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Abstract
Gaussian graphical models are nowadays commonly applied to the comparison of groups sharing the same variables, by jointly
learning their independence structures.We consider the case where there are exactly two dependent groups and the association
structure is represented by a family of coloured Gaussian graphical models suited to deal with paired data problems. To learn
the two dependent graphs, together with their across-graph association structure, we implement a fused graphical lasso penalty.
We carry out a comprehensive analysis of this approach, with special attention to the role played by some relevant submodel
classes. In this way, we provide a broad set of tools for the application of Gaussian graphical models to paired data problems.
These include results useful for the specification of penalty values in order to obtain a path of lasso solutions and an ADMM
algorithm that solves the fused graphical lasso optimization problem. Finally, we carry out a simulation study to compare
our method with the traditional graphical lasso, and present an application of our method to cancer genomics where it is
of interest to compare cancer cells with a control sample from histologically normal tissues adjacent to the tumor. All the
methods described in this article are implemented in the R package pdglasso available at https://github.com/savranciati/
pdglasso.

Keywords ADMM algorithm · Coloured Gaussian graphical model · Conditional independence · Fused lasso penalty ·
Graphical lasso · Symmetry

1 Introduction

Graphical models are powerful tools for expressing the rela-
tionships between variables. In Gaussian graphical models
(GGMs) the dependency structure is obtained by associating
an undirected graph to the concentration matrix, that is the
inverse of the covariance matrix. The graph has one vertex
for every variable and every missing edge implies that the
corresponding entry of the concentration matrix is equal to
zero; see Lauritzen (1996).

In recent years, there has been a great deal of interest
in the joint learning of multiple networks, where the obser-
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vations come from two or more groups sharing the same
variables. For instance, Danaher et al. (2014) considered the
case of gene expression measurements collected from the
cancer tissue of a sample of patients and from the normal
tissue of a control sample. Hence, the association structure
of each group is represented by a network and methods for
the joint learning have been developed to deal with the fact
that networks are expected to share similar patterns while
retaining individual features. In this framework, the litera-
ture has mostly focused on the case where the groups are
independent so that every network is a distinct unit, discon-
nected from the other networks; see Tsai et al. (2022) for a
review. Thus, specific methods that deal with the across net-
work association are required in the case where the groups
are dependent. Xie et al. (2016) considered the case of gene
expression data obtained from multiple tissues from the
same individual and modelled the cross-graph dependence
between groups by means of a latent vector representing sys-
temic variation manifesting simultaneously in all groups; see
also Zhang et al. (2022). Roverato and Nguyen (2022, 2024)
focused on paired data problems where there are exactly two
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dependent groups. Paired data are commonly originated from
experimental designs where each subject is measured twice
under two different conditions, or time points, as well as
in matched pairs designs. For instance, in cancer genomics
it is common practice to take control samples from histo-
logically normal tissues adjacent to the tumor (Aran et al.
2017). Roverato andNguyen (2022) approached the problem
by considering a family of coloured GGMs (Højsgaard and
Lauritzen 2008), named pdRCONmodels, in which similari-
ties between groups are represented by symmetrieswhich can
involve both the graph structure and the concentration values,
in the form of equality constraints. One of the appealing fea-
tures of this approach is that the resulting model has a graph
for each of the two groups with the cross-graph dependence
explicitly represented by the edges joining one groupwith the
other, which may themselves present symmetries; we refer
to Sect. 2 for details. In a related framework, Ranciati et al.
(2021) considered the task of learning brain networks from
fMRI data, and approached the problem by means of a fused
graphical lasso procedure, named the symmetric graphical
lasso, designed with the specific aim to identify symmetries
between the left and the right hemisphere.

In this paper, we introduce the graphical lasso for paired
data (pdglasso) that extends the symmetric graphical lasso
to deal with the wider family of pdRCON models, and then
provide a set of methods which are meant to establish an
extensive collection of tools for the immediate application
of GGMs to the analysis of paired data. We provide an alter-
nating directions method of multiplier (ADMM) algorithm
that solves the pdglasso optimization problem and, further-
more, the R package (R Core Team 2023) pdglasso that
implements the ADMM algorithm as well as a function for
the computation of maximum likelihood estimates, and other
utility functions to deal efficiently with the objects resulting
from the analysis. For details about the package we refer
to Section ‘Data availability’ of this paper. We analyse the
role played by relevant submodel classes characterized by
a fully symmetric structure. More specifically, full symme-
try can be a property of the overall structure, or it may be
confined to some specific components, such as the diagonal
entries of the concentration matrix, the inside-group struc-
ture or the across-group structure. We provide results on the
values of the penalty terms required to obtain either a diag-
onal, a block-diagonal or a fully symmetric solution, which
are useful in the specification of the grid of penalty values
required to obtain a path of pdglasso solutions.We then carry
out a simulation study that shows that our pdglasso method
has comparable performances to glasso when there are no
symmetries, and improves on the latter when symmetries are
present. Furthermore, we present an application to the anal-
ysis of gene expression data in cancer genomics.

The rest of this paper is organized as follows. Section2
provides the background on coloured GGMs and on graph-

ical models for paired data, as required for this paper. The
pdglasso problem is introduced in Sect. 3, whereas Sect. 4
deals with the practical application of the method, including
the maximum theoretical values of the penalty parameters.
Section5 is devoted to some relevant families of submodels.
The ADMM algorithm for the optimization of the penal-
ized likelihood can be found in Sect. 6. The simulation study
and the application to gene expression data are described in
Sect. 7 and 8, respectively. Finally, Sect. 9 contains a brief
discussion. Proofs are deferred to Appendix B, whereas the
remaining three appendices contain a comprehensive presen-
tation of fully symmetricmodels, some illustrative examples,
and some additional material concerning the application to
gene expression data, respectively.

2 Coloured Gaussian graphical models
for paired data

Let YV be a continuous random vector indexed by a finite set
V = {1, . . . , p}. We denote by � = {σi j }i, j∈V and �−1 =
� = {θi j }i, j∈V the covariance and the concentration matrix
of YV , respectively. Both � and � belong to the set S+

p of
(symmetric) p× p positive definite matrices and we assume,
without loss of generality, that YV has zero mean vector.
An undirected graph with vertex set V is a pair G = (V , E)

where E is an edge set that is a set of pairs of distinct vertices
and, with a slight abuse of notation, we will sometimes write
{i, j} ∈ G, in place of {i, j} ∈ E , to mean that the edge
{i, j} belongs to E . We say that the concentration matrix �

is adapted to a graph G = (V , E) if every missing edge of G
corresponds to a zero entry in�; formally, {i, j} /∈ E implies
θi j = 0 for every i, j ∈ V with i �= j . A Gaussian graphical
model (GGM) with graph G is the family of multivariate
normal distributions for YV whose concentration matrix is
adapted to G. These models are also known with the name of
covariance selection models or concentration graph models
(Lauritzen 1996).

In paired data problems, the set V is naturally partitioned
into a Left and a Right block, V = L ∪ R with |L| =
|R| = q = p/2 and every variable in YL has a corresponding
variable in YR . We set i ′ = i + q for every i ∈ L and,
without loss of generality, we index the variables so that Yi
corresponds to Yi ′ for every i ∈ L . In this way, it also holds
that L = {1, . . . , q} and R = {q + 1, . . . , p}. Accordingly,
the concentration matrix � can be naturally partitioned into
four blocks,

� =
(

�LL �LR

�RL �RR

)
. (1)

The subgraph of G induced by a subset A ⊆ V is denoted
by GA = (A, EA), where {i, j} ∈ EA if and only if both
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i, j ∈ A and {i, j} ∈ E . If� is adapted to G then it holds that
�LL and �RR are adapted to GL and GR , respectively. Thus,
GL and GR are the group specific graphs and the interest is for
similarities involving the independence structures of the two
groups, that we call structural symmetries. We distinguish
between two types of structural symmetries. When for a pair
i, j ∈ L , with i �= j the edges {i, j} and {i ′, j ′} are either
both present or both missing in GL and GR , respectively, we
say that there is an inside-block structural symmetry. On the
other hand,YL andYR are not expected to be independent, and
symmetries can also appear in the cross-group association
structure, thereby involving the edges connecting the vertices
in L with the vertices in R. Hence, we say that an across-
block structural symmetry is present if the edges {i, j ′} and
{i ′, j} are either both present or both missing in G.

In a GGM every entry of the concentration matrix can
be naturally associated with either a vertex or an edge of the
graph and, thus, structural symmetries in the graph imply that
the corresponding entries in the concentrationmatrix are both
either zero or non-zero. Hence, a stronger class of models
could be defined that specifies equality constraints between
such entries. Equality constraints encode stronger similarities
and result in more parsimonious models. From this view-
point, every structural symmetry due to a pair of missing
edges also corresponds to a parametric symmetry because if,
for example, both {i, j} /∈ GL and {i ′, j ′} /∈ GR , then also the
associated parameters have the same value, θi j = θi ′ j ′ = 0.
This idea can be extended to symmetric pairs of non-missing
edges, and we say that there is an inside-block parametric
symmetry if for a pair i, j ∈ L , with i �= j , it holds that
θi j = θi ′ j ′ . On the other hand, across-block parametric sym-
metries are also possible in the casewhere, for some i, j ∈ L ,
it holds that θi j ′ = θi ′ j , with i �= j . Finally, parametric sym-
metries can also be satisfied by the diagonal entries of � and
we say that there is a vertex parametric symmetry if for i ∈ L
it holds that θi i = θi ′i ′ . Appendix C gives some examples of
pdRCON models with a detailed description of the different
types of symmetries they may represent.

Gaussian graphical models with additional restrictions on
the parameter space were introduced in the seminal paper by
Højsgaard and Lauritzen (2008) with the name of coloured
GGMs. The family of coloured GGMs characterized by
equality Restrictions on CONcentration values are known
as RCON models, whereas the subfamily of RCON mod-
els comprising the equality constraints suited for paired data
problems, as described above, was introduced by Roverato
and Nguyen (2022) with the name of RCON models for
paired data (pdRCONmodels); see also Ranciati et al. (2021)
for an application of RCON models for paired data that only
involves inside-block and vertex symmetries.

Coloured GGMs are typically represented by coloured
graphs where vertices and edges depicted in black identify
unconstrained parameters, whereas other colours are used to

identify subsets of parameters which are constrained to hav-
ing the same value. In this way, a different colour is required
for every distinct equality constraint. We note, however, that
this representation is redundant in the case of pdRCONmod-
els, because equality constraints may only involve specific
pairs of parameters. Indeed, in order to identify the model
from the graph it is sufficient to be able to distinguishwhether
a parameter is constrained or not. It follows that a pdRCON
model can be unambiguously identified also if all the non-
black vertices and edges are depicted by the same colour. This
makes the graphical representation more readable for large
graphs and, thus, herewewill follow this rule and simply refer
to coloured vertices and edges in contrast to uncoloured (i.e.
black) ones. In Appendix C, in order to make graphs read-
able also in black and white printing, we distinguish between
uncoloured and coloured edges by using thin and thick lines,
respectively.

3 The graphical lasso for paired data

For a sample y(1)
V , . . . , y(n)

V of i.i.d. observations of YV ∼
N (0, �), themaximum likelihood estimator of� is the value
that maximises the log-likelihood function

l(�) = log det(�) − tr(S�) (2)

over S+
p where S = {si j }i, j∈V is the matrix S =

n−1 ∑n
i=1 y

(i)
V (y(i)

V )�. In GGMs the interest is for the zero
pattern of � and Yuan and Lin (2007) proposed an estima-
tor of � obtained from the minimization of the penalized
log-likelihood

Lλ1(�) = −l(�) + Pλ1(�) (3)

with Pλ1(�) = λ1 ‖�‖1, where ‖·‖1 denotes the �1-norm,
that is the sum of the absolute values of the entries of the
matrix, and λ1 is a nonnegative regularization parameter. The
minimization of (3) over S+

p is known as the graphical lasso
problem and a number of algorithms have been proposed
for its solution; see, among others, Friedman et al. (2008)
and Boyd et al. (2011, Section 6.5). Unlike the maximum
likelihood estimator, for λ1 > 0 the solution to the graphical
lasso exists alsowhen p > n, in which case S is singular. The
high popularity of the graphical lasso is due to the fact that
it simultaneously performs estimation and model selection
within the family of GGMs. Indeed, due to the geometry
of the �1-penalty, some of the off-diagonal entries of the
concentration matrix are shrunk to exactly zero, with a non-
decreasing level of sparsity as λ1 increases.

In order to simultaneously perform estimation and model
selection within the family of pdRCONmodels we introduce
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an additional penalty term

Qλ2(�) = λ2 (‖�LL − �RR‖1 + ‖�LR − �RL‖1) (4)

to (3) so as to obtain,

Lλ1,λ2(�) = −l(�) + Pλ1(�) + Qλ2(�), (5)

and estimate� by the paired data graphical lasso (pdglasso)
estimator �̂ = argmin� Lλ1,λ2(�), where minimization is
taken over S+

p .
Note that Qλ2(�) in (4) is a fused type lasso penalty

(Tibshirani et al. 2005; Hoefling 2010) with regularization
parameter λ2 ≥ 0. For λ2 = 0 the pdglasso estimator
coincides with the graphical lasso estimator whereas posi-
tive values of λ2 encourage parametric symmetries. More
specifically, the term λ2 ‖�LL − �RR‖1 = λ2

∑
i∈L |θi i −

θi ′i ′ | + λ2
∑

i, j∈L;i �= j |θi j − θi ′ j ′ | encourages both vertex
parametric symmetries and inside-block parametric symme-
tries, whereas λ2 ‖�LR − �RL‖1 = λ2

∑
i, j∈L |θi j ′ − θi ′ j |

encourages across-block parametric symmetries; we remark
that, in the latter sum, |θi j ′ − θi ′ j | = 0 whenever i = j
because � is a symmetric matrix. Hence, like the graphical
lasso, the pdglasso is a sparse estimate of�when λ1 is large,
and has many parametric symmetries when λ2 is large.

The idea of using a fused penalty to induce equality con-
straints between concentration parameters is not new, and it
was first introduced by Danaher et al. (2014) in the context
of joint learning of multiple GGMs for independent samples.
Subsequently, Ranciati et al. (2021) considered the case of
two possibly non independent groups and the pdglasso prob-
lem in (5) extends the work of Ranciati et al. (2021) also
including cross-group symmetries.

4 Selection of penalty parameters and
application issues

This section deals with the practical application of the
method. Specifically, we provide the maximum theoretical
values of the penalty parameters, give details on the com-
putation of the eBIC criterion we use for the selection of
the model and, finally, discuss the role played by the unit of
measurement of the variables.

The application of the pdglasso requires the initial defini-
tion of a grid of penalty parameter values to obtain a path of
pdglasso solutions. To this aim, it is useful to identify the val-
ues of λ1 and λ2 that return a diagonal and a fully symmetric
solution, respectively, to be set as maximum values of the
grid. Formally, we say that a pdRCON model is fully sym-
metric if and only if both�LL = �RR and�LR = �RL . We
remark that the equality �LL = �RR implies (i) full vertex
parametric symmetry in the sense that θi i = θi ′i ′ for every

i ∈ L and (ii) both structural and parametric inside-block
symmetry because θi j = θi ′ j ′ for every i, j ∈ L with i �= j
also implies that θi j = 0 if and only if θi ′ j ′ = 0. Similarly, the
equality�LR = �RL implies both structural and parametric
across-block symmetry. Hence, we have the following,

Theorem 4.1 A sufficient condition for the solution �̂ to the
pdglasso to be fully symmetric is that λ2 ≥ λ

sym
2 , where

λ
sym
2 = max

{|si j − si ′ j ′ |/2, |si ′ j − si j ′ |/2; i, j ∈ L
}
.

Proof See Appendix B.1. ��
The pdglasso problem coincides with the graphical lasso

in the case where λ2 is set to zero, and it is a well-known
result that if λ1 ≥ maxi, j∈V ;i �= j |si j | then the solution to
the graphical lasso is a diagonal matrix so that the selected
graph is fully disconnected; see among othersMazumder and
Hastie (2012, Section 2.1). The following proposition shows
that this is still true in the pdglasso problem for any λ2 ≥ 0.

Proposition 4.2 A sufficient condition for the solution �̂ to
the pdglasso to be a diagonal matrix is that λ1 ≥ λ

diag
1 ,

where λ
diag
1 = max

{|si j |; i, j ∈ V with i �= j
}
.

Proof See Appendix B.2. ��
For the sake of completeness, we also consider the case

where the solution �̂ to the pdglasso is block diagonal with
all the entries of �̂LR equal to zero. This is of interest because
�̂LR = Oq implies that there are no across-block edges so
that the two groups are independent. For the case where λ2 =
0, i.e. in the graphical lasso, this problem was considered by
Witten et al. (2011) and Mazumder and Hastie (2012) where
it is proved that such block diagonal structure is obtained
whenever λ1 ≥ maxi, j∈L |si j ′ |. Here, we show that the latter
result is still true in the pdglasso problem for any λ2 ≥ 0.

Proposition 4.3 A sufficient condition for the solution �̂ to
the pdglasso to be block diagonal with blocks �̂LL and �̂RR

is that λ1 ≥ |si j | for every i ∈ L and j ∈ R.

Proof See Appendix B.3. ��
In the applications considered in this paper, the above

results on the penalty parameters are used as follows. Firstly,
we apply the pdglasso procedure with λ2 = 0 to a sequence
of m values of λ1 equally spaced, on the log-scale, between
λ
diag
1
m and λ

diag
1 , and then identify the optimal value of λ1,

among the m considered. Next, with the latter value of λ1,
we apply again the pdglasso to a sequence of m values of λ2

equally spaced, on the log-scale, between
λ
sym
2
m and λ

sym
2 . The

optimal solution is then chosen among the latter m + 1 solu-
tions identified, including that with λ2 = 0. As a goodness
of fit measure for a model M we use the extended Bayesian
Information Criterion (eBIC) of Foygel and Drton (2010),

eBIC = −n l(�̂mle) + log(n) d + 4 d γ log(p), (6)
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where we either set γ = 0, thereby reverting to the classical
BIC, or γ = 0.5, as suggested by Foygel and Drton (2010),
when a higher level of sparsity is required. Furthermore, d is
the number of parameters, computed by subtracting from
the number of parameters of the saturated model, that is
p(p + 1)/2, both the number of zero constraints and the
number of equality constraints characterizing the relevant
pdRCON model. It is also worth recalling that �̂mle in (6)
is the (unpenalized) Maximum Likelihood Estimate (MLE)
of � (Foygel and Drton 2010), that we compute by means
of the same algorithm implemented to solve the pdglasso
problem; see Sect. 6 for details. This model selection proce-
dure is implemented in the function pdRCON.fit of the
pdglasso package.

The application considered in Sect. 8 concerns the identifi-
cation of gene networks from gene expression data, whereas
Ranciati et al. (2021) considered the identification of brain
networks from fMRI data. These are are both relevant areas
of application where variables are measured on the same
unit. We remark that this is an important issue because lasso
methods are not invariant to scalar multiplication of the vari-
ables (Hastie et al. 2015, p. 9). Thus, when the variable units
are not the same, it is common practice to standardized the
data before applying the traditional graphical lasso (Carter
et al. 2024). However, as noticed by Hojsgaard and Lau-
ritzen (2008, Section 3.4), RCON models are not invariant
under rescaling, in the sense that standardization will not
preserve the original structure of colour classes. This means
that, although the application of the pdglasso to the sample
correlation matrix may still represent a useful way to choose
parsimonious GGMs, care needs to be taken in the inter-
pretation of the resulting symmetries. Roverato and Nguyen
(2024) considered the implementation of greedy search pro-
cedures on the space of pdRCON models, for which the
standardization of the variables is not needed. However, they
are computationally demanding and, thus, their use is limited
to problems of small dimension. Furthermore, unlike graph-
ical lasso methods, their application in the high-dimensional
setting, with p larger than n, is not straighforward.

5 pdRCON submodel classes

When fitting a pdRCON model to a set of data it can be use-
ful to restrict the analysis to one of some relevant submodel
classes. This may be motivated by a number of different rea-
sons, including the interpretability of the selected model or
the need to keep the model dimension low, for example when
n is small relative to p. The function admm.pdglasso of
the pdglasso package implements a more flexible version
of the fused penalty (4), given by

Qλ2(�) = λ
(V )
2 ‖diag(�LL) − diag(�RR)‖1

+ λ
(I )
2

∥∥�∗
LL − �∗

RR

∥∥
1 + λ

(A)
2 ‖�LR − �RL‖1 (7)

where �∗
LL = �LL − diag(�LL) and, similarly for �∗

RR ;
note that diag(�) refers to a diagonal matrix having the same
diagonal as�. In this way, there is one regularization param-
eter associated with every type of parametric symmetry and,
more specifically, λ

(V )
2 is associated with vertex symmetry,

λ
(I )
2 with inside-block symmetry and λ

(A)
2 with across-block

symmetry. For a given value of λ2 > 0, each of the three λ
(·)
2

parameters can take any of the values in the set {0, λ2,Inf}.
For instance, the user can impose (i) no constraints involving
vertex symmetries by setting λ

(V )
2 = 0, (ii) the amount of

vertex symmetry regularisation implied by λ
(V )
2 = λ2 and

(iii) full vertex symmetry by setting λ
(V )
2 = Inf. The same

can be done independently for λ(I )
2 and λ

(A)
2 thereby allowing

the user to select a model within one of |{0, λ2,Inf}|3 = 9
different pdRCON submodel classes, and in the following
we look at some of these submodels in more detail; see also
Appendix C for some examples with |L| = |R| = 3.

The restrictions used to define an RCON model are linear
in the concentrationmatrix so that the log-likelihood function
is concave (Højsgaard et al. 2007; Højsgaard and Lauritzen
2008; Gehrmann 2011) and, thus, the pdglasso in (5) is a
convex optimization problem. It is therefore computation-
ally convenient to define symmetries in terms of equality of
concentration values, although the interpretation of such con-
straints may not be straightforward. Hojsgaard and Lauritzen
(2008, Section 8) remarked that the comparison of concentra-
tion values is meaningful only when variables are measured
on comparable scales, and we note that this is a condition
that is naturally satisfied in our framework because, firstly, for
every i ∈ L the corresponding variables Yi and Yi ′ measure a
common feature and, secondly, pdRCONmodels are defined
in such a way that comparisons only involve comparable
concentration values, associated with pairs of corresponding
variables. Hence, for instance, the equality θi i = θi ′i ′ , for
i ∈ L , is equivalent to σ 2

i i |V \{i} = σ 2
i ′i ′|V \{i ′}, that is, that

the corresponding variables Yi and Yi ′ have the same par-
tial variance; recall that σ 2

i i |V \{i} = θ−1
i i (see, e.g. Lauritzen

1996, Section 5.1.3). Furthermore, if for instance, for j ∈ L
with j �= i it holds that both θi i = θi ′i ′ and θ j j = θ j ′ j ′ , then
the constraint θi j = θi ′ j ′ implies the equality of the two par-
tial correlations ρi j |V \{i, j} = ρi ′ j ′|V \{i ′, j ′}; see Appendix A
for details. It is therefore of interest to consider the subfam-
ily of pdRCON models satisfying full vertex symmetry, that
is θi i = θi ′i ′ for every i ∈ L , which are easy to interpret
because every equality constraint between off-diagonal con-
centrations implies the equality of the corresponding partial
correlations. In order to restrict the analysis within the fam-
ily of pdRCON models satisfying full vertex symmetry is
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sufficient to set λ
(V )
2 = Inf, but we remark that the equal-

ity of partial variances is a strong assumption that should be
properly verified.

It may be the case that the substantive research hypothesis
underlying the analysis only concerns the comparison of the
association structure of the first groupwith that of the second.
More formally, the focus may be on the comparison of �LL

and �RR , which are adapted to GL and GR , respectively,
whereas the cross-group association �LR is regarded as a
nuisance parameter. In this case, across-block symmetries
are of no interest and if the sample size is large it may make
sense to set λ(A)

2 = 0. On the other hand, for smaller sample

sizes it is also possible to set λ
(A)
2 = Inf so as to impose

full across-block symmetry with the aim to reduce model
dimensionality.

Finally, the relevant research question may require the
identification of a model that is fully symmetric, in the sense
that there are no differences between the two groups. A fully
symmetric model can be obtained by setting λ

(V )
2 = λ

(I )
2 =

λ
(A)
2 = Inf and may be used, for instance, as a bench-

mark for the comparison with an arbitrarily selected model.
Interestingly, fully symmetric models belong to the family
of RCON models satisfying permutation symmetry, and we
refer to Appendix A for a more detailed account on the prop-
erties of this submodel class.

6 Implementation via ADMM algorithm

Following Danaher et al. (2014) and Ranciati et al. (2021)
we solve the pdglasso optimization problem (5) using an
alternating directions method of multipliers (ADMM) algo-
rithm; see Boyd et al. (2011, Section 6.5). This is obtained
by splitting the procedure into two nested optimization prob-
lems both solved by a specific ADMM algorithm, and where
the inner ADMM algorithm is written in a form that makes
use of the results for the fused lasso signal approximator
given in Friedman et al. (2007). Our ADMM algorithm
is implemented in the function admm.pdglasso of the
pdglasso package. The latter extends the algorithm of
Ranciati et al. (2021) to include across-block symmetries
but, in fact, it has been designed to solve the more gen-
eral problem involving the penalty (7), and thus it makes
it possible for the user to optimize (5) either over the entire
family of pdRCON models or over one of the subfamilies of
pdRCONmodels described in Sect. 5. Furthermore, the func-
tion pdRCON.mle of the same package exploits theADMM
algorithm for the computation of the MLEs. This is achieved
by allowing different values of the penalty parameters for the
different zero and equality constraints, and then setting the
penalty term to a sufficiently large value for the constraints
characterizing the model and to zero otherwise.

In the following, we provide a detailed description of the
algorithm, and refer to Boyd et al. (2011) for its convergence
properties. The pdglasso solution is obtained by looping, over
iterations l = 1, 2, . . . , the following three steps (see Boyd
et al. 2011, equations (3.5) to (3.6)):

(1) �l+1 := argmin
�

(
− log det(�) + tr(S�) + ρ1

2∥∥∥� − Zl +Ul
∥∥∥2
F

)
;

(2) Zl+1 := argmin
Z

(
Pλ1(Z) + Qλ2(Z) + ρ1

2∥∥∥�l+1 − Z +Ul
∥∥∥2
F

)
;

(3) Ul+1 := Ul + �l+1 − Zl+1,

where ‖·‖F denotes the Frobenius norm, ρ1 > 0 is the step
size and U and Z are p × p matrices initialized with all
entries equal to zero. The solution to step (1) can be obtained
in analytic form as detailed in Boyd et al. (2011, Section
3.1.1); see also Ranciati et al. (2021).

More specific to our implementation is the solution of
step (2). Consider a matrix Q whose columns and rows are
indexed by V = L ∪ R, and let vech(·) and vd(·) denote
the half-vectorization and the diagonal extraction operator,
respectively. Hence, we define the vector v(Q) as,

v(Q)�

= [vd(QLL )� vd(QRR)� vech(QLL )� vech(QRR)�
vech(QLR)� vech(QRL )� vd(QLR)�] ,

and then we set zl = v(Zl) and bl = v(�l) + v(Ul).
All equality constraints are encoded in a matrix F , made
up of the following three row blocks: [Iq , −Iq , Oq,4s+q ],
[Os,2q , Is, −Is, Os,2 s+q ] and [Os,2q+2 s, Is, −Is, Oqq ],
where I and O are the identity and zero matrix, respectively,
and s = q(q − 1)/2. Thus, step (2) can be stated as the
following self-standing optimization problem,

argmin
z

(
1

2
‖z − b‖22 + λ′

1‖z‖1 + ∥∥F(λ′
2 ◦ z)

∥∥
1

)
,

where ◦ denotes the element-wise product, λ′
1 = λ1/ρ1,

λ′�
2 =

[
λ

(V )
2

ρ1
12q� λ

(I )
2

ρ1
12 s�

λ
(A)
2

ρ1
12 s+q

�
]

, and 1q the

unit vector of length q.
Due to Friedman et al. (2007, Lemma A.1), we can firstly

solve

argmin
z

(
1

2
‖z − b‖22 + ∥∥F(λ′

2 ◦ z)
∥∥
1

)
,

with λ′
1 = 0, and then obtain the solution for the case λ′

1 > 0
via a soft-thresholding operation. This is a generalized lasso
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problem (Tibshirani and Taylor 2011), which we solve with
the following inner ADMM procedure (Boyd et al. 2011,
Section 6.4.1)

(i) zm+1 := (
I + ρ2F�F

)−1{
b + ρ2F�(vm − tm)

}
;

(ii) vm+1 := Sλ′
2/ρ2

(Fzm+1 + tm);

(iii) tm+1 := tm + Fzm+1 − vm+1.

The vectors v and t are initialized with zero entries, the
scalar ρ2 > 0 refers to the step size of the inner ADMM
and Sλ′

2/ρ2
(·) represents the soft-thresholding operator, such

that any input less than λ′
2/ρ2 (in absolute value) is set to

zero, otherwise it gets shrunk by that threshold. The stop-
ping rule of the algorithm is based on the primal and dual
residual (Boyd et al. 2011, Section 3.3.1), computed at each
iteration, which are compared to a given numerical precision
threshold.

Finally, we remark that, in the computer implementation
of the above ADMMalgorithm, efficiency has been achieved
by making the step sizes ρ1 and ρ2 adaptive and, further-
more, both by properly reducing the dimension of the matrix
F according to the submodel class of interest, and by encod-
ing the results of the products involving the matrix F in the
form of less expensive vectorized computations, explicitly
based on the (sparse) structure of such matrix. In a call to
the function pdRCON.fit on a grid of 20 values for each
penalty parameter, the ADMM algorithm is run 80 times,
that is 40 times on a range of different penalty values and 40
times for the computation theMLEs for the eBIC.On a recent
hardware (CPU 1.8GHz Intel Core i7 quad-core, memory 16
GB 2133 MHz LPDDR3), the individual cost for an ADMM
execution is approximately 1 s. These computations refer to
execution times for the simulation study described in Sect. 7.

7 Simulation study

pdRCON models are GGMs with additional equality con-
straints, which we call parametric symmetries. It follows that
a GGM is a pdRCON model with no parametric symmetry,
and it is therefore of interest to investigate the behaviour
of the pdglasso method when the data are generated from
a GGM and, similarly, the behaviour of the glasso method
when parametric symmetries are indeed present.

In the following, we compare the behaviour of glasso
and pdglasso by means of simulated data, and consider
three different scenarios: (i) GGMs with no parametric sym-
metry, (ii) pdRCON models where 50% of the parameters
are involved in a parametric symmetry and the remaining
50% are unconstrained and, (iii) fully symmetric pdRCON
models. For each scenario we set p = 100 and randomly
generated 10 models with graph density equal to 0.20, where

this density is computed as the number of present edges
over the number of edges of the complete graph. A Gaus-
sian distribution, identified by its covariance matrix, was
obtained for every model and from each of the resulting
30 distributions we randomly generated 7 datasets of size
n = {100, 150, 200, 300, 500, 1000, 1500}. To each of the
210 resulting datasets, we applied the procedure described
in Sect. 4 with grid length m = 20 and γ = 0. All
the computations were carried out by using the R package
pdglasso, and we now describe the procedure used to ran-
domly generate the covariance matrices characterizing the
Gaussian distributions used in the simulations. The proce-
dure implemented in the functionGGM.simulate to obtain
a covariance matrix �(∗) relative to a GGM is as follows.
Firstly, a p× p positive definite matrix S∗ is randomly gener-
ated from aWishart distribution with matrix parameter equal
to the identity matrix. Next, (S∗)−1 is computed and an undi-
rected graph G, with the required density, is obtained in such
a way that the edges of G correspond to the largest absolute
values of the off-diagonal entries of (S∗)−1. Finally, a pos-
itive definite matrix �(∗), that identifies a distribution from
the GGM represented by G, is obtained by applying to S∗ the
procedure for the computation of the MLEs. The same idea
is exploited by the function pdRCON.simulate to add to
�(∗) the required amount of symmetries so as to obtain a
covariance matrix from a pdRCON model. For information
about the relevant material to reproduce the simulations see
the Section ‘Data availability’ of this paper.

For every scenario and sample size, the average behaviour
across the 10 selectedmodels of pdglassowas comparedwith
that of glasso. Because glasso is not designed to identify
parametric symmetries, we compared the two methods with
respect to their performance in learning the graph structure
and the inverse covariance matrix �.

The performance of the procedures in structure learning
was measured through the Positive Predicted Value (PPV)
and the True Positive Rate (TPR). These are given in Fig. 1
where also a measure of parsimony is provided, by the
number of parameters of the selected models. The panels
composing the first column of Fig. 1 show that, for the no
symmetry case where the true model is a GGM, the pdglasso
method selected less parsimonious models, thereby resulting
in a worse performance, compared to glasso, with respect to
PPV but an improvement in terms of TPR; these differences
between the twomethods are more noticeable for larger sam-
ple sizes. Plots in the second column show that in the 50%
symmetry case the two methods performed similarly. For the
full symmetry case, third column, pdglasso selected more
parsimonious models, with a better performance in terms
of PPV and producing TPR values comparable to those of
glasso.

As overall measures of performance in structure learning
weconsidered the harmonicmeanofPPVandTPR, called the

123



  209 Page 8 of 19 Statistics and Computing           (2024) 34:209 

No Symmetry 50% Symmetry Full Symmetry

P
P

V
 (P

recision)
T

P
R

 (R
ecall)

N
um

ber of param
eters

100 150 200 300 500 1000 1500 100 150 200 300 500 1000 1500 100 150 200 300 500 1000 1500

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.5

200

400

600

Sample Size

Method

glasso

pdglasso

Fig. 1 Comparison of the pdglasso and the glasso methods for the three
scenarios: “no symmetry”, “50% symmetry” and “full symmetry”. Pan-
els in the first row give the Positive Predicted Value (PPV) also called
precision, those in the second row the True Positive Rate (TPR) also

called recall, whereas the third row gives the number of parameters.
Every value is the average of the corresponding quantities computed on
the 10 selected models for every scenario and sample size

F1 score, and the Matthews correlation coefficient (MCC).
Furthermore,we assessed the performancewith respect to the
estimate of the inverse covariance by means of the Frobenius
norm loss and of the entropy loss (Dey and Srinivasan 1985).
More specifically the top panels of Fig. 2 compare the two
method by means of the differences of the F1 scores and the
MCC values, respectively, with positive values in favour of
pdglasso whereas the bottom panels give the relative differ-
ences of the Frobenius norm loss and of the entropy loss,
with negative values in favor of pdglasso. Figure2 shows
that, although there are some cases where glasso performs
moderately better than pdglasso especially for small sample
sizes and in the no symmetry case, there is a clear evidence
that, as expected, the pdglassomethod provided better results
in the models presenting parametric symmetry. Additionally,
in the case where the data come from a GGM the pdglasso
method provided results comparable with those of glasso.

8 Analysis of breast cancer gene expression
data

We illustrate the use of our proposed method in a gene
expression paired data problem concerning breast cancer.
The samples refer to n = 114 individuals with both tumor
and healthy adjacent tissue information, hence the paired data
nature of the problem. A curated set of q = 89 genes of the
Hedgehog Pathway, known for their involvement in breast
cancer (Song et al. 2014; Kubo et al. 2004), is extracted from
MSigDB Collections (Subramanian et al. 2005). For each
individual, we consider gene-level transcription estimates,
that is log2(Y +1) transformed normalized counts, across the
same set of selected genes in both tissues (p = 89×2 = 178),
which lead to the 114×178 final data matrix for the analysis.

We focus on two pdRCON submodel classes. Firstly, we
consider a pdRCON model (labelled as fV) where λ

(V )
2 =

Inf and λ
(I )
2 = λ

(A)
2 = λ2, so as to force full vertex

symmetry, and penalize with magnitude λ2 the remaining
blocks. The second model considered (labelled as fVIA)
is a fully symmetric model, which is obtained by setting
λ

(V )
2 = λ

(I )
2 = λ

(A)
2 = Inf. More details on these sub-

model classes can be found in Sect. 5 and Appendix A. For
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Fig. 2 Comparison of the pdglasso and the glasso methods for the
three scenarios: “no symmetry”, “50% symmetry” and “full symme-
try”. Top panels: differences of the F1 score values and of theMatthews
correlation coefficient (MCC) values, with positive value denoting a
better performance of pdglasso. Bottom panels: relative differences of

the Frobenius norm loss values for the inverse covariance and of the
entropy loss values, with negative value denoting a better performance
of pdglasso. Every value is the average of the corresponding quantities
computed on the 10 selected models for every scenario and sample size

the selection of the optimal penalty values we apply the pro-
cedure described in Sect. 4, with grid length m = 20, and
where the eBIC is applied with γ = 0.5, because domain
experts are interest in recovering a sparse graph with the
most relevant connections. The selected models, denoted as
modfV and modfVIA, respectively, are visually depicted in
Figs. 7 and 8 of Appendix D. They are very sparse and, for
this reason, in the following we will only focus on the sym-
metries, either structural and parametric, that involve edges
which are present in the graphs. Accordingly, to ease the
reading, we will simply talk of symmetries without recalling
that we are only considering present edges.

An overview of the structure of the models involved in
this analysis is provided in Table 1. The graph associated
to model modfV has an overall density lower than 1%, with
inside-block density larger than the across-block one. In par-
ticular, the graph has only 7 edges connecting genes across

the two different groups (tumor vs healthy), whereas the two
group specific graphs are similar in terms of density, with
56 edges between variables in the tumor group and 54 in
the healthy group. The most connected gene, both inside and
across blocks, is the one named LRP2. More specifically,
in the tumor group 16 out of the 56 edges (28.6%) connect
LRP2 to other inside-block genes, whereas in the healthy
group 37 out of the 54 edges (68.5%) involve LRP2. Fur-
thermore, most of the across-block edges, i.e. 5 out of the
7 (71.4%), involve LRP2 and, finally, 12 of the 24 coloured
edge involve LRP2, that is 50% of the identified parametric
symmetries concern this gene.

We turn now to the fully symmetric model modfVIA and
note that, although in this case the identified graph has a
larger number of edges, with a density that is almost three
times greater than that of the graph associated with modfV,
the number of parameters of modfVIA is only 1.3 times
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Table 1 Summary statistics on
the structure of the models
identified by the application of
pdglasso: modfVIA (last
column); modfV and its three
submodels considered (second
to fifth column); sub1fV:
across-block edges set to zero;
sub2fV: inside-block structural
asymmetries removed; sub3fV:
inside-block structural
symmetries converted to
parametric symmetries. All
models have full vertex
symmetry

Reference model and submodels
Summary modfV sub1fV sub2fV sub3fV fVIA

Total edges 117 110 49 117 300

Graph density 0.74 % 0.70 % 0.31 % 0.74 % 1.90 %

inside block

Total edges 110 110 42 110 286

Structural (non-zero) symmetric edges 18 18 18 0 0

Parametric (non-zero) symmetric edges 24 24 24 42 286

across block

Total edges 7 0 7 7 14

Structural (non-zero) symmetric edges 0 0 0 0 0

Parametric (non-zero) symmetric edges 0 0 0 0 10

larger than that of modfV, which shows how the identifica-
tion of parametric symmetries can provide an effective way
to increase parsimony in the selection of a GGM.

We also compare models modfV with three of its sub-
models: (i) sub1fV, where across-block edges are removed;
(ii) sub2fV, where inside-block structural asymmetries are
removed; (iii) sub3fV, where all inside-block structural
symmetries are turned into parametric symmetries. The three
submodels are not nested within one another but they all are
with respect to modfV.

We first consider model sub1fV. Unlike the case of
independent samples, in paired data problems a key issue
is represented by the cross-graph structure that encodes
the across-group dependence. It is interesting to note that
there are potentially q2 = 7921 across-graph edges, but
the selected model modfV shows a very sparse across-graph
association structure with as few as 7 edges, most of which
involving the gene LRP2. It is therefore of interest to quantify
the significance of the across-graph structure by compar-
ing the model modfV with its submodel sub1fVobtained
by assuming that the group specific subgraphs are discon-
nected, that is �LR = Oq . This comparison is carried out by
means of the Likelihood Ratio Test (LRT) at a significance
level of α = 0.05, given in Table 2, that shows that the model
sub1fV seems not to provide an adequate fit to the data, and
thus we can conclude that the across-groups structure cannot
be ignored, and should thus be retained.

In the comparison of the two groups, differences are repre-
sented by asymmetries, and this motivates the comparison of
the selected model modfV with its submodels sub2fV and
sub3fV. As shown but juxtaposing the second and fourth
column of Table 1, among the 110 inside-block edges of
the reference model 68 are asymmetric edges and thus not
involved in any structural or parametric symmetry andmodel
sub2fV is obtainedby removing such68edges.Hence, com-
paring modfV with sub2fV amounts to test the presence of
structural differences between the group specific subgraphs.

Finally, comparing modfV with sub3fV amounts to test if
the model can be further simplified by assuming that every
structural symmetry is also parametric. As shown in Table 2
the empirical evidence is in favor of the hypotheses that
structural asymmetries are present and that not all structural
symmetries are also parametric.

9 Conclusions

We have considered the problem of joint learning of GGMs
for paired data, in an approach that implements a fused graph-
ical lasso penalty to identify a model within a suited family
of coloured graphical models. We have addressed a num-
ber of issues with the aim of providing the results and tools
required for an immediate and knowledgeable application
of the method. The latter include an ADMM algorithm for
the optimization of the penalized likelihood, some results
required when computing a path of lasso solutions, the
description of the features of somemodel subfamilies of spe-
cific interest and, finally, an R package where all the methods
have been implemented.

We deem that one appealing feature of our approach is
the interpretation of the selected model. When the number
of variables is large, it is not straightforward to visualize
and interpret a GGM, and this task is even more challenging
when the analysis involves two or more, possibly dependent,
networks. The application of pdRCON models is restricted
to the case where two groups are considered, but it provides
a transparent representation of the across group association.
Furthermore, as shown in the application of Sect. 8, one can
meaningfully summarize the relationship between groups by
focusing on the amount of both structural and parametric
symmetry/asymmetry. The scope of the analysis may also
justify the restriction to specific submodels such as themodel
with full vertex symmetry of the fully symmetric model.
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Table 2 Summary of
Likelihood Ratio Tests (LRTs)
performed on each submodel
against the reference modfV

H0 : submodel is preferable modfV sub1fV sub2fV sub3fV

Number of parameters 194 187 126 185

Deviance 12242.22 12285.79 14218.92 12393.96

LRT value – 43.56 1976.69 151.73

Degrees of freedom (df) – 7 68 9

Critical χd f ,α quantile at α = 0.95 – 14.07 88.25 16.92

Appendix

A Fully symmetric pdRCONmodels

One of the main motivations for the analysis of paired data
is the need to identify similarities, i.e. symmetries, and dif-
ferences between the two groups. Thus, in this framework,
a central role is played by the subclass of pdRCON mod-
els that show no differences between the two groups. It is
of theoretical interest to understand the properties of this
model class and, furthermore, in applications it may be use-
ful to estimate a model within this class because it could be
regarded as a benchmark for the comparison with an arbi-
trarily selected model, and the quantification of the amount
of asymmetry it shows.We call these models fully symmetric
because, as shownbelow, their parametric symmetries are not
restricted to the equalities of concentration coefficients but
extend to partial correlation coefficients, variances, covari-
ances and correlation coefficients. Theorem 4.1 provides a
result concerning the value of λ2 such that the solution to the
pdglasso is a fully symmetricmodel, whereas an instance of
a fully symmetric pdRCON model is given in Example C.4
of Appendix C.

As far as the interpretation of the model is of con-
cern, a useful property of fully symmetric pdRCON models
is that every inside and across-block parametric equality
constraint, for instance θi j = θi ′ j ′ , also implies that the
corresponding partial correlations have the same values, i.e.
ρi j |V \{i, j} = ρi ′ j ′|V \{i ′, j ′}. This follows immediately from
the fact that the partial correlation between Yi and Y j given
the remainingvariables canbe computed fromconcentrations
as ρi j |V \{i, j} = −θi j/

√
θi iθ j j (see, e.g. Lauritzen 1996, Sec-

tion 5.1.3) and in a fully symmetric model it also holds that
both θi i = θi ′i ′ and θ j j = θ j ′ j ′ .

An equivalent way to define fully symmetric pdRCON
models is by requiring that the random vector (YL ,YR)�
has the same distribution as that of (YR,YL)�; that is
YL and YR are exchangeable. This shows that fully sym-
metric pdRCON models belong to the family of coloured
GGMs which satisfy permutation symmetry, as defined in
Højsgaard andLauritzen (2008, Section5); see alsoGehrmann
(2011) and Graczyk et al. (2022). More specifically, if we
denote by J the permutation matrix that exchanges YL and

YR , i.e. J × (YL ,YR)� = (YR,YL)�, then we have,

J =
(
Oq Iq
Iq Oq

)
and thus J�J =

(
�RR �RL

�LR �LL

)
,

(A.1)

where Iq and Oq are the q × q identity and zero matrices,
respectively. Recall that permutationmatrices are orthogonal
and, furthermore, J is symmetric so that J = J� = J−1.
We can thus say that a pdRCON model is fully symmetric if
and only if J�J = �, in words, if and only if � is invariant
under the action of J . It is straightforward to see that the
latter equality is equivalent to (J�J )−1 = �−1 and thus to
J� J = �, and this shows that in a fully symmetric model�
is also invariant under the action of J . This implies that para-
metric symmetry holds also for to the entries of the variance
matrix, that is �LL = �RR and �LR = �RL and it straight-
forward to see that also the correlation matrix P satisfies the
same property, i.e. both PLL = PRR and PLR = PRL .

Finally, we notice that for the family of fully symmetric
models, the MLE of � can be obtained by instead consid-
ering the matrix S̄ = (S + J S J )/2 and finding the MLE
of the corresponding GGM without symmetry restrictions
(Højsgaard and Lauritzen 2008, Section 5.2). This MLE can
be calculated explicitly when G is decomposable, or alterna-
tively a standard algorithm, such as the iterative proportional
scaling, can be used (Lauritzen 1996, page 146).

B Proofs

B.1 Proof of Theorem 4.1

For a positive definite matrix � we consider J in (A.1) and
set the matrix �̄ = 1

2 (� + J�J ). Note that J−1 = J so
that J�̄J = 1

2 (J�J + J J�J J ) = 1
2 (J�J +�) = �̄, that

is, �̄ is fully symmetric. It is also worth remarking that �̄ is
positive definite by construction.

We now show that if λ2 is chosen to satisfy the inequality
ofTheorem4.1 then for any positive definitematrix� it holds
that Lλ1,λ2(�̄) ≤ Lλ1,λ2(�) so that the matrix which min-
imises Lλ1,λ2(·) in (5) must be fully symmetric. Concretely,
we show that Lλ1,λ2(�̄) − Lλ1,λ2(�) ≤ 0 and, to this aim,
we analyse, in turn, three components of this difference.
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We first show that {− log det(�̄)} − {− log det(�)} ≤ 0,
which is equivalent to log det(�) ≤ log det(�̄) and therefore
to det(�) ≤ det(�̄). Because both � and J�J are positive
definite the following inequality holds (see, e.g., Lütkepohl
1996, p. 55 eqn (14))

det(�̄)1/p = det

(
1

2
� + 1

2
J�J

)1/p

≥ det

(
1

2
�

)1/p

+ det

(
1

2
J�J

)1/p

= 2 det

(
1

2
�

)1/p

= det(�)1/p

where we have used the facts that det(�) = det(J�J ),
because J is a permutation matrix, and that det

( 1
2�

) =
1
2p det(�). We have thus shown that det(�̄)1/p ≥ det(�)1/p

and this immediately implies that det(�̄) ≥ det(�) as
required.

We now show that +λ1
∥∥�̄

∥∥
1 − λ1‖�‖1 ≤ 0, i.e, that∥∥�̄

∥∥
1−‖�‖1 ≤ 0.Wefirst notice that‖�‖1 can be computed

on the block components (1) of � as follows,

‖�‖1 = ‖�LL‖1 + ‖�RR‖1 + ‖�LR‖1 + ‖�RL‖1 .

Similarly,

∥∥�̄
∥∥
1 = ∥∥�̄LL

∥∥
1 + ∥∥�̄RR

∥∥
1 + ∥∥�̄LR

∥∥
1 + ∥∥�̄RL

∥∥
1

= 1

2
(‖�LL + �RR‖1 + ‖�RR + �LL‖1

+ ‖�LR + �RL‖1 + ‖�RL + �LR‖1)
= ‖�LL + �RR‖1 + ‖�LR + �RL‖1 .

Hence,

∥∥�̄
∥∥
1 − ‖�‖1 = ‖�LL + �RR‖1 − (‖�LL‖1 + ‖�RR‖1)

+ ‖�LR + �RL‖1 − (‖�LR‖1 + ‖�RL‖1),

and it follows that
∥∥�̄

∥∥
1 − ‖�‖1 ≤ 0 because for any pair

of real numbers a and b it holds that |a + b| ≤ |a| + |b|.
In order to complete the proof we have now to show that

tr(S�̄) − tr(S�) − λ2
(‖�LL − �RR‖1 + ‖�LR − �RL‖1

)
≤ 0. (B.1)

Note that the term λ2
(∥∥�̄LL − �̄RR

∥∥
1 + ∥∥�̄LR − �̄RL

∥∥
1

)
does not appear in (B.1) because it is equal to zero by con-
struction. We first consider the difference

tr(S�̄) − tr(S�) = tr(S�̄ − S�) = tr{S(�̄ − �)}
= tr{S(

1

2
� + 1

2
J�J − �)}

= tr{1
2
S(J�J − �)}

= 1

2

p∑
i=1

p∑
j=1

si j (J�J − �)i j , (B.2)

where (B.2) follows from the fact that both S and (J�J−�)
are symmetric matrices. Hence, if we write (B.2) by distin-
guishing the terms corresponding to each of the four blocks
of (J�J − �) as in (1) we obtain,

tr(S�̄) − tr(S�)

= 1

2

q∑
i=1

q∑
j=1

{si j (θi ′ j ′ − θi j ) + si ′ j ′(θi j − θi ′ j ′)

+ si j ′(θi ′ j − θi j ′) + si ′ j (θi j ′ − θi ′ j )}

= 1

2

q∑
i=1

q∑
j=1

{(si ′ j ′−si j )(θi j−θi ′ j ′)+(si ′ j−si j ′)(θi j ′−θi ′ j )}

(B.3)

≤ 1

2

q∑
i=1

q∑
j=1

(|si ′ j ′ − si j ||θi j − θi ′ j ′ | + |si ′ j − si j ′ ||θi j ′ − θi ′ j |).

(B.4)

Furthermore,

λ2 (‖�LL − �RR‖1 + ‖�LR − �RL‖1)

=
q∑

i=1

q∑
j=1

λ2
(|θi j − θi ′ j ′ | + |θi j ′ − θi ′ j |

)
. (B.5)

Hence, from (B.3), (B.5) and then (B.4) we obtain

= tr(S�) − tr(S�) − λ2
(‖�LL − �RR‖1 + ‖�LR − �RL‖1

)

= 1

2

q∑
i=1

q∑
j=1

{(si ′ j ′ − si j )(θi j − θi ′ j ′) + (si ′ j − si j ′)(θi j ′ − θi ′ j )

−
q∑

i=1

q∑
j=1

λ2
(|θi j − θi ′ j ′ | + |θi j ′ − θi ′ j |

)

≤ 1

2

q∑
i=1

q∑
j=1

(|si ′ j ′ − si j ||θi j − θi ′ j ′ | + |si ′ j − si j ′ ||θi j ′ − θi ′ j |)

−
q∑

i=1

q∑
j=1

λ2
(|θi j − θi ′ j ′ | + |θi j ′ − θi ′ j |

)

=
q∑

i=1

q∑
j=1

{(|si ′ j ′ − si j |/2 − λ2
) |θi j − θi ′ j ′ |

+ (|si ′ j − si j ′ |/2 − λ2
) |θi j ′ − θi ′ j |

}
,

that establishes (B.1) because we have assumed that λ2 sat-
isfies the inequality of Theorem 4.1 so that both (|si ′ j ′ −
si j |/2− λ2) and (|si ′ j − si j ′ |/2− λ2) are smaller or equal to
zero for every i, j ∈ L .
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B.2 Proof of Proposition 4.2

For a positive definite matrix�we denote by �̄ the diagonal
matrix with the same diagonal as �, that is �̄ = diag(�),
and note that �̄ is positive definite by construction. Hence,
we now show that if λ1 ≥ |si j | for every i �= j ∈ V then
for any positive definite matrix � it holds that Lλ1,λ2(�̄) ≤
Lλ1,λ2(�) so that the matrix which minimises Lλ1,λ2(·) in
(5) must be diagonal. Concretely, we show that Lλ1,λ2(�̄) −
Lλ1,λ2(�) ≤ 0 and, to this aim, we analyse, in turn, three
components of this difference.

We first show that {− log det(�̄)} − {− log det(�)} ≤ 0.
The latter is equivalent to log det(�) ≤ log det(�̄), and
therefore to det(�) ≤ det(�̄), which follows immediately
from Hadamard’s inequality; see, for instance, Lütkepohl
(1996, p. 54 eqn (3)).

Wenow show that tr(S�̄)−tr(S�)+λ1
∥∥�̄

∥∥
1−λ1‖�‖1 ≤

0. Firstly, we notice that

tr(S�̄) − tr(S�) = tr(S�̄ − S�) = tr{S(�̄ − �)}

= −
p∑

i=1

p∑
j=1
j �=i

si jθi j ≤
p∑

i=1

p∑
j=1
j �=i

|si j ||θi j |,

where the third equality follows form the fact that both S and
(�̄ − �) are symmetric matrices and, more specifically, that
(�̄−�) is the matrix obtained by setting to zero the diagonal
entries of −�. Similarly,

λ1
∥∥�̄

∥∥
1 − λ1‖�‖1 = −

p∑
i=1

p∑
j=1
j �=i

λ1|θi j |;

so that,

tr(S�̄) − tr(S�) + λ1
∥∥�̄

∥∥
1 − λ1‖�‖1

= −
p∑

i=1

p∑
j=1
j �=i

si jθi j −
p∑

i=1

p∑
j=1
j �=i

λ1|θi j |

≤
p∑

i=1

p∑
j=1
j �=i

|si j ||θi j | −
p∑

i=1

p∑
j=1
j �=i

λ1|θi j |

=
p∑

i=1

p∑
j=1
j �=i

(|si j | − λ1)|θi j | ≤ 0,

where the latter inequality holds true because, by assumption,
(|si j | − λ1) ≤ 0 for every i �= j ∈ V .

Finally, we show that the difference

λ2
(∥∥�̄LL − �̄RR

∥∥
1 + ∥∥�̄LR − �̄RL

∥∥
1

)

− λ2 (‖�LL − �RR‖1 + ‖�LR − �RL‖1) (B.6)

is smaller or equal to zero.We first note that
∥∥�̄LR − �̄RL

∥∥
1

= 0 because �̄ is diagonal and, next, that
∥∥�̄LL − �̄RR

∥∥
1−

‖�LL − �RR‖1 = −∑p
i=1

∑p
j=1
j �=i

|θi j − θi ′ j ′ |. Hence, (B.6)
can be written as

−
q∑

i=1

q∑
j=1
j �=i

λ2|θi j − θi ′ j ′ | −
q∑

i=1

q∑
j=1

λ2|θi j ′ − θi ′ j |

that is trivially non-positive because λ2 ≥ 0, and this com-
pletes the proof.

B.3 Proof of Proposition 4.3

For a positive definite matrix � we let �̄ be the block diag-
onal matrix with blocks �LL and �RR . We remark that �̄

is positive definite by construction, and that the condition
|si j | ≤ λ1 for every i ∈ L and j ∈ R can be written as
|si j ′ | ≤ λ1 for every i, j ∈ L . Hence, we now show that
if λ1 ≥ |si j ′ | for every i, j ∈ L then for any positive def-
inite matrix � it holds that Lλ1,λ2(�̄) ≤ Lλ1,λ2(�) so that
the matrix which minimises Lλ1,λ2(·) in (5) must be block
diagonal with �̂LR equal to zero. Concretely, we show that
Lλ1,λ2(�̄) − Lλ1,λ2(�) ≤ 0 and, to this aim, we analyse, in
turn, three components of this difference.

We first show that {− log det(�̄)} − {− log det(�)} ≤ 0.
The latter is equivalent to log det(�) ≤ log det(�̄), and
therefore to det(�) ≤ det(�̄), which follows immediately
from Fisher’s inequality; see, for instance, Lütkepohl (1996,
p. 54 eqn (5)).Wenowshow that tr(S�̄)−tr(S�)+λ1

∥∥�̄
∥∥
1−

λ1‖�‖1 ≤ 0. Firstly, we notice that

tr(S�̄) − tr(S�) = tr(S�̄ − S�) = tr{S(�̄ − �)}

= −2
q∑

i=1

q∑
j=1

si j ′θi j ′ ≤ 2
q∑

i=1

q∑
j=1

|si j ′ ||θi j ′ |,

where the third equality follows form the fact that both S and
(�̄ − �) are symmetric matrices and, more specifically, that
both (�̄−�)LL and (�̄−�)RR are equal to zero. Similarly,

λ1
∥∥�̄

∥∥
1 − λ1‖�‖1 = −2

q∑
i=1

q∑
j=1

λ1|θi j ′ |.

Hence,

tr(S�̄) − tr(S�) + λ1
∥∥�̄

∥∥
1 − λ1‖�‖1

= −2
q∑

i=1

q∑
j=1

si j ′θi j ′ − 2
q∑

i=1

q∑
j=1

λ1|θi j ′ |
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≤ 2
q∑

i=1

q∑
j=1

|si j ′ ||θi j ′ | − 2
q∑

i=1

q∑
j=1

λ1|θi j ′ |

= 2
q∑

i=1

q∑
j=1

(|si j ′ | − λ1)|θi j ′ | ≤ 0

where the latter inequality holds true because, by assumption,
(|si j ′ | − λ1) ≤ 0 for every i, j ∈ L .

In order to complete the proof we have now to show that
the difference

λ2
(∥∥�̄LL − �̄RR

∥∥
1 + ∥∥�̄LR − �̄RL

∥∥
1

)
− λ2 (‖�LL − �RR‖1 + ‖�LR − �RL‖1) (B.7)

Fig. 3 Coloured graph and
concentration matrix of the
pdRCON model in Example C.1

Fig. 4 Coloured graph and
concentration matrix of the
pdRCON model in Example C.2

Fig. 5 Coloured graph and
concentration matrix of the
pdRCON model in Example C.3

Fig. 6 Coloured graph and
concentration matrix of the
pdRCON model in Example C.4
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is smaller or equal to zero. This can be shown by noting that∥∥�̄LR − �̄RL
∥∥
1 = 0 because �̄ is block diagonal, and that,

by construction,
∥∥�̄LL − �̄RR

∥∥
1 = ‖�LL − �RR‖1 so that∥∥�̄LL − �̄RR

∥∥
1 − ‖�LL − �RR‖1 = 0. Hence (B.7) sim-

plifies to −λ2 ‖�LR − �RL‖1 that is trivially non-positive
because λ2 ≥ 0.

C Examples of pdRCONmodels

We present here some examples of pdRCON models with a
detailed description of the different types of symmetry they
include and of the relevant equality constraints. All the mod-
els considered involve p = 6 variables so that L = {1, 2, 3}
and R = {1′, 2′, 3′} and, for each of them, we give both
the coloured graph and the concentration matrix. Recall that
the coloured graph representing a pdRCONmodel may con-
tain two types of vertices and edges, namely, coloured and
uncoloured. In order to make our graphs readable also in
black and white printing, the colour white is used to denote
uncoloured vertices whereas coloured vertices are in gray.
On the other hand, uncoloured and coloured edges are rep-
resented by thin and thick black lines, respectively. Shaded
areas are used to highlight the subgraphs GL and GR relative
to the two groups. Finally, in our representation of the con-
centration matrices, only the upper-triangular part is given
and the entries involved in equality constraints are in bold.

Example C.1 (Fig. 3) In the pdRCON model of Fig. 3 the
edges {2, 3} ∈ GL and {2′, 3′} ∈ GR are both present and
such that θ23 = θ2′3′ = α; that is, they form an inside-
block parametric symmetry. On the other hand the edges
{1, 2} ∈ GL and {1′, 2′} ∈ GR are both present, thereby
forming an inside-block structural symmetry, but not a para-
metric symmetry because the corresponding concentrations
θ12 and θ1′2′ are not constrained to be equal. In this model
there is also one vertex symmetry, encoded by the equality
constraints θ11 = θ1′1′ = δ, whereas the only existing across-
block symmetries are those that involve missing edges, and
thus zero concentrations.

Example C.2 (Fig. 4) In the pdRCON model of Fig. 4 the
edges {1, 2′} and {2, 1′} are both present and form the inside-
block parametric symmetry with θ12′ = θ21′ = γ . On the
other hand, the edges {2, 3′} and {3, 2′} are both present,

thereby forming an across-block structural symmetry, but not
a parametric symmetry because the corresponding concen-
trations θ23′ and θ32′ are not constrained to be equal. In this
model, there are neither vertex symmetries nor inside-block
symmetries. Indeed, the inner structure of the two groups is
very different because GL is a fully disconnected whereas GR

is complete.

Example C.3 (Fig. 5) The pdRCON model of Fig. 5 shows a
large amount of symmetry. More specifically, there is (i) full
vertex symmetry with θ11 = θ1′1′ = δ1, θ22 = θ2′2′ = δ2 and
θ33 = θ3′3′ = δ3; (ii) full across-block parametric symmetry
with θ12′ = θ21′ = γ1 and θ23′ = θ3′2 = γ2 and, finally, (iii)
there is full inside-block structural symmetry. However, there
are no inside-block parametric symmetries involving present
edges, and therefore this is not a fully symmetric model.

Example C.4 (Fig. 6) The structure of the graph in Fig. 6 is
the same as that considered in Example C.3, but in this case
there are additional equality constraints so that full para-
metric symmetry is achieved. In may be worth noting that,
although this is a fully symmetric model, thin lines are used
to depict the edges {1, 1′} and {2, 2′}. Indeed, these edges are
associated with the diagonal entries of�LR and, in pdRCON
models, these parameters are not considered for possible
equality constraints.

D Plots of the two selected models for the
breast cancer analysis of Sect. 8

Visual depiction of the two graphs associated to: (i) pdRCON
model with forced full vertex symmetry and penalization
on inside- and across-blocks (modfV, Fig. 7); (ii) fully sym-
metric pdRCON model (modfVIA, Fig. 8). In both plots, the
character coding is the following: empty circle, for structural
non-zero symmetries (unicode character U+25CB, white
circle); full circle, for parametric non-zero symmetries (uni-
code character U+25CF, black circle); diagonal slash for
asymmetric edges (unicode character U+2571, box drawings
light diagonal upper right to lower left). Labels for columns
and rows end with the string “_T” if the genes are measured
on tumor tissues and “_H” if measured on healthy tissues.
Lower triangular portion is not shown due to the symmetric
nature of the matrix.
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Fig. 7 Depiction of the graph associated to model modfV, selected
according to eBIC (γ = 0.5), and fit on the breast cancer data of Sect. 8;
for row and column labels, “_T” denotes tumor tissue and “_H” healthy

tissue; character coding: empty circle, structural non-zero symmetries;
full circle, parametric non-zero symmetries;diagonal slash,asymmetric
edges
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Fig. 8 Depiction of the graph associated to model modfVIA (fully sym-
metric model), selected according to eBIC (γ = 0.5), and fit on the
breast cancer data of Sect. 8; for row and column labels, “_T” denotes

tumor tissue and “_H” healthy tissue; character coding: empty circle,
structural non-zero symmetries; full circle, parametric non-zero sym-
metries; diagonal slash, asymmetric edges
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