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Abstract: The assessment of fine motor competence plays a pivotal role in neuropsychological
examinations for the identification of developmental deficits. Several tests have been proposed for
the characterization of fine motor competence, with evaluation metrics primarily based on qualitative
observation, limiting quantitative assessment to measures such as test durations. The Placing Bricks
(PB) test evaluates fine motor competence across the lifespan, relying on the measurement of time
to completion. The present study aims at instrumenting the PB test using wearable inertial sensors
to complement PB standard assessment with reliable and objective process-oriented measures of
performance. Fifty-four primary school children (27 6-year-olds and 27 7-year-olds) performed the
PB according to standard protocol with their dominant and non-dominant hands, while wearing
two tri-axial inertial sensors, one per wrist. An ad hoc algorithm based on the analysis of forearm
angular velocity data was developed to automatically identify task events, and to quantify phases
and their variability. The algorithm performance was tested against video recordings in data from five
children. Cycle and Placing durations showed a strong agreement between IMU- and Video-derived
measurements, with a mean difference <0.1 s, 95% confidence intervals <50% median phase duration,
and very high positive correlation (ρ > 0.9). Analyzing the whole population, significant differences
were found for age, as follows: six-year-olds exhibited longer cycle durations and higher variability,
indicating a stage of development and potential differences in hand dominance; seven-year-olds
demonstrated quicker and less variable performance, aligning with the expected maturation and the
refined motor control associated with dominant hand training during the first year of school. The
proposed sensor-based approach allowed the quantitative assessment of fine motor competence in
children, providing a portable and rapid tool for monitoring developmental progress.

Keywords: inertial sensors; fine motor competence; motor development

1. Introduction

Fine motor competence is usually defined as the ability of an individual to make
precise, voluntary, and coordinated movements with their hands [1], and is considered a
fundamental domain of motor control [2]. When this ability is compromised, fine motor
difficulties emerge, possibly impacting individuals across all age groups, but clearly holding
particular significance during children’s developmental stages. Children with fine motor
development problems have difficulties with learning fine motor skills. They experience,
for instance, problems with school tasks such as writing or cutting, or daily life activities
such as closing a zipper or tying shoelaces [3]. Fine motor competence has been found
to independently predict social and cognitive ability in pre-kindergarten children [1],
emphasizing the interconnected development of problem-solving skills with the physical
manipulation of the environment, and the role of fine motor skills in social play. Moreover,
it has been shown that developing object manipulation skills in childhood promotes future
physical activity [4].
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Today, 5–10% of children in elementary school have developmental motor problems [3],
thus, monitoring children’s fine motor development is fundamental to investigate under-
lying neurological disorders and design early effective interventions that can possibly
mitigate the impact of motor developmental problems.

Several tests have been proposed for the characterization of fine motor control, often
being included in standardized assessment methods for measuring motor function (both
gross and fine) [5]. Grip force scaling, speed of movement, and motor coordination are
considered the three major components of fine motor control, and thus, they are target
aspects to monitor [1]. While the choice of the task to be assessed usually takes into account
these components, the metrics of evaluation are mainly based on qualitative observation,
limiting quantitative assessment to the measure of test durations and/or number of errors
(e.g., fine MABC-2, [6]).

Recently, the integration of motion devices in observational methods was suggested
to provide a quantitative and reliable assessment of motor skills for analyzing children’s
motor competence [7].

Inertial wearable sensors allow to unobtrusively record and quantify movement for
instrumented testing, complementing the information derived from qualitative observa-
tions with the quantification of significant parameters [8]. In recent years, inertial sensors
have proven their effectiveness for motor assessment in elderly and/or pathological adult
populations [8], and for the assessment of gross motor development in children [9,10].

With respect to fine motor competence, previous technology-based approaches were
proposed using writing tablets, pressure sensitive drawing/writing utensils, and with lab-
based motion capture systems [10]. When aiming to analyze the process of how a movement
is performed, motion capture systems are preferrable. Recently, Niechwiej-Szwedo et al., [11]
confirmed the feasibility and the promising pathway of performing a quantitative kinematic
assessment within an optometric setting using inexpensive, portable, off-the-shelf equip-
ment (Leap motion capture system) for enhancing the information provided by a routine
motor function screening test (bead-threading task, fine MABC-2, [6]). They proposed a
quantitative method for estimating the duration of sub-phases of each bead-threading trial
(reach to bead, grasp and pick up bead, reach to needle, and place the bead on a needle),
based on the analysis of hand velocity trajectory. By comparing results of two children
with amblyopia and typically developing children, the study confirmed the advantages
of assessing quantitatively the duration of the different task phases. Such analysis offers
valuable insights into which aspects of the task present difficulties for the child, aiding in
the diagnosis and management of treatment outcomes.

As an alternative to optometric settings, wearable sensors offer well-known advan-
tages such as portability, low cost, and ease of use [12]. Moreover, for applications requiring
widespread adoption, the presence of Inertial Measurement Unit (IMU) technology in
commercial smartwatches provides a distinct advantage. To the authors’ knowledge no
study has investigated the usability of inertial sensors for the quantitative assessment of
fine motor competence.

Among the many available tests, the Placing Bricks (PB) test, part of the Test of Motor
Competence (TMC) [2], was proposed to assess fine motor competences from infancy to old
age. The TMC (including gross and fine motor performance assessment) was developed
with the aim of defining an approach that (i) is sensitive at both ends of the scoring scale,
(ii) minimizes ceiling effects, (iii) includes test items that can be performed by both very
young children and very old people, and (iv) is easy to administer and does not require
specialized training for experimenters.

The TMC was found to be applicable for a wide age-span (5–83 years) and favorable
for longitudinal monitoring of fine and gross motor competence throughout the whole life-
course. These characteristics answer to some of the latest major challenges highlighted in the
literature regarding the study of motor development [13] (i.e., the lack of life span measures
of motor competence, the lack of assessment feasibility for conducting research with large
samples, and the limited sensitivity and discriminatory capabilities of assessments).
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In PB standard assessment, participants are requested to attach eighteen square-shaped
(2 × 2) Duplo™ bricks on a board (3 × 6 bricks size) as fast as possible [2]; PB performance
measure is time to completion in seconds [2]. The instrumentation of the PB test using
wearable inertial sensors can provide a more detailed, reliable, and quantitative characteri-
zation of the task, and thus of fine motor performance, enriching its informative power as
referred to speed of movement and motor coordination, and overcoming the limitation of
an analysis limited to product measurement. As it involves the repetition of a movement
(grasping and placing), this test is well-suited for instrument-based assessment of the dura-
tion of its phases (e.g., brick placing time) and their variability across repetitions. These
aspects are indeed linked to the performance and maturation of movement control [14].

The present study aims at instrumenting the PB test using wearable inertial sensors
to complement PB standard assessment (time to completion) with reliable and objective
process-oriented measures of performance. Quantitative data and ad hoc developed and
tested algorithms can provide further insights into how the test is performed. In particular,
the approach presented in this work exploits time-based metrics, extracted from sensor
data, describing temporal phases’ duration and their variability.

In order to demonstrate the exploitability of the proposed approach, the present study
did the following: (1) designed and tested a method capable of extracting time-based
metrics (phase duration and phase duration variability) from wearable inertial sensors
positioned on the wrist; (2) applied this method to analyze the influence of different
factors (i.e., age, sex, hand dominance) on fine motor competence in a reference population
of children.

2. Materials and Methods
2.1. Study Subjects

Fifty-four participants (27 females and 27 males) were included in the study (Table 1).
They were divided into two age groups based on the attended school year (I grade 6-year-
old children, 6YC, and II grade, 7-year-old children, 7YC). All children were born at full
term (born at >36 weeks gestational age [15]) and had no known developmental delay and
no musculoskeletal pathology. Children were excluded from the study if they had any
severe visual or hearing impairment, used aids (except for glasses), had cochlear implants,
or in case of a lack of cooperation. Participants’ information is reported in Table 1.

Table 1. Number of participants (n) and participants’ characteristics (median (min–max)) for the two
age groups (6YC = 6-year-old children, 7YC = 7-year-old children).

n (Male/Female) Age (Months) Height (m) Body Mass (kg) BMI

6YC 27 (12F/15M) 78 (73–85) 1.22 (1.08–1.30) 25.6 (19.5–38.0) 17.4 (14.8–22.8)
7YC 27 (15F/12M) 91 (86–106) 1.25 (1.12–1.37) 28.0 (19.7–41.0) 17.1 (14.7–21.8)

The Bioethics Committee of the University of Bologna approved this study (date of
approval, 25 May 2016), and informed consent was obtained from the participants’ parents.

2.2. Experimental Setup

Two tri-axial wireless inertial sensors (OPAL, APDM Wearable Technologies, Portland,
OR, USA) were mounted on the right and left wrists using elastic belts. The sensing
axes were oriented along the anatomical longitudinal (L-x), medio-lateral (ML-y), and
antero-posterior direction (AP-z).

The assessment was performed in schools, in a well-lit and ventilated room with
adequate heat and sound. The test was executed following TMC guidelines [2]: the
children were assessed wearing comfortable clothes, while sitting on a school chair in front
of a school desk; they were given a practice run before the actual testing; the bricks were
positioned in horizontal rows of three on the side of the active hand, resting on the side of
the board, and the board was held firmly with the other hand; at start, the child lifts the
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active hand and grabs one brick with the active hand, carries it to the board, places it, and
moves back the hand to grab another brick; the cycle is repeated until completion, when all
bricks, one at a time, are placed on the board, and the active hand is positioned at rest on
the side of the board. Both hands were tested. Standard PB performance assessment (time
to completion in seconds, PBtime) was recorded using a stopwatch.

During actual testing, 3D forearm angular velocity (sampling frequency, 128 Hz) was
measured. Tests were also filmed using a video camera (Hero4, GoPro, San Mateo, CA,
USA, sampling frequency, 120 Hz, 848 × 480 pixels resolution) for reference. The video
camera was positioned in front of the desk, capturing the whole desk within its field of
view, along with the trunk and arms of the child. Figure 1 shows measurement setup and
sensor positioning.
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Figure 1. PB measurement setup. Black squares indicate sensors and arrows indicate axis orientation.

2.3. Data Analysis

The following 4 task events (TEs) were defined for phase segmentation: (i) Initial
Grasping; (ii) Grasping End; (iii) Initial Placing; and (iv) Placing End. Task cycle duration
(Cycle) was defined from a TE to the following same TE, and divided into the following
4 phases: (i) brick grasping (Grasping, from Initial Grasping to Grasping End); (ii) bricks
to board flight (from Grasp End to Initial Placing); (iii) brick placing (Placing, from Initial
Placing to Placing End); and (iv) board to bricks flight (from Placing End to Initial Grasping).
Thus, the test consisted of 1 initial phase (i.e., from rest at start to the first Initial Grasping),
17 full Task cycles, and 1 final phase (i.e., from the final Placing End to rest at stop). An
illustrative description of TEs and phases is shown in Figure 2.
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An ad hoc algorithm was developed to identify TEs on 3D forearm angular velocity
(TEIMU). To take into account different arm orientations (around L and AP axes) during the
execution of the task and to retain the peak signs for feature identification, the algebraic
sum of angular velocity components around the L and the AP axes was selected as the
target variable. The target variable was low pass filtered with a 4th order Butterworth
filter with a cut-off frequency of 6 Hz. Absolute peaks of the target variable were identified
as associated to flight phases (discriminating the direction of brick to board flight phase,
positive, and board to brick phase, negative), then, minima before and after each flight
peak were identified as associated to brick Grasping and brick Placing, respectively. Figure 3
shows an exemplificative target signal with TEIMU identification.
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Figure 3. Exemplificative TEs identification on the target signal. Triangles represent Initial Placing
(full triangles) and Placing End (white triangles). Circles represent Initial Grasping (black circles) and
Grasping End (white circles). Flight phases are highlighted in light gray, Placing in dark gray, and
Grasping in white.

2.3.1. Algorithm Test

TEs were (i) visually identified from the video recordings (TEGoPro) by one operator
and (ii) extracted from the collected data using the algorithm described above (TEIMU),
from video and IMU data of 5 children (2 6YC and 3 7YC, 2F/3M; age: median (min–max),
90 (77–95) months; height: 1.28 (1.08–1.29) m; and body mass: 25.0 (21.0–30.7) kg) for both
hands, for a total of 10 tests and 180 Initial Grasping, Grasping End, Initial Placing, and
Placing End. TEsGoPro were considered as reference.

Additionally, to quantify inter-rater variability, three operators independently con-
ducted visual assessments on the tests of a single participant (both hands).

Statistical Analysis

The sensitivity and the positive predictive value (PPV) in TE identification were
calculated [16], respectively, as

Sensitivity = 100 × Number of TEs correctly identified by algorithm
Number of all TEs as identified from video

(1)

PPV = 100 × Number of TEs correctly identified by algorithm
Number of all TEs identified by algorithm

(2)

TEsIMU were deemed to be correctly identified if, on the video, they corresponded to
the second half of the phase immediately preceding the TE under consideration, or to the
first half of the phase immediately following it.

TE showing the highest Sensitivity and PPV results was selected for Cycle calculation
(time duration from one TE to the following TE of the same type).

The phase durations in seconds of the 17 full task cycles (Grasping, brick to board
flight, Placing, board to brick flight, and Cycle) were calculated from the identified TEs.

The maximum inter-rater mean difference of phase duration and the widest 95%
confidence interval of the mean were extracted as benchmarks for visual assessment.
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Phase duration derived from TEGoPro and from TEIMU were compared using Bland
Altman plots [17] and Pearson’s correlation coefficients (ρ). Phase durations estimated from
IMU data were considered reliable when

• Bland Altman plots showed mean differences of <0.1 s and a 95% confidence interval
<50% of the median phase duration;

• Pearson’s correlation resulted very strong (ρ > 0.9).

2.3.2. Analysis of the Effect of Age, Sex, and Hand Dominance

Data from all participants were analyzed. Reliable phases were extracted and expressed
in percentage of the corresponding Cycle. Median, interquartile (IQR), and Range of each
phase were calculated for each participant. Short- and long-term variability of temporal
phases were calculated using Poicaré plots (SD1, short-term, SD2, long-term variability) [18].

Statistical Analysis

Normal distributions of PB standard assessment (PBtime) and of IMU-based measures
(phase durations and phase variability) on the different groups (i.e., males, females, 6YC,
7YC, dominant hand, non-dominant hand) and on the entire dataset was tested using a
Kolmogorov–Smirnoff test; normal distribution was not verified for all of the parameters.

A Mann–Whitney U test was applied to PBtime and to IMU-based measures (signifi-
cance level 0.05) to test differences between

• male and female participants;
• 6YC and 7YC.

A Wilcoxon signed rank test for repeated measures was applied (significance level 0.05)
to test differences between the dominant and non-dominant hand.

Data and statistical analyses were performed in MATLAB2023a (MathWorks BV,
Natick, MA, USA).

3. Results
3.1. Algorithm Test

From TE analysis, sensitivity results ranged from 90.59% for Initial Grasping to 97.65%
for Initial Placing. PPVs ranged from 94.71% for Grasping End to 97.65% for Initial Placing
and Placing End. Table 2 shows sensitivity and PPV results for each of the TEs.

Table 2. Sensitivity and PPV results for each estimated TE.

Initial Grasping Grasping End Initial Placing Placing End

Sensitivity 90.59 94.71 97.65 97.06
PPV 95.29 94.71 97.65 97.65

Initial Placing resulted the TE with the highest Sensitivity and PPV, thus, it was chosen
for Cycle calculation. Cycle was then defined as the time duration from an Initial Placing to
the following Initial Placing.

Inter-rater mean difference, assessed on the videos of one participant, resulted lower
than 0.09 s for all of the considered phases, and the 95% confidence interval ranged from
0.11 s for Placing to 0.23 s for Grasping (Table 3).

The mean differences between Video- and IMU-based estimation resulted lower than
0.07 s for all of the considered phases, and the 95% confidence interval ranged from 0.19 s
for Placing and Cycle duration to 0.35 s for Grasping and board to bricks flight duration
(Table 4). Bland Altman plots for Cycle and Placing are shown in Figure 4.
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Table 3. Median Video-based duration [s] (25th and 75th percentiles) and inter-rater mean difference
(md); 95% confidence interval (95% CI) of Video-based phase measurements.

Grasping Bricks to Board Flight Placing Board to Bricks Flight Cycle

Video-based
duration [s]

0.25
(0.21–0.45)

0.45
(0.41–0.51)

0.74
(0.65–0.96)

0.37
(0.33–0.47)

1.95
(1.84–2.14)

md 0.09 −0.02 0.03 −0.01 0.00
95% CI ±0.23 ±0.17 ±0.11 ±0.13 ±0.13

Table 4. Median Video-based duration [s] (25th and 75th percentiles) and mean difference (md); 95%
confidence interval (95% CI) and Pearson’s correlation coefficient (ρ) between Video- and IMU-based
phase measurements.

Grasping Bricks to Board Flight Placing Board to Bricks Flight Cycle

Video-based
duration [s]

0.22
(0.13–0.38)

0.49
(0.40–0.58)

0.80
(0.60–1.10)

0.46
(0.35–0.59)

2.02
(1.62–2.67)

md 0.07 −0.06 0.04 −0.04 0.00
95% CI ±0.35 ±0.23 ±0.19 ±0.35 ±0.19

ρ 0.80 0.47 0.99 0.31 0.99
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Figure 4. Bland Altman plots of Cycle [s] and Placing [s] obtained from video recordings and IMU
data (mean and 95% confidence interval, solid lines).

The following significant positive correlations were found for all of the analyzed
phases: weak to moderate correlations (0.1 < ρ < 0.6) for flight phases, strong correlation
(0.6 < ρ < 0.9) for Grasping, and very strong correlations (ρ > 0.9) for Placing and Cycle
phases. Table 4 shows mean differences, 95% confidence intervals, and Pearson’s correlation
coefficients for each phase.

Cycle and Placing resulted reliable (mean difference < 0.1 s, 95% confidence interval
<50% of median phase duration, and ρ > 0.9) and were considered for further analysis.
Grasping and flight phases showed a 95% confidence interval ranging from 93% (Bricks to
board flight) to 318% (for Grasping) of their median duration, and Pearson’s correlation
coefficients lower than 0.9.

3.2. Effect of Age, Sex, and Hand Dominance

No significant differences were found between male and female participants for
standard assessment (PBtime) and for the estimated temporal parameters (Cycle, Placing,
and their variability).

When performing the task with the dominant hand, 7YC showed shorter median
values of PBtime, as well as Cycle and Placing durations, than 6YC. For the dominant hand,
7YC also showed significantly lower variability of Cycle (IQR, Range, SD1, and SD2) than
6YC. Variability of Placing resulted lower too, but resulting differences were not significant.
With the non-dominant hand, 7YC showed lower PBtime and Cycle duration than 6YC;
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IQR, Range, and SD1 of Cycle resulted lower too, while no statistical differences were found
for Placing between the two age groups.

When comparing dominant and non-dominant hands, the dominant hand showed
median values of PBtime, as well as Cycle and Placing duration that was significantly lower
than the non-dominant hand. The same significant trend was found for all of the variability
parameters applied both on Cycle and Placing (IQR, Range, SD1, and SD2).

Table 5 shows the 25th, 50th, and 75th percentiles of PBtime, and Table 6 shows the
median duration and variability results of Cycle and Placing, divided by age groups and by
dominant and non-dominant hand.

Table 5. 25th, 50th, and 75th percentiles of PBtime [s] of 6YC and 7YC divided by dominant and
non-dominant hand. Asterisks indicate significant differences (** p < 0.05), (dominant hand, Dh,
Non-Dominant hand, NDh).

6YC 7YC
6YC vs. 7YC Dh vs.

NDhDominant Hand Non-Dominant Hand Dominant Hand Non-Dominant Hand

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th Dh NDh

PBtime (s) 34.92 39.04 44.99 37.77 41.15 48.4 28.1 31.08 37.91 31.02 36.99 39.63 ** ** **

Table 6. 25th, 50th, and 75th percentiles of Cycle [s] and Placing (%Cycle) results (Median, IQR, Range,
SD1, and SD2) of 6YC and 7YC divided by dominant and non-dominant hand. Asterisks indicate
significant differences (** p < 0.05, * p < 0.1), (dominant hand, Dh, Non-Dominant hand, NDh).

6YC 7YC
6YC vs. 7YC Dh vs.

NDhDominant Hand Non-Dominant Hand Dominant Hand Non-Dominant Hand

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th Dh NDh

Cycle (s)

Median 1.80 2.08 2.28 2.02 2.21 2.68 1.43 1.68 2.03 1.62 1.91 2.12 ** ** **
IQR 0.47 0.57 0.76 0.54 0.89 1.11 0.33 0.49 0.70 0.36 0.67 0.80 * ** **

Range 1.64 2.70 3.82 2.09 2.66 3.92 1.06 1.71 2.68 1.92 2.23 2.89 ** * **
SD1 0.49 0.67 1.05 0.57 0.77 0.93 0.30 0.47 0.67 0.50 0.62 0.73 ** * **
SD2 0.42 0.59 0.94 0.53 0.72 1.03 0.30 0.46 0.65 0.47 0.62 0.80 ** **

Placing
(%Cycle)

Median 37.6 41.7 47.0 43.4 48.5 52.3 35.5 38.2 40.5 40.6 44.2 50.7 ** **
IQR 13.2 17.8 21.5 14.3 25.8 42.5 11.1 13.6 20.1 11.5 16.5 36.2 **

Range 42.3 57.9 85.8 47.4 80.5 89.8 31.6 46.5 66.5 48.6 80.9 91.4 **
SD1 9.9 13.8 20.3 13.1 22.3 30.0 7.8 13.0 16.9 12.7 21.6 27.8 **
SD2 12.6 16.6 22.4 15.0 23.7 29.4 9.0 12.8 20.5 13.4 22.2 29.5 **

4. Discussion

In this study, PB test was instrumented using wearable inertial measurement units to
provide quantitative process-oriented assessment of fine motor competence in children.
The proposed approach extracts time-based metrics (phase durations and variability)
from inertial sensor data, allowing for a detailed analysis of task execution. An ad hoc
algorithm based on the analysis of forearm angular velocity data was developed and tested
against video recordings, demonstrating high sensitivity and positive predictive values in
identifying task events.

For Placing and Cycle, there was a strong agreement between IMU- and Video-derived
phase durations, with mean differences and 95% confidence intervals within pre-defined
acceptable ranges (mean difference <0.1 s, 95% confidence interval <50% of the median
phase duration), and very strong positive correlation (ρ > 0.9). For Grasping and flight
phases, the agreement was lower: children showed different strategies for Grasping (e.g.,
early stopping with the forearm and using only the hand, or, on the contrary, using no wrist
strategy), influencing the accuracy of Initial Grasping and Grasping End identification, thus,
the phases both preceding and succeeding these TEs. Furthermore, the median duration of
Grasping and flight phase resulted shorter than Placing and Cycle, meaning that estimation
errors had a greater impact on the results.

With respect to algorithm testing, it is also important to acknowledge that, while video
recording for observational analysis is commonly used as a reference standard in motor
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performance assessments [7], it is not without limitations as it is inherently subjective,
introducing human variability in event detection. Inter-rater mean difference assessed in
the present work resulted comparable to the ones obtained between Video- and IMU-based
phase measurements. The 95% confidence interval for inter-rater differences was slightly
wider, but following the same trend (lowest values for Cycle and Placing). It is worth
noting that these findings are based on assessments of only one child, whereas comparisons
between Video- and IMU-based measurements were conducted on the tests of five children.

When examining the Bland–Altman plot for Cycle duration, shown in Figure 4, a
slightly higher than expected number of outliers can be noticed (7%), indicating a potential
deviation from a normal distribution in the mean difference of the measure. Upon reviewing
the video frames corresponding to these Cycles, we observed that, in these cases, the
children frequently exhibited discontinuous movements before or after the flight phase
(e.g., a Bricks to Board flight phase followed by another small flight phase to adjust the
placement position). These irregularities introduced greater errors in identifying the Initial
Placing and, consequently, in estimating the Cycle duration. Indeed, three positive and
three negative outliers resulted coupled in consecutive cycles (in three different children),
supporting this observation.

In the second part of the study, the fine motor competence of 54 primary school
children (27 I graders and 27 II graders) was quantified using the proposed method and
analyzed for the effect of sex, age, and hand dominance.

Overall, the findings confirm anticipated differences in fine motor competence within
the examined groups. While no distinctions based on sex were anticipated, in accordance to
previous research findings [19], older age and the utilization of the dominant hand appear
to facilitate more effective motor control and coordination, consistent with the recognized
trajectory of fine motor development throughout childhood [20,21].

When analyzing differences between 6YC and 7YC groups, corresponding to two
different school grades, results indicate that 7YC generally exhibited shorter task comple-
tion times (PBtime), Cycle and Placing durations, and lower variability of Cycle compared
to 6YC, highlighting the expected improvements in fine motor skills with age and with
school education. While direct comparison is not possible due to there being different
tasks and age groups under consideration, Placing duration tended to decrease with age
maturation as for the quantitative assessment of fine MABC-2 [11]. Differences were higher
for the dominant hand, probably as a consequence of the intensive training that happens
during the first year of primary school with the learning of writing skills. The presence of
significant expected differences between the two closely spaced age groups is promising
for the future applicability of this approach across a broader range of age groups.

Additionally, the dominance of the hand used in task execution influenced perfor-
mance metrics too, as expected, with the dominant hand showing faster and less variable
performance than the non-dominant hand for both Cycle and Placing.

One limitation of our study is that we only explored sensor positioning on the wrist: it
is possible that using a different sensor positioning (e.g., on the hand) might have led to
different testing outcomes. However, this would likely complicate the administration of
the test, making it less feasible and easy to implement, which could hinder its widespread
adoption (considering the availability of many smartwatches containing IMU technology).
Thus, if a more accurate but less user-friendly result is desired, different sensor positions
could be explored in the future.

The present study solely focused on phase durations and their variability as quantita-
tive measures of motor performance; other quantitative metrics can potentially contribute
to the assessment of fine motor competence [10]. This study serves as a preliminary in-
vestigation aimed at testing our approach for task sub-phase detection, and demonstrates
the significance of this quantitative information in discriminating levels of motor compe-
tence; moreover, sub-phase segmentation will serve for extracting additional measures.
Future works will investigate the possible use of other quantitative metrics to integrate and
enhance the analysis of the PB test for fine motor competence assessment.
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Overall, the study demonstrates the feasibility and utility of using wearable sensors
to objectively assess fine motor skills in children through the quantitative kinematic as-
sessment of the PB test. By providing quantitative measures of motor performance, the
proposed approach offers valuable insights into the developmental trajectories of fine motor
skills, offering the possibility to quantify possible alterations with respect to reference popu-
lation. Moreover, the selection of the PB test and the widespread accessibility of wrist-worn
IMU technology make the proposed approach applicable for a wide age-span (5–83 years)
and favorable for longitudinal monitoring of fine motor competence throughout the whole
life-course, allowing for the creation of age reference bands and datasets, supporting data
interpretation. Future research will explore fine motor development using longitudinal
study designs.
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