-allylamine (0.24g, 0.79 mmol, 72%) as an oily residue.

To remove Boc group, the crude Boc-Phe-allylamine (0.24 g, 0.79 mmol) was dissolved in TFA/DCM (1 mL/3 mL), and the mixture was stirred for 2 hours at RT. After removing the volatiles at reduced pressure, the residue was triturated with ice-cold Et_2O to give H-Phe-allylamine TFA salt (0.23 g, 0.72 mmol, 91 %) as a white powder, which was used directly for next coupling reaction without further purifications.

Boc-D-Trp-OH (0.26g, 0.86 mmol) and HOBt (0.11 g, 0.86 mmol) were dissolved in DCM/DMF (3 mL/1 mL), and the mixture was stirred for 10 min, followed by EDC hydrochloride (0.16 g, 0.86 mmol), H-Pheallylamine·TFA (0.23 g, 0.72 mmol), triethylamine (0.25 mL, 1.7 mmol) in sequence. The mixture was stirred overnight at RT, and work-up and Boc deprotection procedures were performed as described above, giving crude H-Trp-Phe-allylamine·TFA (0.34g, 0.68 mmol, 94 %) as a white powder.

Subsequently, 4-pentenoic acid (0.10 g, 1.0 mmol) and HOBt (0.14 g, 1.0 mmol) were dissolved in DCM/DMF (3 mL/1 mL), and the mixture was stirred for 10 min, followed by EDC hydrochloride (0.19 g, 1.0 mmol), H-D-Trp-Phe-allylamine (0.34 g, 0.68 mmol), triethylamine (0.29 mL, 2.1 mmol). The mixture was stirred overnight at RT, and work-up procedure was repeated as described above, giving crude 4-pentenoic-D-Trp-Phe-allylamine (0.28 g, 0.60 mmol, 88 %) as a waxy solid.

RCM reaction. Grubb's 1 catalyst (9 mg, 8.5% mol/mol) was dissolved in anhydrous DCM (20 mL) and the mixture was stirred for 10 min under nitrogen. Then, a solution of 4-pentenoic-D-Trp-Phe-allylamine (0.060 g, 0.13 mmol) in DCM (3 mL) was added, and the mixture was stirred for 30 min at rt, then it was refluxed for 36h. The completion of the reaction was monitored by TLC. After filtration through celite, the filtrate was evaporated at reduced pressure, and the residue was purified by semipreparative RP HPLC (General methods), giving **10** (0.044 g, 0.1 mmol, 77%, 96% pure as determined by analytical RP HPLC, General methods).

S3

Figure S1. KOR-dependent activation of ERK1/2 phosphorylation determined by U50,488 (1 pM to 100 μ M), alone or co-administered with 10 μ M **11**, in (**A**) HEK-293/hKOR cells, and in (**B**) U87-MG cells. Data is displayed as mean ± SD of 6 independent experiments.

Figure S2. ¹H, ¹³C NMR of c[D-Trp-Phe-Gly-Gly] (5).

Figure S3. ¹H, ¹³C NMR of c[D-Trp-Phe-Gly-Ala] (6).

3

Figure S5. ¹H, ¹³C NMR of c[D-Trp-Phe-Gly- β Ala] (**3**).

Figure S6. ¹H, ¹³CNMR of c[D-Trp-Phe- β -Ala-Gly] (8).

Figure S7. ¹H, ¹³CNMR of c[D-Trp-Phe-Aha] (9).

Figure S8. ¹H, ¹³CNMR of c[D-Trp-Phe-Ah-4-ea] (10).

Figure S9. ¹H, ¹³CNMR of c[D-Trp-Phe- β -Ala- β -Ala] (**11**).

Figure S10. ¹H, ¹³C NMR of c[D-Trp-Phe-GABA-Gly] (12).

Figure S11. ¹H, ¹³C NMR of c[D-Trp-Phe-Gly-GABA] (**13**).

Figure S12. RP HPLC analyses