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Abstract: In recent years, food authentication has acquired significant importance due to the increase
in the incidence of fraud and counterfeiting. Alcoholic beverages are among the food products most
susceptible to these kinds of illicit practices due to their high commercial value. In the EU alone, there are
47 categories of spirit drinks and approximately 250 geographical indications (GIs). The production and
labeling of GIs are strictly regulated, and developing analytical procedures that can ensure compliance
with the legislation is essential to guarantee the typicality of these products. The aim of this review is
to summarize the most relevant analytical techniques used for the authentication and quality control
of two well-renowned GIs: “Grappa” and wine brandy. It considers the last decade of advancements
for both conventional targeted chromatographic techniques and less common methods mainly based
on spectrometry coupled with chemometrics for quick and non-destructive discrimination of samples.
Novel approaches and future perspectives are also highlighted.
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1. Introduction

The issue of food authentication has become particularly relevant in recent years
due to the intensification of illegal practices such as fraud and counterfeiting. Alcoholic
beverages are particularly subject to these practices because of their high demand and
their significant impact on the economic sector of many countries [1]. In the EU alone,
there are 47 categories of spirit drinks and approximately 250 geographical indications
(GIs) from different countries [2]. The quality, sensory features and reputation of GIs are
strictly linked to the country, locality or region of their geographical origin [3]. A recent
study found that the sales value of a product with a protected name is, on average, double
that of similar products without a certification [4]. Alcoholic beverages with GIs include,
among others, “Grappa” (Gr) and “Brandy Italiano” from Italy and GI Brandies from other
European countries, such as “Brandy de Jerez” from Spain, “Deutscher Weinbrand” from
Germany and “Brandy Français” from France. These beverages must comply with the
category standards set by the EU Commission regarding presentation, labeling, origin and
production process [5] as well as with the peculiar GI product specifications. “Grappa”,
for instance, can only be produced from grapes grown, vinified, distilled and fined in
Italy [6], while “Brandy de Jerez” is obtained and aged in the Spanish province of Cádiz
only in the three localities of Sanlucar de Barrameda, Jerez de la Frontera and El Puerto de
Santa Maria [7] following specific production steps described in the product specification
itself. It is evident that the ability to verify the origins and technological paths of these
products is crucial for counteracting fraud. Different approaches have been developed to
verify compliance with the above-mentioned regulations and authenticate Gr and wine
brandy (WB) GIs. Many of these approaches use traditional analytical techniques such
as chromatography, mainly coupled to mass spectrometry, with the aim of identifying
marker compounds for discrimination [8]. These methodologies are very effective but
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often time- and/or sample-consuming and expensive. Other approaches use different
techniques mostly based on spectroscopic methods and, to a lesser extent, other methods
such as those based on multisensory systems (electronic nose and tongue) coupled with
chemometrics to obtain an overall profile of the many compounds constitutive of the
product without identifying specific congeners. These untargeted methods are usually
rapid, non-destructive and cost-effective. Both approaches can furnish accurate results in
terms of discriminating power and have both advantages and disadvantages. The aim of
this review is to provide an overview of studies on the techniques for the authentication and
quality control of distillates with a specific target on Gr and WB GIs, covering the research
carried out in the last decade. The subject has been divided into five main chapters concerning
spectroscopic, chromatographic and hyphenated methods; sensor arrays; multi-platform
techniques; and other methods. For each chapter, the pertinent chemometric methods are
briefly described, directing the reader to basic references for more in-depth explanations. In
the final chapters, an overview of chemometric tools applied in the authentication of Gr and
WB GIs and technical challenges and future perspectives are highlighted.

2. Analytical Strategies for Authentication and Quality Control
2.1. Spectroscopic Methods

Spectroscopic methods are used to determine the authenticity of alcoholic beverages,
commonly by adopting an untargeted approach [8]. The present chapter focuses on studies
concerning infrared (IR), Raman and fluorescence spectroscopic techniques, which emerged
as the most effective for Gr and WB GI authentication. Other spectroscopic methods, such as
ultraviolet–visible (UV–VIS) and nuclear magnetic resonance (NMR), successfully applied
for other categories of spirit drinks or other GIs [9–11], appear to be less considered in the
recent literature for such a scope. An NMR application for Gr discrimination according to
the aging technology is presented at the end of the chapter on multi-platform techniques.

2.1.1. Infrared Spectroscopy

IR showed good potential in food authentication as a fast, low-cost analytical tech-
nique with minimal sample preparation, demonstrating the capacity to identify different
compounds or classes of compounds [12,13]. IR theory utilizes the concept that different
functional groups display different absorption frequencies. In this way, it is possible to
identify compound categories present in foodstuffs, such as proteins, carbohydrates, lipids,
vitamins and minerals [14]. The IR region of the electromagnetic spectrum spans from
14,000 to 50 cm−1 and is divided into three areas: near-IR (14,000–4000 cm−1), mid-IR
(4000–400 cm−1) and far-IR (400–50 cm−1) spectroscopies [15]. In particular, near-IR (NIR)
and mid-IR (MIR) spectroscopies have proven to be efficient and cost-effective compared to
reference analysis methods. A study on the quality control of a group of 166 grape-derived
spirits was carried out to predict some legally relevant parameters, namely the alcohol
strength and contents of methanol, acetaldehyde and fusel alcohols, by applying Fourier
transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) in the MIR
region and partial least square (PLS) chemometric regression models [16]. The comparison
of the results with those obtained with official methods based on gas chromatography
coupled with flame ionization detection (GC-FID) and densimetry [17,18] showed satis-
factory correlation coefficients for methanol (r2 = 99.4%), alcoholic strength (r2 = 97.2%),
acetaldehyde (r2 = 98.2%) and fusel alcohols (r2 from 97.4% to 94.1%). The same dataset
allowed the determination of the ratio of performance to deviation of the method, obtaining
values of 12.8 (methanol), 6.0 (alcoholic strength), 7.5 (acetaldehyde) and 6.2–4.1 (fusel
alcohols); a value of 2.5 is the minimum threshold for a reliable calibration [19]. These
results demonstrated the good accuracy of the proposed method for quick and easy sample
screening. Another study showed the potential of NIR spectroscopy to predict the aging
time of brandies. [20]. The authors applied NIR spectroscopy combined with principal
component analysis (PCA), PLS and linear discriminant analysis (LDA) to discriminate
the samples. Ethanol, esters, acids, methanol and higher alcohols were also determined
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(with official methods) to obtain reference values to correlate with NIR spectra. The study
showed that the most significant regions of the NIR spectra (linked to phenolic and aromatic
compounds) were in the ranges from 904 nm to 935 nm and from 1400 nm to 1699 nm.

The same authors found that the PCA based on the phenolic composition and on
alcohols with a higher molecular weight allowed the best discrimination between brandies
of different ages. Furthermore, the same authors developed some PLS calibration models for
each parameter evaluated, i.e., total phenolic content, total higher alcohol content and total
phenolic plus higher alcohol content, and an LDA classification model based on individual
phenols with a classification rate of 100%. Other authors [21] studied the capacity of NIR to
discriminate between wine spirits aged in wooden barrels or in stainless-steel tanks with
wooden staves made from different types of wood (Limousin oak and Portuguese chestnut).
They determined the alcoholic strength and the main volatile compounds in wine spirits
aged for 6, 12 and 18 months by electronic densimetry and by GC-FID. The same samples
were analyzed by NIR spectroscopy coupled to PCA. The results showed that the aging
technology had more influence than the type of wood on the features of the samples and that
the most significant spectral regions for differentiating the samples were around 6859 cm−1

and from 5200 cm−1 to 4200 cm−1. Another study [22] applied MIR and NIR spectroscopies
combined with four different chemometric methods to discriminate between Gr and other
spirits and between authentic and adulterated Gr. In the discriminating part of the study,
59 samples of pure Gr and 17 fruit and cereal distillates were analyzed. The NIR and
MIR spectra were processed, separately, by PLS-DA [23,24] and simultaneously by three
different data fusion tools, namely multi-block partial least squares (MB-PLS-LDA) [25,26],
sequential and orthogonalized covariance selection (SO-CovSel-LDA) [27] and sequential
and orthogonalized partial least squares (SO-PLS-LDA) [28]. The best strategy was the data
fusion carried out with SO-PLS-LDA and SO-CovSel-LDA, which provided the best results
with classification rates around 77% for Gr and 60% for the other spirits. In the second
part of the work, a group of 36 different Gr spirits, intentionally adulterated with vodka,
was analyzed by NIR and MIR spectroscopies. The resulting NIR and MIR spectra were
processed individually by PLS-DA and simultaneously by multi-block analysis. All the
obtained models showed very good prediction capabilities (up to 100% classification rate).

2.1.2. Raman Spectroscopy

Raman spectroscopy is an optical measurement technique that provides information
on molecular composition based on the inelastic scattered light from a sample when excited
by a laser beam. The photons of a laser beam interact with the molecules of the matrix: a
part of the radiation diffuses elastically in all directions without loss of energy, that is, at
the same frequency as the incident radiation (elastic or Rayleigh scattering), while a smaller
part is diffused inelastically yielding (Raman scattering Stokes) or gaining (anti-Stokes
Raman scattering) energy [29]. It is possible to obtain information about the vibrational
modes of molecules from the energy shift obtained. Raman spectroscopy is widely used
to identify molecules and detect functional groups. [29]. Its main advantages are the high
analytic selectivity and the possibility of carrying out rapid “in situ” analysis through
plastic or transparent glass containers, thus limiting contact with the sample. Recently [30],
Raman spectroscopy (performed at an excitation wavelength of 532 nm) combined with
chemometric algorithms and machine learning was applied to classify 42 brandy and cognac
samples with various geographical origins and aging times. To compute the chemometric
models, the range of Raman shifts between 800 and 300 cm−1 was selected because it was
considered the most informative. The chemometric classification models were processed by
an extreme gradient boosting (EGB) algorithm [31], reaching an accuracy of 100% for both
geographical origin and aging period. With the aim of differentiating wine spirits based on
aging time, wood species and aging technology, other authors [32] applied the FT-Raman
methodology to 60 samples of differently aged wine spirits. The Raman spectra processed
by PCA confirmed the good capabilities of FT Raman to discriminate the differently aged
samples. The most relevant regions to observe differences were in the range from 3000 to
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2600 cm−1 and from 1570 to 790 cm−1. Despite the rather limited number of applications
in the field of distillates, Raman spectroscopy combined with multivariate analysis or
machine learning techniques appears to be a promising technique for the authentication of
brandy spirits especially because it allows, in many cases, obtaining very specific chemical
information without sample manipulation.

2.1.3. Fluorescence Spectroscopy

Fluorescence spectroscopy is a technique that is gaining importance in the analysis of
beverages due to its sensitivity and selectivity. Fluorescence spectra of beverages generally
consist of broad, overlapping fluorescent bands containing chemical and physical infor-
mation about different components of the sample. WB GIs contain several fluorophores,
but there are relatively few recent works about the use of fluorescence on these matrices,
most of which use a fluorescence excitation spectrum recorded at one emission wave-
length [33,34]. A technique that provides more detailed information on fluorescent species
is excitation-emission matrix (EEM) fluorescence spectroscopy. Using this technique, all
fluorophores within the sample are excited simultaneously over the explored wavelength
range, allowing the collection of all excitation and emission spectra and obtaining the
total fluorescence spectrum of the sample. This analytical approach, with front-face and
right-angled arrangements, combined with specific chemometric calibration tools, namely
parallel factor analysis PARAFAC multiple linear regression (MLR) and PARAFAC-PLS,
was applied to quantify mixed wine spirits in some adulterated brandy blends [35]. The
most promising results were obtained using right-angled geometry and PARAFAC-PLS.
This approach allowed the determination of the presence of wine spirit mixed in the adulter-
ated brandy with a coefficient of determination of 0.995% at a level below 1.9% (v/v). The
same approach was used in another work [36] to quantify the amount of water and ethyl
and methyl alcohols in adulterated brandy mixtures, obtaining root mean square prediction
errors < 0.24% and coefficients of determination in prediction > 0.993. Another technique
frequently applied to analyze spirit drinks is synchronous fluorescence spectroscopy (SFS).
It is based on the simultaneous scanning of excitation and emission signals with a fixed
wavelength range with the aim of obtaining more resolved spectra than those coming from
conventional fluorescence spectroscopy [37]. Some authors compared SFS spectra with
emission spectra (both processed by PCA) and with EEM spectra (processed by unfold PCA
and PARAFAC) to authenticate 44 brandy samples based on their geographical origin [38].
The SFS method performed at two wavelength ranges (20 and 60 nm) on diluted samples
showed the best performance with 95.5% correct classification. Innovative techniques such
as SFS, which appear to have a high potential for brandy authentication, highlight the
importance of accurate data analysis in order to have good discriminating power.

In Table 1, an overview of the main features of the cited studies on spectroscopic
techniques for the authentication of Gr and WB is reported.
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Table 1. Overview of spectroscopic techniques for the authentication of Grappa and wine brandy GIs.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

Grape marc spirits, wine
spirits and brandies
(166 samples in total)

Screening analysis for
alcoholic strength and
content of
methanol, acetaldehyde and
fusel alcohols

FTIR–ATR
spectroscopy in the MIR
region (4000–400 cm−1)

PLS

Accuracy values:
methanol (r2 = 99.4%; RPD = 12.8);
alcoholic strength (r2 = 97.2%; RPD =
6.0); acetaldehyde (r2 = 98.2%; RPD =
7.5); and fusel alcohols (r2 from 97.4 to
94.1%; RPD from 6.2 to 4.1).

[16]

Wine spirits (5 not aged, 2
aged briefly and 6 aged for a
long time) + 3 commercial
brandies

Aging duration
NIR spectroscopy
(904–935 nm and 1400–1699
nm).

PCA, PLS, LDA

Accuracy values:
total phenolic content (R2 > 0.95; RPD >
4.0); total fusel alcohol content (R2 > 0.90;
RPD > 3.0).

[20]

40 wine spirits aged for 8, 180,
365 and 540 days with
different aging technologies
(wooden barrels and
micro-oxygenation and
staves) and wood species
(Chestnut and Limousin oak)

Aging technology and
duration

NIR spectroscopy
(12,500–4000 cm−1)
and GC-FID for major
volatile compounds

PCA

Discrimination between
wine spirits based on the wood species
used, as well as the aging technologies,
with an accuracy of up to 90% (for a
specific aging time).

[21]

59 pure Grappa samples + 8
pear distillates + 4 cereal
distillates + 3 apple distillates
+ 2 distillates of berries and
36 mixtures Grappa–Vodka

Spirit drink categories
MIR (400–4000 cm−1) and
NIR (10,000–4000 cm−1)
spectroscopies

PLS-DA (on NIR and MIR
spectra separately),
MB-PLS, SO-PLS,
SO-CovSel PLS-DA (on NIR
and MIR spectra
simultaneously)

Best classification rate for discrimination
between Grappa and other distillates
(% on test set): 79.6 with SO-PLS-LDA
and SO-CovSel-LDA (data fusion).
Best classification rate for discrimination
between pure and adulterated Grappa
(% on test set): 100 with PLS-DA on MIR,
and 100 with SO-PLS-LDA and
SO-CovSel-LDA (data fusion).

[22]

60 wine spirits aged with
Limousin oak, Portuguese
chestnut and Limousin oak +
Portuguese chestnut
for 8, 30, 180 and 360 days in
barrels and stainless-steel
tanks with staves of the same
types of wood

Aging period, type of wood
and aging technology.

Raman spectroscopy
(excitation wavelength:
1064 nm; range of Raman
shifts: from 70 to 3500 cm−1)

ANOVA, PCA

Ratio of calibrated to validated residual
variance of 0.5; ratio of validated to
calibrated residual variance of 0.75; and
residual variance increase limit of 6%.
Most
relevant spectral regions: from 3000 to
2600 cm−1 and from 1570 to 790 cm−1.

[32]
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Table 1. Cont.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

16 brandies (4 brands × 4
batches from each brand)
from 3 different producers +
60 mixed wine spirits (15
brands × 4 batch from each
brand) from 5 different
producers + 62 brandies
adulterated with mixed wine
spirits

Pure brandies from
adulterated brandies with
mixed wine spirit

EEM fluorescence
spectroscopy (emission
wavelength range 485 ÷ 580
nm. Excitation wavelength
range 363 ÷ 475 nm)

PARAFAC–PLS,
PARAFAC–MLR

Determination of mixed wine spirit in
adulterated brandy at levels down
to 1.9% (v/v). Coefficient of
determination (R2) between the
reference content and the predicted
values of 0.995.

[35]

44 brandies produced in
different countries Geographical origin

SFS (∆λ = λemission −
λexcitation).
and EEM fluorescence
spectroscopies

PCA-LDA, UPCA-LDA,
PARAFAC-LDA

Highest total correct classification: 95.5%
(SFS recorded at ∆λ =20 and ∆λ =60 nm
on diluted samples).

[38]
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2.2. Chromatographic and Hyphenated Techniques

One of the most important parameters for evaluating the quality, safety and authentic-
ity of alcoholic beverages is the content of volatile compounds, named congeners. These
molecules are formed together with ethanol in the processes of fermentation, distillation
and maturation. Chromatographic techniques, most commonly GC-FID and GC coupled
to mass spectrometry (GC–MS), are the techniques traditionally used for the determination
of these compounds. The European Commission Regulation n. 2870/2000 [18], which
establishes community reference methods for the analysis of spirit drinks, provides a
GC-FID method for the determination of acetaldehyde, higher alcohols, ethyl acetate and
methanol, which are parameters that must be checked for compliance with the legal limits
prescribed for the category of spirit drink by the European Regulation n. 2019/787 [5].
In accordance with the official method mentioned above, some authors [39] proposed a
faster method with good accuracy and precision parameters to quantify 16 main volatile
compounds, including acetaldehyde, ethyl acetate, methanol and propan-1-ol, by using Fast
GC. Fast GC includes fast, direct heatin/cooling technology that reduces post-run cooling
and steep temperature gradients in combination with a high-pressure operating column.
According to the authors [39], this combination allowed them to achieve a total analysis
time of 8 min instead of the 40 min of conventional GC-FID while improving analytical
performance and achieving lower LOQ and LOD values. The Fast GC method was tested
on eight different spirits (including brandy) and wines supplied by proficiency-testing
providers or taken from the market. Another proposal to improve the official GC-FID
method by using the ethanol already present in the sample as an internal standard instead
of 4-methylpentan-2-ol (as indicated in the reference method) is reported in a more recent
study [40]. The method, developed to quantify the 10 main volatile compounds subjected
to regulatory limits, was tested on 25 samples of spirits (including Gr and WB) and, after
validation, was compared with the official method with regard to parameters of precision.
A comparison of the results obtained through the two methods displayed non-significant
differences from −1.3 to 0.9% at p ≤ 0.05. The advantages of using pre-existing ethanol
as an internal standard are many. The European regulation, in fact, requires congeners
concentrations to be expressed as mass of congener (in g) per 100 L of ethanol in the
sample. This implies determining the density and the ethanol content for each sample
by distillation and densimetry, respectively. These sample preparation steps, combined
with the addition of the internal standard, increase the measurement uncertainty as well
as the time required for the analysis. With the proposed method the concentrations of the
congeners are directly expressed in grams per 100 L of ethanol without any other analytical
step, eliminating further sources of uncertainty and significantly shortening the analysis
times. Another study [41] demonstrated the potential of GC-FID combined with LDA
and PCA to verify the authenticity of Gr samples. The authors analyzed the content of
the 10 main volatile substances mentioned above and the alcoholic strength of 123 spirit
drinks belonging to different categories, including Gr, wine spirit, grain spirit and fruit
spirit. The data were processed by LDA to develop a classification model in which to
project two samples considered not compliant for flavor. The model, previously validated,
provided a percentage of correct classifications higher than 97% in both cross-validation
and external validation. To verify the assignment of the LDA model to the “wine spirit” cat-
egory, the authors computed two one-class PCA models for the “Grappa” and “wine spirit”
categories, finding that the suspect samples did not belong to any of the classes consid-
ered, as incorrectly predicted by the LDA model. This study highlighted the intrinsic
problem inherent in LDA models: the algorithm assigns a projected sample to one of the
categories used to develop the model even if the unknown sample belongs to a category
not represented in the model itself as, in fact, occurred in the case reported in that study.
Other authors [41] evaluated the effectiveness of headspace solid-phase microextraction
gas chromatography–mass spectrometry (HS-SPME/GC-MS) coupled with two different
chemometric tools, PLS-DA and Soft Independent Modelling by Class Analogies (SIMCA),
as an analytical approach to discriminate 60 Gr samples with GI from 22 fruit and cereal
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distillates produced in the same geographical area. SPME was performed using a 50/30 µm
(divinylbenzene/car-boxen/polydimethylsiloxane) DVB/CAR/PDMS fiber. The PLS-DA
model provided the best results with the correct classification of all but one test sample.
To identify the chemical markers that gave the greatest contribution in discriminating Gr
from other categories of spirit drinks, the Variable Importance in Projection (VIP) indices
were calculated [42,43]. Compounds with a VIP index > 1 are considered significant for
discrimination. Several discriminating compounds were identified, including α-terpinene,
α-terpineol, ethyl heptanoate, ethyl dodecanoate and furfural. Interestingly, the same
discriminating compounds for Gr spirits were also identified by other authors [44]. These
authors analyzed 34 samples of Gr and Gr liqueurs of different brands using an integrated
approach based on SPME-GC-MS (to identify compounds of the volatile fraction) coupled
with chemometrics, the matrix-assisted laser desorption ionization time of flight mass
spectrometry (MALDI-TOF/MS) technique (to determine the fingerprint of the non-volatile
fraction) and MALDI-TOF MS/MS (to identify the components of the non-volatile frac-
tion). SPME was performed using a 50/30 µm DVB/CAR/PDMS fiber, as in the previous
study. PCA analysis of SPME-GC/MS data of volatile compounds highlighted that Gr
samples were discriminated by brand and that the most important marker compounds
were ethanol and, to a lesser extent, ethyl esters of decanoic and octanoic acids, ethyl acetate
and 1-pentanol. The MALDI-TOF MS technique allowed the simultaneous determination
of many compounds of the non-volatile fraction, showing the differences at a qualitative
and semi-quantitative level between the analyzed samples. This method proved to be
an effective approach for reliable discrimination between the analyzed Gr samples. A
more in-depth structural analysis of molecules within spectra performed by MALDI-TOF
MS/MS allowed the identification of 12 non-volatile organic molecules. Furthermore,
MS/MS spectra of some samples showed the presence of 5-methylfuran resulting from
the degradation of carbohydrates during the aging period inside the barrels. Another
technique used in the analysis of Gr volatile compounds is comprehensive bidimensional
gas-chromatography (GCxGC or 2D-GC). It can provide more sensitivity and selectivity if
compared with the more conventional GC-MS. In a work [45], HS-SPME/GCxGC-ToF/MS
and HS-SPME/GC-MS were used to study the changes in the composition of volatile sub-
stances of an unaged Gr during the storage period and the relationship of those compounds
with sensory attributes. After HS-SPME (performed using a DVB/CAR/PDMS 50/30 µm
fiber), the separation of the volatile substances was carried out with a GC-MS and then
with a 2D-GC system working with two columns with moderate difference in polarity. This
study demonstrates how 2D-GC analysis could be effective in determining compounds
with similar chromatographic features that would be unresolved in one-dimensional analy-
sis, allowing a greater number of compounds to be determined and correlated to sensory
analysis. Besides Gr from Italy, other popular grape marc distillates with GI are Orujo
from Spain, Eau-de-Vie de Marc from France and Greek Tsipouro [46]. Outside Europe,
Brazil produces a grape mark spirit named Graspa with a production technology similar to
that of Italian Grappa. To authenticate the geographical origin, comparative studies have
been carried out in the past years [47] and more recently [48] between some of these spirit
drinks and Italian Gr. In the most recent study [48], 28 compounds were determined by
GC-FID and GC-MS to discriminate 15 samples of Italian Gr from 6 samples of Brazilian
Graspa. The results of chemometric analysis using PCA and hierarchical cluster analysis
(HCA) demonstrated the method’s capability to discriminate between the two groups of
grape mark spirits. Furthermore, analysis of variance (ANOVA) highlighted that methanol,
diethyl succinate, isoamyl alcohol and propanol were the main discriminating compounds
between the two sample groups. Although traditionally, Gr is not aged in wooden barrels,
in the last two decades, Gr producers have started to age Gr spirits to meet the demands
of the world market. For this reason, studies comparing the composition of this distillate
according to different aging techniques are of increasing interest. Some authors used the
SPE-GC-MS technique to compare the profile of volatiles present in Gr aged in oak casks
with that present in Gr aged in cherry casks [49]. In that study, the effects of grape variety



Appl. Sci. 2024, 14, 8092 9 of 23

(Cabernet Sauvignon/Merlot blend and Prosecco) and ethanol content (55% and 68% v/v)
on the overall volatile profile were also considered. The results showed that Gr aged in
oak barrels was ten times richer in volatile substances than Gr aged in cherry barrels and
that the compounds most affected were coniferaldehyde, syringaldehyde, vanillin, eugenol
and guaiacol derivatives. Furthermore, both ethanol content and grape variety influenced
the extraction of volatiles from wood, with higher contents found for the Prosecco variety
with 55% v/v ethanol. There is no legal obligation for producers to declare the wood
seasoning conditions on the label, although they sometimes choose to claim this feature to
differentiate their products from similar ones. It is, therefore, important to develop useful
methods for verifying the declared seasoning protocols. In this regard, very recently [50],
ionic chromatography (for the determination of organic acids) and GC-FID (for the de-
termination of volatile compounds) coupled with chemometric tools have been used to
characterize Brandy de Jerez aged in sherry casks seasoned for 0, 3, 6, 12, 18 and 60 months
with different sherry wines. The study showed that the factors that mostly influenced the
composition of organic acids and volatile substances of the brandies under investigation
were the characteristics of the sherry wines used for barrel seasoning and the duration of
seasoning. Similarly, ionic chromatography for the determination of short-chain organic
acids [51] and ultra-high-performance liquid chromatography coupled with a photodiode
array detector (UHPLC-PDA) to quantify polyphenols and furfurals [52] were used by
other authors [53] to differentiate brandies of Jerez according to seasoning and aging time.

Apart from the identification and quantification of marker compounds in spirit sam-
ples, other studies use the so-called “fingerprinting” approach, in which the overall analyti-
cal signal of the samples is acquired and analyzed with multivariate statistical techniques,
which allow the different fingerprints to be clustered into distinct groups or categories.
This approach, frequently used in food authentication [54], has been employed in two
recent works to discriminate brandies according to different production processes. In the
first study [55], the phenolic fingerprint determined by UHPLC-PDA and analyzed by
chemometrics was used to differentiate brandies according to oak type, toasting degree and
aging time. In the second work [56], the GC-FID technique was used to obtain the finger-
prints of the main volatile fraction (corresponding to aldehydes, higher alcohols and major
esters) of a series of brandies of Jerez aged 14 and 28 months. Unsupervised (hierarchical
cluster analysis and PCA) and supervised (PLS–DA and support vector machine) pattern
recognition tools were then used to examine the fingerprints. This untargeted approach is
considered to provide greater discriminating power than the targeted one, as it can exploit
the entire information included in the raw profile of samples.

Unlike spectroscopic techniques, which often allow analysis after minimal sample
handling, for chromatographic methods, a very crucial part is the selection of appropriate
sample-handling procedures. In many cases, in fact, the direct analysis of samples may be
hindered by interfering substances, low analyte concentration or specific sample character-
istics that require preparatory steps of cleaning, concentration and/or derivatization. Some
authors compared the profile of volatiles and semi-volatiles contained in grape mark spirits
by GC-TOF-MS analysis after previous extraction by dispersive liquid–liquid microextrac-
tion (DLLME) or SPME. The study highlighted that the DLLME extraction technique was
able to provide higher responses than SPME for most substances. Two relevant aspects
to consider in the application of DLLME, especially in routine analysis, are the use of
chlorinated solvents and the difficulties in automating the procedure [57].

Table 2 presents an overview of the main features of the above-mentioned studies on
chromatographic and hyphenated techniques for the authentication of Gr and WB.
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Table 2. Overview of chromatographic and hyphenated techniques for the authentication of Grappa and wine brandy GIs.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

8 spirit drinks (eau-de-vie de
marc, armagnac, rhum,
calvados, grape marc
distillate, brandy, whisky and
cognac) + 4 wines (fortified
red wine, sparkling red wine,
dry white wine and sweet
Champagne) + 20 different
grape marc spirits and 20
different red wines

Determination of 16 volatile
congeners (acetaldehyde, ethyl
formate,
ethyl acetate, acetal, methanol,
butan-2-ol, propan-1-ol,
2-methylpropan-1-ol, butan-1-ol,
2-methylbutan-1-ol,
3-methylbutan-1-ol, ethyl lactate,
1-hexanol, furfuraldehyde, benzyl
alcohol and 2-phenylethanol) for
quality control

Fast GC-FID: high-speed
injection system, CP-Wax
57 CB column (25 m ×
0.25 mm × 0.2 µm), rapid
oven heating/cooling

Determination of
calibration curves, LOD,
LOQ, recovery,
repeatability and
reproducibility for each
congener.

For all analytes:
Correlation coefficient ≥ 0.95;
LOQ (1.0 ÷ 1.5 µg/g);
LOD (0.3 ÷ 0.5 µg/g);
Recovery values ≥ 93%;
Repeatability ≤ 10%;
Reproducibility: 1.6 ÷ 13%.

[39]

25 spirit drinks (rum,
whiskey, bourbon, brandy,
calvados, Grappa, slivovice,
tsikoudia, vodka, gin, grain
spirit, liqueurs, vermouth,
sake, nalewka, cocktail,
glühwein and rectified spirit)
purchased
from local markets

Determination of 10 volatile
congeners (acetaldehyde, acetal,
ethyl acetate, methanol,
propan-1-ol, 2 methylpropan-1-ol,
butan-1-ol, butan-2-ol,
2-methylbutan-1-ol and
3-methylbutan-1-ol) for quality
control

GC-FID with pre-existing
ethanol as internal
standard

Student’s test, ANOVA

For all analytes, the relative differences
between the results obtained with the
proposed method and the official
method are in the range of −1.3 ÷ 0.9%
and statistically insignificant at the 0.05
significance level.

[40]

123 spirit drinks (43 Grappa
samples, 35 wine spirits, 15
grain spirits, 15 apple spirits,
15 pear spirits) + 2
non-compliant samples

Spirit drink category

GC-FID (for the
determination of volatiles)
and distillation and
electronic
densimetry (for the
determination of the
actual alcoholic strength
by volume)

LDA, one-class
modeling PCA

LDA model: % of correct classifications >
97 both in cross-validation and external
validation. Non-compliant samples
classified as “wine spirit”.
One-class modeling PCA: non-compliant
samples classified neither as “wine
spirit” nor “Grappa”.

[41]
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Table 2. Cont.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

82 spirit drinks (60 Grappa
samples, 4 grain spirits and
18 fruit marc spirits)

Spirit drink category
HS-SPME/GC-MS
SPME:50/30 µm
DVB/CAR/PDMS

PLS-DA, VIP scores
of PLS-DA, SIMCA

PLS-DA average correct classification
rate: 94.3% (cross-validation) and 100%
(external validation).
SIMCA analysis: specificity and
sensitivity of 92.9% and 87.5%,
respectively, in cross-validation and
100% and 33.33%, respectively, in
external validation.

[42]

34 spirit drinks (32 Grappa
spirits and 2 Grappa-based
liquors)

Characterization of the profile of
volatile and non-volatile
compounds in Grappa spirits for
quality control

SPME-GC/MS (for the
determination of the
volatile fraction),
MALDI-TOF/MS (for the
fingerprint determination
of the non-volatile
fraction),
MALDI-TOFMS/MS (for
the identification of
molecules of the
non-volatile fraction)

PCA PCA analysis: Grappa samples are
grouped according to producer. [45]

1 Grappa Characterization of volatile profile
for quality control

HS-SPME/GC-MS, HS-
SPME-GCxGC-ToF-MS.
SPME fiber:
DVB/CAR/PDMS, 50/30
µm

HS-SPME-GCxGC-ToF-MS provides
more and better resolved peaksthan
HS-SPME/GC-MS.

[46]

21 grape mark spirits (15
Italian Grappa and 6
Brazilian Graspa)

Geographical origin

GC-FID (for the
determination of higher
alcohols and acetic acid).
GC-MS (for the
determination of esters,
terpenes, lactones and
ionones)

ANOVA, PCA, HCA

PCA, HCA analysis: discrimination of
the two groups of grape marc spirits on
the basis of chemical differences between
their distillates.

[49]
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Table 2. Cont.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

32 Grappa spirits: 2 pomace
varieties (Cabernet
Sauvignon/Merlot blend and
Prosecco) × 2 barrique types
(oak wood and cherry wood)
× 2 ethanol contents (55%
and 68% v/v) × 4 aging times
(1, 3, 6 and 12 months)

Aging conditions
SPE-GC/MS and sensory
analysis
SPE cartridge: C18

PCA, PLS-DA, VIP
scores of PLS-DA

No significant changes in
fruity ethyl esters and floral terpenols
during aging in oak and cherry barrels.
Significative changes in the volatile
profiles of the final products depending
on the type of barrel, ethanol content
and variety of Grappa.

[50]

24 Brandies de Jerez aged in
different types of casks
(seasoned for 3, 6, 12, 18 and
60 months with Fino, Oloroso
and Pedro Ximénez Sherry
wines)

Aging technology

Ionic chromatography
(for the determination of
organic acids), GC-FID
(for the determination of
volatile compounds) and
sensory analysis

ANOVA, Fisher’s least
significant difference
test, HCA, factorial
analysis

HCA and factorial analysis: grouping of
brandies based on the duration and type
of cask seasoning.

[51]

148 Brandies de Jerez aged
for different times in casks
seasoned with 3 types of
wine (30 with Fino wine, 64
with Oloroso wine and
54 with Pedro Ximénez wine)

Aging technology

HPLC-conductivity
detector (for the
determination of short
chain organic acids) and
UHPLC-PDA (for the
determination of phenolic
and furfural compounds)

ANOVA, Fisher’s least
significant difference
test, cluster analysis,
PCA, MLR

ANOVA and Fisher’s least significant
difference test: significant differences in
most variables depending on the type of
casks seasoning.
Cluster and PCA analysis: grouping of
brandies depending on the type of cask
seasoning.
MLR: correlation coefficient = 0.909115.

[54]

72 brandies aged for 12 and
24 months in casks of 3 oak
species (Quercus Alba,
Quercus Robur and Quercus
Petraea) and 2 levels of wood
toasting (medium and light).

Oak species, levels of wood
toasting and aging time

UHPLC-PDA (for the
determination of phenolic
fingerprint)

PCA, PLS-DA

PCA analysis: groupings based on
toasting level, oak species and aging
time.
PLS-DA analysis: % of correct
classifications ≥ 0.86 (cross-validation
and external validation).

[56]
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Table 2. Cont.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

7 Brandies de Jerez made
from wines with different
total sulfur dioxide content
(in the range 10 ÷ 73 mg/l),
distilled using 4 different
distillation methods and aged
for 14 and 28 months in light
and medium toasted oak
casks (Quercus alba, Quercus
robur and Quercus petraea).

Production and distillation
conditions of base wines and aging
time of wine spirits

GC-FID (for
determination of the
major volatile fraction)

PCA, HCA, PLS-DA,
support vector machine

HCA and PCA analysis: clustering of the
samples based on the fermentation and
distillation conditions applied to the
base wines and the aging time of the
wine spirit.
Support vector machine models are
more reliable than PLS-DA models for
classification based on the
above-mentioned variables.

[57]

11 grape mark spirits with
different ethanol content (40
÷ 62 vol%) obtained by direct
and steam distillation from 4
grape varieties
(Mencía, Torrontés,
Treixadura and Albariño) of 2
geographical origins (Galicia
and Cantabria).

Characterization of the profile of
volatile and semi-volatile
compounds of grape mark
distillates

GC-TOF-MS with DLLME PCA

PCA analysis: clear separation between
the four different Galician grape
varieties and between the Cantabrian
and Galician samples.

[58]
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2.3. Sensor Arrays

Sensor arrays comprise a series of electronic sensors, such as electronic noses, capable
of detecting certain categories of compounds [58]. The interaction between sensors and
analytes occurs mostly through physical adsorption producing an electrical signal that
enables molecular recognition through comparison with a pre-existing database [59]. They
do not provide information on specific components but give quick general information
on the sample [60]. There are many types of sensor arrays used in spirits assessment,
including mass-sensitive quartz crystal microbalances [61], photonic crystals [62], UV–vis,
fluorescence and cataluminescence [63–65]. Many devices, however, have a low chemi-
cal specificity, which makes it difficult to detect small differences between very similar
compounds [66]. An effective discrimination between 14 spirits, including brandy, was
achieved with a colorimetric sensor array made up of 36 different classes of indicators (pH,
acid–base, redox and containing acid and amine nucleophiles specific for aldehydes and
ketones) and solvatochromic dyes [66]. Color variations in the sensor before and after expo-
sure to the vapors of the spirits enabled a color difference pattern to be obtained, allowing
the 14 spirits to be correctly classified according to their alcohol percentage and brand with
high accuracy (>99%). An optoelectronic tongue sensor array consisting of a negatively
charged, positively charged and two neutral poly(para-aryleneethynylene)s (PAE) at differ-
ent pH values (3, 7 and 13) was applied for the discrimination of 37 brandy-like alcoholic
beverages, including the GI German Weinbrand, aged for different times and a number of
“fake” brandies consisting of mixtures of various brandies with ethanol, caramel-colored
clear spirits and blends of different brandies [67]. The discriminating power of the assay
was compared to that obtained by measuring alcohol, density, extract and different volatile
compounds by GC-MS, showing that the sensor was able to discriminate between different
brandies with 99% accuracy and between identical brandies from heterogeneous batches
with higher discriminating power than that obtained by GC-MS. Given the scarcity of
studies, further research may be needed to improve the application of sensor arrays for the
authentication of distillates.

2.4. Multi-Platform Techniques

Alcoholic beverages and food in general have a complex composition, and data
from single analytical techniques may not be sufficient to fully characterize such com-
plex products. Analytical characterization and authentication of foodstuffs can benefit
from combining data from different instrumental sources. Multi-platform analysis, in fact,
presents several advantages over single techniques, such as increased information, reduced
impact of interferents and lower prediction errors [68]. A study based on a multi-platform
approach for differentiating Gr from other distillates was carried out with a set of 75 repre-
sentative samples of traditional Gr and other Italian fruit and cereal distillates produced
in the Italian regions of Trentino Alto Adige and Veneto [69]. The spirits were analyzed
with GC–MS, MIR and NIR techniques and classified with SO-PLS-LDA [28,70,71] and SO-
CovSel-LDA [27] to combine multi-platform data into single classification models [72,73].
The SO-PLS-LDA approach provided the best results, with a total classification rate of 100%,
compared to the SO-CovSel-LDA model with a total classification rate of 76.5%. The differ-
ence between the two results was attributed to the fact that the NIR data were excluded in
the creation of the SO-CovSel-LDA model because the cross-validation procedure for this
model indicated the NIR block as irrelevant. On the contrary, it probably provided relevant
information to discriminate the two categories under consideration. Another multiple ana-
lytical approach was used to differentiate Gr distillates matured in different types of wood
casks [74]. In this study, 15 Gr samples obtained from virgin Moscato pomace and aged
using oak or poplar wood fragments of different sizes and toasting levels were analyzed
by GC-MS, NIR, electronic nose (E-nose) and 1H NMR. GC-MS analyses were performed
to obtain an aromatic characterization of the distillates, while the other techniques were
carried out for classification purposes. The E-nose employed was a portable commercial
model with a sensor array consisting of 10 different metal oxide semiconductors. Each
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sensor generated a specific response to volatiles, simulating the human nose. There are
many advantages of 1H NMR, such as its high reliability and reproducibility, which make
it suitable for statistical studies on geographical origin and adulteration recognition, where
minute variations of many components must be detected simultaneously [75]. Unlike the
previous study, the multi-platform data were processed individually without combining
them into a single classification model. The GC-MS data were statistically processed by
ANOVA and PCA and the NIR, NMR and E-nose data by PCA. The spectral region be-
tween 11 and 5.5 ppm was selected for the NMR statistical analysis because it was linked
to relevant aromatic compounds such as phenols, aldehydes and aromatic groups. Good
separation was shown by 1H NMR-PCA analysis according to the toasting level but with
only partial separation among the groups with respect to the different wood formats. The
spectral ranges 6900–6800 cm−1 and 5500–4000 cm−1 were selected for NIR characterization.
The NIR statistical analysis highlighted discriminating power between the wood format
groups, but further studies with larger datasets are needed to confirm its potential. The
E-nose showed good capability to classify the samples, mainly according to the assortment
of wood. This capability, combined with the ease of use and portability of the device, makes
the technique particularly promising. The results of these studies highlight the effectiveness
of multi-block strategies for authenticating and protecting the geographical indications
under study also in relation to the aging technologies used.

2.5. Other Techniques
2.5.1. Elemental Analysis

The determination of trace elements, mainly by means of inductively coupled plasma
(ICP)-MS), for the authentication of spirits according to their botanical origin and/or pro-
duction processes has been described in the literature [76–79]. Unlike other beverages,
such as wine, however, in Gr and WB, the influence of raw materials appears to be much
less important [80], probably because distillation reduces the concentration of non-volatile
elements. The metal content in distillates can depend on several factors, including raw
materials, fermentation vessels, distillation apparatus, aging/storage containers, water
dilution and bottling [81]; therefore, a study on the release of metals at different production
stages could be useful to define elemental criteria for discriminating distilled products
according to their origin and production technology. Elemental analysis was not so consid-
ered in the last ten years in Gr and WB GI authentication studies, although it has been used
for other similar grape mark GIs. [82].

2.5.2. Isotopic Analysis

The elements carbon, hydrogen, oxygen and nitrogen are composed of several stable
isotopes, and it has been observed that their ratios within a given molecule are linked to
its origin [83]. Isotopic analysis is widely applied for the determination of origin of agri-
food products. There are different hyphenated isotopic techniques, including elemental
analyzer–isotope ratio mass spectrometry (EA-IRMS), GC–combustion–IRMS (GC-C-IRMS)
and specific natural isotope fractionation–NMR of deuterium (SNIF-2H-NMR). These tech-
niques have found various applications in verifying the authenticity of spirits, especially
whisky [79,84,85]. In aged distillates, including Gr and WB, GC-C-IRMS has been success-
fully applied to differentiate wood-derived vanillin from synthetic and natural vanillin [86].
Vanillin is one of the degradation products of lignin that is released in distillates due to
the toasting of wood [87]. The addition of synthetic or natural vanillin to distillates is
prohibited by the European Regulation 2019/787 [5].

The recent research works on the use of isotopic analysis, sensor arrays and other techniques
for the authentication of Gr and WB, described above, are summarized in Table 3.
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Table 3. Summary of sensor array, multi-platform and other less commonly used techniques for the authentication of Gr and WB GIs.

Samples Discriminating Parameters Method of Analysis Data Analysis Results References

14 spirit drinks (5 whiskeys, 7
whiskies, 1 brandy, 1 vodka)

Spirit drink category and
adulteration for quality
control

Colorimetric sensor array HCA, PCA, support vector
machine

Correct categorization with
accuracy rate > 99%. [67]

37 spirit drinks (2 Armagnacs,
9 brandies, 4 German
Branntwein, 3 cognacs, 5
Spirituose, 5 German
Weinbrände, 8“fake”
brandies, 1 aged Grappa).

Spirit type, brand, batch,
aging time and adulteration
for quality control

Hypothesis-free sensor array
(optoelectronic
tongue)

PCA, LDA Classification accuracy: 99%
(cross-validation). [68]

75 Italian distillates (58
Grappa, 17 spirits from fruits
or cereals)

Grappa from other spirits GC–MS, MIR and NIR
spectroscopies

SO-PLS-LDA,
SO-CovSel-LDA

SO-PLS-LDA: 100% correct
classifications for the
category “Grappa” (external
validation).
SO-CovSel-LDA: 75% correct
classifications for the
category “Grappa” (external
validation).

[70]

15 Grappa (12 samples aged
with oak and 2 with poplar
wood chips of different sizes
and toasting levels)

Aging technologies
SPE-GC-MS, NIR
(11,500–4000 cm−1), 1D
1H-NMR, E-nose

ANOVA and PCA (for
GC-MS data), PCA (for NIR,
NMR and E-nose data)

PCA (NIR and E-nose):
grouping based mainly on
wood assortment.
PCA (NMR): clustering based
mainly on wood toasting
level.

[75]

32 distillates (20 Scotch malt
whiskies, 4 bourbons, 3
cognacs, 3 rums, 1 Grappa, 1
brandy)

Wood-derived vanillin from
added vanillin GC/C/IRMS ANOVA

ANOVA analysis: the δ13C
values for synthetic vanillin,
tannin-extracted vanillin and
natural vanillin are
significantly different (p <
0.05).

[86]
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3. Overview of Chemometric Tools Applied in the Authentication of Gr and WB GIs

In the analytical strategies for the authentication of Gr and WB GIs, an important role
is played by the chemometrics tools used to process the large datasets produced by the
application of state-of-the-art analytical methods. Although there are no strict guidelines
for the selection of the multivariate statistical technique, it is possible to define a rational
scheme (Figure 1). Initially, it is essential to establish whether the collected data can
effectively discriminate samples within the different target classes. To this aim, PCA is one
of the most frequently applied tools as it can reduce the dimensionality of a large amount
of data by projecting samples into a low-dimensional space, allowing the identification of
sample groupings and patterns [88]. While PCA is commonly used for two-way data (such
as those generated from conventional chromatographic methods, for example), PARAFAC
may be the technique of choice for three-way data obtained, for instance, from EEM.
PARAFAC can, in fact, decompose the information into several components that more
specifically describe the variability of the entire dataset [89]. Another tool, frequently used
for exploratory data analysis in Gr and WB authentication studies, is the HCA. It allows
similar observations to be grouped into clusters based on the values of different variables
for each object [88].
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Once explored, the data can be classified or calibrated. Both discriminating and class
modeling approaches have been considered in classification studies of Gr and WB. Among
discriminating tools, mainly LDA and PLS-DA have been applied. LDA calculates linear
combinations of the original variables to maximize the separation between the different
categories and minimize the variance within each category. PLS-DA applies regression to
predict the category of a sample [89]. Indeed, SIMCA is a class modeling approach that
determines significant principal components to predict the class of samples based on their
distance from the model of each class [90]. The purpose of multivariate calibration methods,
instead, is to determine correlations between the responses and the independent variables.
MLR and PLS are often used for this purpose in Gr and WB GI authentication studies. In
multi-platform authentication methods, SO-PLS-LDA and SO-CovSel-LDA were frequently
carried out to obtain single classification models by the fusion of data extracted from



Appl. Sci. 2024, 14, 8092 18 of 23

different analytical techniques. Furthermore, the last few years have seen rapid growth in
the use of machine learning algorithms to build classification and prediction models.

After statistical modeling, the determination of model performance and evaluation
of the existence of possible overfitting [90] is generally carried out. For this purpose,
cross-validation and external validation have been the most applied in Gr and WB GIs.
The former involves separating the dataset into calibration and validation sets, while the
latter is performed when using independent test sets. Correct classification rates are the
most frequently used parameters to assess the performance of authentication methods in
the works presented in this review. In multivariate calibration models, the performance
evaluation includes the coefficient of determination (R2), which provides a measure of
the good fitting of the model, and the root mean square calibration and prediction errors
(RMSEC and RMSEP), which are applied to estimate the prediction capability of the models.

4. Technical Challenges and Future Perspectives

A main point for the authentication of GIs is the analytical traceability of raw materials.
Since the chemical profile of raw materials is modified during the various production
steps, including alcoholic fermentation and fractionation applied during the distillation
and aging processes [49], future research on the fate of specific chemical markers and
raw materials along the production process could be necessary. Further studies will also
be necessary on untargeted and multi-platform methods considering the general trend
towards these fast approaches that have only been partially explored on such matrices.
Among the rapid methods, sensor arrays seem to be very promising, while, with regard to
innovative technologies, digital image analysis [91], which has already been successfully
employed to discriminate different brands of other alcoholic beverage categories [92,93],
may also deserve to be considered. Finally, an aspect that should be better evaluated in the
construction of chemometric models is the number of samples considered representative of
a certain category. Many studies, to date, have been carried out on a relatively small number
of samples, with the risk of obtaining wrong or partial results due to the heterogeneity and
variability of such matrices. In this sense, the construction of shared databases containing
data on different samples from various characterization studies would be useful. Further, in
combination with techniques that collect a large amount of information, it will be necessary
to develop specific chemometric tools and advanced processing algorithms to process this
large volume of data.

5. Conclusions

This review represents an overview of the main studies for the authentication and
quality control of Gr and WB GIs over the last 10 years. The evidence that emerged is that
the scientific literature relating to the authentication of these matrices is scarce compared
to that for other categories of distillates such as whisky [94]. The studies presented in this
overview highlighted that targeted methods, mainly chromatographic and hyphenated,
are the most frequently adopted for the classification and quality control of these prod-
ucts. These techniques, coupled with suitable chemometric tools, have proven effective
in discriminating Gr from other categories of spirit drinks, enabling the identification of
distinctive chemical markers. The same techniques also showed good potential in dis-
criminating Gr samples according to brand, origin of raw materials and aging conditions.
For WB GIs, the literature is mainly related to the authentication of the aging processes,
which are essential for developing the distinctive organoleptic characteristics of this distil-
late [95]. In this respect, chromatographic techniques appear to be effective approaches for
discriminating WB GIs according to aging time and characteristics of the wood used for
aging, including its seasoning and toasting. However, some of the main disadvantages of
these techniques are the high costs and long analysis times. Another approach is based on
spectroscopic methods, in particular IR (MIR and NIR) Raman and fluorescence spectro-
scopies, combined with chemometrics. Despite relatively few research works on Gr and
WB samples, these techniques appeared very promising for both discrimination and for
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the detection of adulterations with low-quality spirits. These methods, generally, do not
identify specific chemical markers but focus on particularly informative spectral regions
and rely heavily on the use of chemometrics. Their main advantages are cost-effectiveness,
reduced analysis time and ease of sample handling. Furthermore, a comparison of some
of these methods with official analysis methods has shown comparable or even better
results, although they have no legal value until they are approved as standard methods.
A third analytical approach is a combination of the previous two. It involves the fusion
of chromatographic and spectroscopic data into individual chemometric models. This
multi-platform strategy, successfully carried out for discriminating Gr from other distillates,
seems to produce better results and more information about the type of adulteration than
single techniques, combining the advantages of chemical marker identification with the
quickness of untargeted methods. Finally, among new technologies, sensor arrays have
proven reliable for discriminating between WB samples according to alcohol content and
brand name and for discriminating between adulterated and authentic WB GIs.
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