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• Hourly concentration data of eight 
gaseous pollutants and black-carbon 
were collected.

• Source profiling analysis based on self- 
organizing maps (SOM) was carried out.

• SOM Results were compared with 
meteorological parameters and radon- 
222 activity concentration.

• Six pollution sources were identified in 
the area of Savona municipality.
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A B S T R A C T

Pollutant source apportionment represents one of the fundamental activities in environmental science. Several 
efficient chemometric tools are available to the scope, mostly based on multivariate techniques and usually 
applied to aerosol chemical speciation data. In the present work, an alternative source profiling method is 
proposed, based on the self-organizing maps (SOM) algorithm. Moreover, the dataset used includes typical 
criteria pollutants and physical parameters related to airborne particulate matter widely used as a complement of 
aerosol source apportionment and largely available at a higher time resolution than bulk aerosol samplings, 
allowing the information on the dynamic behavior of the local airshed to be extended. In this work, data was 
collected at a coastal location in NW Italy, between January and July 2012. Hourly concentrations of typical 
gaseous pollutants (SO2, NO, NO2, benzene, toluene, (m-p)-xylene, o-xylene), black-carbon and particle number 
concentrations by an optical particle sizer (OPS) were collected. The dataset was integrated with radon-222 
activity concentration and meteorological parameters to enrich and refine the information obtained by SOM 
computation as well as to improve the air pollution source localization. Despite the lower specificity of criteria 
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pollutants, the approach developed was capable of revealing distinct pollution sources such as the urban 
background traffic, the coal-fired power plant active at the time of the study, and the harbor, in agreement with 
previous PM-based source apportionment studies carried out locally, while enlightening peculiar dynamical 
conditions detectable at the sub-daily time scale. The application of the SOM algorithm, with the integration of 
meteorological parameters and atmospheric radon, proved to be very efficient in unveiling the air pollution 
sources.

1. Introduction

Source apportionment is one of the main objectives of environmental 
science, independent of the type of ecosystem or environmental matrix. 
Owing to environmental complexity and dynamicity together with 
pollution source multiplicity, several experimental approaches can be 
applied, covering either monitoring, usually within legally issued pro
tocols as managed by Environmental Protection Agencies, or more 
detailed chemical speciation. Overall, source apportionment by receptor 
modeling represents a consolidated, though continuously evolving, 
approach in the case of airborne particulate matter, wherein highly 
accurate results are achieved at the cost of demanding and costly aerosol 
chemical speciation (Hopke et al., 2020; Mircea et al., 2020). In this 
framework, atmospheric monitoring mostly based on gaseous criteria 
pollutants usually play a complementary role on account of their 
parental association with secondary aerosol species, co-emission with 
aerosol primary species, and post-formation/emission aerosol process
ing in the complex multiphase troposphere (Corral et al., 2020; Perrone 
et al., 2022; Pöschl and Shiraiwa, 2015; Seinfeld and Pandis, 2016). The 
exploitation of gaseous criteria pollutants for source apportionment 
purposes can be, however, fairly ambiguous, due to their limited source 
specificity and variable reactivity, as expressed by individual atmo
spheric residence time (Hobbs, 2000). Moreover, daily, or even lower, 
sampling time resolution smooths or annihilates variability of criteria 
pollutants caused by short-scale circulation, masking transport pro
cesses useful for source identification/profiling and obliterating the 
associated chemical information.

Coastal sites represent an interesting case of overall environmental 
complexity. The land-sea discontinuity produces remarkable gradients 
in physicochemical properties, significantly affecting heat and matter 
exchange at the borders with considerable influence on local circulation 
and atmospheric composition. Depending on the latitude, coastal areas 
are historically heavily inhabited owing to favorable climatology and 
strategic trade conditions. The Mediterranean area is one of the most 
representative areas in this sense, being characterized by an extremely 
extended and topographically complex coastal line, heavily inhabited 
and economically developed since ancient times, with a major influence 
on air quality. Near-surface flow in complex terrain with coastal and 
urban influences is impacted by several different mechanisms including 
the large-scale pressure gradients and thermally driven flows generated 
by diurnal insolation (Leo et al., 2015; Millán et al., 2002). Thermally 
driven flows in such regions include sea-land breezes, slope and valley 
flows, and circulations induced by the urban heat island effects, mainly 
characterized by weak winds and conducive air mass highly localized 
recirculation. All of these flows have a significant impact on air pollution 
variability at the sub-daily time scale (Tan et al., 2021), and therefore on 
air mass aging (Millán et al., 2002). The understanding of near-surface 
dynamics in such conditions, however, is still limited, requires high 
time/space resolution data, and is still challenging to be accurately 
modeled due to the parameterized turbulence calculation in the plane
tary boundary layer (Song and Shao, 2023). In this framework, the use of 
tracers and radiotracers with consolidated and well-known sources of
fers reliable alternatives.

Radon-222 has a long and consolidated history as a valuable radio
tracer, dating back to the early 1900s (Satterly, 1910; Wilkening, 1981, 
2004; Wright and Smith, 1915). Due to its distinct emission source in the 
lithogenic materials such as soil and rocks, radon from parent 

238U–226Ra in rocks and soil, constitutes a measurable constraint to 
transport, suggestive of the continental origin of air masses loaded in 
222Rn as compared to radon depleted areas, e.g., the upper troposphere 
or marine regions. As a result, the significant radon gradients among 
distinct areas make this species an excellent tracer of directionality in 
circulation patterns, thus highlighting their physical location. 222Rn is 
also an efficient tracer of atmospheric stability (Chambers et al., 2015; 
Kikaj et al., 2019; Perrino et al., 2001; Williams et al., 2016) due to its 
physicochemical properties. It is, indeed, a radioactive noble gas 
exhaled from the ice-free terrestrial surface at an approximately uniform 
emission rate over the continental areas (0.72–1.2 atoms cm− 2 s− 1), 
relatively water-soluble, and unreactive, whose concentration in the 
lower troposphere is controlled by the stability of the boundary layer as 
a result of local radiative budget in combination with the local wind field 
(Chambers et al., 2015). Its half-life of 3.83 d makes it a suitable 
descriptor for atmospheric processes at a scale between the local and the 
regional ones with a focus on low troposphere stability problems 
(Chambers et al., 2015, 2017, 2018).

Multivariate techniques are widely applied to many environmental 
problems with an emphasis on atmospheric science due to their ability in 
the identification and apportionment of pollutant emission sources. The 
so-called receptor models, indeed, are capable of extracting chemical 
fingerprints from complex chemical databases, conducive to emission 
sources, usually characterized by recognized species (tracers), wherein 
advanced techniques based on Positive Matrix Factorization (PMF), 
Chemical Mass Balance or others can support even the quantification of 
each emission source identified (Hopke et al., 2020; Mircea et al., 2020; 
Mooibroek et al., 2022; Tositti et al., 2022; Watson and Chow, 2015) or 
enable a comparison between several areas (Pietrodangelo et al., 2024; 
Veld et al., 2021). Moreover, large atmospheric datasets may contain 
latent information associated with physical variables, particularly those 
represented by specific meteo-climatic conditions and dynamics sensibly 
controlling the fluctuations in airborne compounds and particulate 
concentrations at the various time scales, from the sub-daily to the daily, 
weekly, seasonal ones, and more.

In this work, we propose an alternative strategy for data mining 
based on self-organizing maps (SOM) (Kohonen, 1998). SOM is a 
consolidated chemometric method allowing to cluster a series of ob
servations based on an Artificial Neural Network (ANN) approach 
(Kohonen, 1998; Licen et al., 2020). Such a procedure aims at revealing 
statistically consistent sources of covariance among a complex database 
of atmospheric species (in this case, trace gases and airborne particulate) 
in connection with the controlling meteorological parameters. Source 
profiling analysis obtained by SOM was also evaluated considering 
radon-222 activity concentration. The use of 222Rn in this framework is 
especially innovative due to its discriminant potential thus enriching 
and consolidating SOM outputs in treating complex and dynamic sys
tems like coastal airsheds.

2. Materials and methods

2.1. Dataset

The dataset was collected in the small town of San Genesio, a fraction 
of Vado Ligure near Savona, a mid-size coastal town in NW Italy. Fig. 1
shows a map of the sampling area, while Fig. S1 shows a topographic 
map (Tarquini et al., 2023) of the surrounding region (Northern Italy). 
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This study area has been already presented in several previous articles 
by this group, all concerning airborne PM10, source apportionment, as 
well as DNA and bacterial luminescence, and its environmental impli
cations (Morozzi et al., 2021; Palladino et al., 2021; Tositti et al., 2018). 
Such papers showed that the main emission sources active in this coastal 
district were naval traffic due to the port activities, marine emissions 
(sea salt and biogenic secondary species), road traffic, a coal-fired power 
plant active in the period of data collection, and, to a lesser extent, 
biomass burning from wood stoves.

For the present study, hourly data of meteorological variables, 
gaseous pollutants, particulate matter number densities, and black car
bon (BC) were collected together with 222Rn atmospheric concentration 
activity. The sampling campaign was carried out from January 11 until 
July 23, 2012. The choice of the 6-months study period aimed to cover 
the typical seasonal oscillations and variability, in this case from winter 
to summer, in order to maximize meteorologically associated variance 
and its influence on physical and chemical variability of air pollutants. 
Data were collected as follows. 

• Meteorological variables: air temperature, air relative humidity, 
barometric pressure, wind speed, wind direction, and accumulated 
rain were measured and recorded using a Davis Vantage Pro2 (Davis 
Instrument, Hayward, CA 94545, USA) meteorological station.

• The concentrations of eight gaseous species: SO2, NO, NO2, benzene, 
toluene, (m-p)-xylene, o-xylene, and 222Rn were kindly provided by 
the Liguria regional Environmental Protection Agency (ARPAL). 
222Rn was measured with a RAD7 Radon Detector (Durridge, Bill
erica, MA, USA), while details on the air quality monitoring con
ducted by ARPAL are provided at https://www.arpal.liguria.it/tema 
tiche/aria/monitoraggio-e-inquinanti.html (in Italian)

• Equivalent black carbon (EBC) was measured using a micro- 
aethalometer microAeth AE51 (AethLabs Inc., San Francisco, CA 
94110, USA)

• Particle number density was collected by an optical particle sizer 
(OPS) Profiler Model 212 (MetOne Instruments, Inc., Grants Pass, 
OR, USA). Number density is determined in the following size bins: 
0.3–0.5; 0.5–0.7; 0.7–1.0; 1.0–2.0; 2.0–3.0; 3.0–5.0; 5.0–10.0; 

>10.0 μm (Brattich et al., 2020). For each channel, the number of 
particles of the corresponding size is recorded. This data was recor
ded from April 5 until the end of the field campaign.

All the instruments were installed on a mobile station provided and 
operated by the local Environmental Protection Agency.

2.2. Chemometric analyses

To reveal data behavior and properties and extract the correlations 
among variables, a chemometric approach based on the self-organizing 
maps (SOM) was applied. All computations were performed in R envi
ronment (R Core Team, Vienna, Austria), while descriptive analyses 
were performed with the “Openair” R package (Carslaw and Ropkins, 
2012).

SOM (Kohonen, 1998; Licen et al., 2019) is a consolidated chemo
metric method, based on ANN, whose aim is to cluster observations in an 
unsupervised way (i.e. no a priori knowledge is needed regarding 
experimental data classification). Moreover, this approach can handle 
large datasets and even non-linear problems. The graphical output is a 
2D-map of SOM-units (represented as circles or hexagons), whose 
overall number is a function of the number of experimental observations 
available. Each unit represents vectors, whose length is equal to the 
number of experimental variables, that are iteratively updated during 
the SOM training phase to better adapt to the data. The algorithm ini
tializes the calculations from a random point, attributing random values 
to the vectors; subsequently, every experimental observation is pre
sented to each unit and assigned to the best-matching unit (BMU), based 
on Euclidean distance. The units are then updated to the mean vector of 
the assigned observations and the computation starts again. This process 
of allocation and update is iterated for a given number of epochs (up to 
thousands), or until convergence is reached and no further changes are 
observed in the output. In the final SOM map, similar observations are 
allocated in the same BMU so that close units report similar information. 
The unit-vectors can then be further grouped by cluster analysis to 
efficiently reveal data behavior and properties. Clustering was carried 
out by K-means cluster analysis, using the minimum Davies-Bouldin 

Fig. 1. Sampling area, San Genesio near Savona town, in Northwestern Italy. The maps on the right show the location of the sampling site and some major pollution 
sources in its vicinity. Maps were created with QGIS v.3.34.1 software (https://qgis.org/en/site/).
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(DB) index (Davies and Bouldin, 1979) to choose the optimal number of 
clusters. The “map” computed by SOM, therefore, reports the temporal 
trend of data, and must not be confused with a geographical map.

The SOM training phase requires defining the map size at the 
beginning of the computation. Several decision criteria have been pro
posed to fulfill this task; in the present work, we used the one proposed 
by Nakagawa et al. (2020). It calculates the best number of units (m) as a 
heuristic function of the number n of observations (eq. (1)): 

m=5
̅̅̅
n

√
(1) 

The actual number of units is chosen as the integer closest to m. It has 
been observed that a rectangular, rather than square, SOM can better 
describe the training data, allowing a distribution along a dominant axis 
(May et al., 2010). Therefore, both side lengths of the map are set as the 
proportion of the first two eigenvalues obtained by a principal compo
nent analysis (PCA) previously computed on training data that best fits 
m (Hentati et al., 2010).

SOM maps were calculated with the R package SOMEnv (Licen et al., 
2021), which also provides a graphical user interface (GUI) running on 
all browsers.

3. Results and discussion

All the meteorological variables and the basic statistics (Tables S1 
and S2) for the analyzed period (11 January – July 23, 2012) are re
ported in the Supplementary Information (SI). During the sampling 
campaign, the temperature (Table S1) ranged between − 3.5 and 33.1 ◦C 
(mean: 15.0 ◦C, σ: 7.3 ◦C), with the monthly absolute minimum regis
tered in February and the absolute maximum in July (Fig. S2). The 
overall daily variation reflects the typical Mediterranean climate, with 
daily maxima registered in the afternoon (between 13:00 and 16:00) and 
minima early in the morning (3:00 to 6:00). Relative humidity (RH) 
(Table S1 and Fig. S3) was in the range 20–91% (mean 63%, standard 
deviation 18%), with monthly absolute minimum in February and ab
solute maximum in June. No deviations from the Mediterranean climate 
were observed in the daily trends, with maxima during the night (23:00 
to 6:00) and minima during the afternoon (13:00 to 16:00). Atmospheric 
pressure was always in the range 1000–1039 hPa (Table S1 and Fig. S4) 
with an average daily trend presenting two maxima at 12:00 and 0:00. 
Despite an anomalously huge snowfall in February, the sampling period 
was characterized by limited precipitation, associated with a severe 
weather event early in April with 100 mm rainfall and several minor 
events scattered throughout the campaign. The wind rose reported in 
Fig. S5 shows a prevalence of weak to moderate NW winds. The Liguria 
region is characterized by a distinct seasonal pattern in wind circulation, 
with prevailing lower wind speeds in the warm season and more intense 
winds in the cold one. The wind rose presented in Fig. S5 is in perfect 
agreement with that shown in a previous publication (Burlando et al., 
2017) that analyzed the wind climatology based on observations from a 
network of 15 (ultra)sonic anemometers in the Liguria region, including 
one in the port of Savona Vado Ligure in the vicinity of the study site. 
Liguria, and in particular the main valleys, is characterized by a special 
kind of downslope winds called gap winds, occurring when the air to the 
North of the Maritime Alps and the Apennines gets to the top of the 
mountains and, after becoming cooler and denser than the maritime air 
above the warmer Mediterranean Sea, flows down the sloping surfaces 
towards the sea. Under peculiar meteorological conditions, these winds 
can be locally reinforced by larger-scale low-pressure systems, as during 
secondary cyclogenesis events in the Gulf of Genoa (Trigo et al., 2002). 
According to the local wind intensity, this means that the topographic 
flow is mostly confined to come from the Po Valley and alpine regions, 
but eventually can be extended to strong winds from France and Swiss 
regions. However, based on the wind rose presented in Fig. S4, as well as 
from the wind climatology by Burlando et al., such events are rare as the 
wind velocity is mostly in the range 0.5–10 m s− 1.

Radon-222 (Fig. 2) shows the typical diurnal variation highlighted in 
previous works (Chambers et al., 2015; Kikaj et al., 2020), with maxima 
registered early in the morning, around 7:00, and minima during the late 
afternoon, around 19:00, in association respectively with maximum and 
minimum stability conditions independently of the season (Fig. 2b). No 
differences were observed in 222Rn diurnal trend between cold (Fig. 2c) 
and warm (Fig. 2d) seasons. It is well known, indeed, that 222Rn, which 
is exhaled by soil and rocks, accumulates near the ground during the 
night to be subsequently redistributed and dispersed during the day by 
thermal convection and turbulence i.e. by an unstable boundary layer 
(Chambers et al., 2015, 2017, 2018, 2019; Kataoka et al., 2001; Kikaj 
et al., 2020; Sesana et al., 2003; Tositti et al., 2002; Turekian et al., 
1977). Considering the whole sampling period (Fig. 2a), the radon ac
tivity showed a maximum in January and a minimum in April, with a 
secondary maximum in June. The polar plot reported in Fig. S6 shows 
two main sources for 222Rn, one close to the sampling point connected to 
weak and local circulation patterns, and one associated with 
weak-to-moderate NW circulation from the inland. This second source 
might be ascribed to gap winds previously described, which may have 
transported radon to the sampling point from the Alps and the Po Valley.

SOM was thereafter computed using gas and BC concentrations with 
and without PM (Particulate Matter) number densities, due to the 
shorter sampling period of OPS data (from April 5 to July 23). Meteo
rological variables and 222Rn data were excluded at this stage to use 
them a posteriori to gain a deeper insight into air pollution phenome
nology in a cascade mode. Therefore, two distinct SOMs were computed, 
the first one considering only chemical variables (gases and BC), 
covering the whole sampling period (3549 valid observations, without 
empty cells in the data matrix), and the second one with all the formerly 
mentioned variables plus number densities covering only the warm 
season (1954 valid observations).

3.1. SOM with plain chemical variables

The first SOM was calculated on observations of air pollutants (gases 
and BC) recorded from January 11 to July 23. In this case an 11 × 7 map 
was trained. The number of epochs for the training phase was set to 100, 
based on Gaussian neighborhood. At the end of the computation, all 
units were populated by at least one observation. Fig. 3 shows the 
heatmaps representing the data distribution on the map for each 
modeled variable (Licen et al., 2021). The content of the hexagons 
represents the basic statistics of the observations populating the units (i. 
e., white: lower outliers; grayscale: quartiles; black: upper outliers). 
From a preliminary visual evaluation of heatmaps in Fig. 3, based on 
similar distribution patterns some correlations between nitrogen oxides, 
and among the xylenes (m,p-xylene and o-xylene) can be assumed as 
likely. The other variables do not reveal apparent correlations, as shown 
by different quartile profiles on the heatmap. However, these visual 
considerations represent only the starting point of SOM results elabo
ration and will be treated in more detail in the following sections.

Based on the frequency distribution of each parameter, SOM units 
can be further rationalized with suitable grouping techniques. The 
clustering computation was performed in the range from two to eight 
clusters, and the best solution resulted with six clusters. The right 
portion of Fig. 3 shows the SOM map with units distributed into the six 
calculated clusters.

The obtained cluster distribution enables us to obtain more details on 
the behavior of the various parameters. For each cluster, boxplots of the 
original variables were thus calculated, allowing highlighting the 
peculiar conditions characterizing each cluster. Such boxplots are re
ported in Fig. 4. Variables in Fig. 4 are autoscaled: the zero line corre
sponds to the average value of each variable in the overall dataset. 
Therefore, boxplots whose median is significantly higher than zero 
indicate a higher median concentration for the corresponding species, 
while medians significantly lower than zero indicate a depletion of that 
species.
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Based on Fig. 4, Cl6 (in orange, in the top-right corner of the SOM) is 
the one with the lowest concentrations of all species. It can be consid
ered as a “local-background” cluster representing the local airshed not 
significantly affected by particular sources in the immediate vicinity of 
the receptor site. Cl1 (in red, in the bottom-left corner) represents the 
highest air pollution conditions observed during the campaign in terms 
of nitrogen oxides, toluene, and xylenes. However, intermediate situa
tions highlight higher values for single pollutants, which suggest mul
tiple emission sources, including some with simpler emissive spectra. 
Indeed, the monitored species are criteria pollutants, typically shared by 
a range of emission sources, thus requiring further complementary in
formation to allow source identification. Given the limited diagnostic 
potential of criteria pollutants, what affects the degree of population of 
such clusters might be due to wind direction and speed, location of the 
source or their physicochemical behavior. Overall, the SOM pattern 
shows how the mean concentration of the pollutants considered in
creases starting from the top-right corner down to the bottom-left. The 
Cluster in the top right corner (Cl6) is characterized by a lower con
centration of all analytes, connected with the periods of lower pollution, 
while the one in the bottom left portion of the map (Cl1) has the highest 
pollution level, with almost all species above the campaign overall 
average concentration value, except for benzene and (m,p)-xylene. The 
other clusters show intermediate situations, with only one or a few 
pollutants having higher concentrations than Cl1 at the same time. Cl2 
(in yellow), indeed, is characterized by slight pollution levels, showing 
only a minor peak of concentration of SO2. Cl3 (in green) reveals a 
significant contribution of BC, without other significant contributions. 
Additionally, on account of its peculiar quartile behavior (Fig. 3), it is 
confirmed that BC is weakly correlated with the other pollutants. SO2 
and BC are generally considered, together, as marker of fuel and coal 
burning. However, they do not easily show a net correlation: firstly, 
gaseous and particulate states are not equivalent though both species are 

primary. This means that the way they are measured might affect cor
relation. Moreover, their concentration in the atmosphere is influenced 
by way to the open air from the emission points (e.g., from the furnace to 
the stack through different mitigation stages as in coal fired power 
plants) or even by the presence, usually neglected, of fugitive emission, 
i.e. not the stack emissions only, usually very high, but also the leaks at 
low level from a plant, as a hole. Cl4 (in purple) and Cl5 (in blue) reveal 
more complex air pollution patterns. Indeed, Cl4 shows higher con
centrations of the aromatic compounds (except toluene), with a contri
bution of NO2. Cl5, instead, shows higher levels of NO2 and SO2, with a 
negligible difference of NO from the overall mean, suggesting an asso
ciation with aged air masses. The simultaneous occurrence in Cl4 and 
lower relevance in Cl1 confirm the correlation between benzene and (m- 
p)-xylene, from distinct sources.

A further step in SOM processing allows the temporal behavior of the 
analyzed species as function of meteorological fluctuations to be better 
defined. To the scope, Fig. 5a shows the hourly observations count for 
each cluster, and Fig. 5b shows the daily distribution of the clusters 
along the whole study period. The combination of Fig. 5a and b reveals 
therefore the daily distribution of clusters computed by the SOM pro
cedure. However, to better understand the variability within each SOM 
cluster, boxplots of the meteorological parameters and a wind rose were 
computed, with the aim of better reconstructing the origin of the pol
lutants (Fig. 6).

Considering the daily distribution of clusters (Fig. 5) and the mete
orological (Fig. 6a) and anemological (Fig. 6b) influence on air pollut
ants, several considerations about the SOM clusters and 222Rn behavior 
can be drawn.

Cl1 (387 observations), showing the highest pollution levels, con
cerns the cold period (January to March, Fig. 5b). It is characterized by 
the lowest median air temperature, compared to the other clusters, the 
highest barometric pressure and highest relative humidity. Winds are 

Fig. 2. Average time trends of radon activity (in Bq m− 3): a) monthly trend; b) hourly trend over the whole sampling period; c) hourly trend in the cold season 
(between January 11 and April 5); d) hourly trend in the warm season (between April 5 and July 23). The line represents the average while the shadowed area 
represents the 95% confidence interval.
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Fig. 3. Left portion: heatmap of the quartile distribution of chemical variables; right portion: SOM map for chemical data distributed across six clusters. Cluster 
numbers are placed into the cluster-centroid unit.

Fig. 4. Boxplots of chemical variables based on the cluster division. Colors are based on the clusters calculated for the SOM as depicted in Fig. 2. The black dashed 
line indicates the average values of the auto-scaled parameters in the overall dataset.
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mainly from W and NW, i.e., from the continental side of the district 
investigated, lying on a coastal area characterized by a complex 
topography. Moreover, most of the observations of this cluster (270) are 
nocturnal, from 19:00 to 8:00 a.m. (Fig. 5a). Therefore, westerly wind 
observed for this cluster can be related to local circulation pattern 
influenced by the nocturnal boundary layer and the behavior of the 
continental landscape. The more intense winds from NW are most likely 
associated with larger-scale katabatic flushing of the Po Valley region. 
This cluster describes the air pollution accumulation in winter, partic
ularly NOx, toluene, and o-xylene, occurring during the night and at 
least partially, deriving from inland. The nighttime character of Cl1 and 
the wind direction from NW is supported by the high concentration of 
222Rn observed for this cluster and might be assimilated to “nocturnal air 
drainage” mentioned in a previous work (Wilkening, 1981). Such 
drainage may also include influences from the nearby freeway tunnel 
entrance/exit.

Cl2 (553 observations) is independent of the season; its observations 
are, indeed, distributed both in the cold and in the warm season. 
Moreover, the atmospheric temperatures show a wide range, and the 
median barometric pressure is close to that of the other clusters. It is 
characterized, however, by lower median relative humidity compared to 
the other clusters, and by winds from NW directions also up to 5.8 m s− 1, 

the highest values recorded in the whole period. These conditions could 
represent air circulating anticlockwise around the Po Valley topography, 
or foehn wind events from the Alps. Foehn wind events might favor the 
low relative humidity, and lower than average pollution (for most spe
cies). The wind rose of this cluster is also very similar to that of Cl1, but 
Cl2 is, on average, characterized by much lower pollutant concentra
tions. Such observation might be explained by the distinct diurnal 
pattern of the two clusters and the distinct mixing height during daytime 
and nighttime hours. Indeed, Cl1 appears mainly associated with the 
nocturnal hours when the mixing height is very low while Cl2 is instead 
linked with the well-mixed boundary layer typical of the daytime hours. 
Most observations for this cluster are concentrated in two periods, from 
3 to 11 February and in the entire month of May (Fig. 5b). This cluster is 
also characterized by higher SO2 concentration suggesting that air 
masses featured by this cluster are affected by man-made industrial 
sources shortly upwind the receptor site, in particular a coal-fired power 
plant active at the time of the sampling campaign (Langner and Rodhe, 
1991; Morozzi et al., 2021). The lower concentration of 222Rn revealed 
by this cluster is associated with a prevalence of morning observations 
(Fig. 5a), when radon tends to dissipate due to increasing instability, or 
to the observed stronger wind.

Cl3 (385 observations) is a purely warm-season cluster. It is indeed 

Fig. 5. a) Hourly clusters distribution with the corresponding observations counts; b) daily clusters distribution along the whole sampling period: each hour 
(observation) of each day is assigned to a specific SOM cluster. White cells (ND in the legend) represent hours for which the observation was not available.
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characterized by higher air temperature and relative humidity and lower 
barometric pressure, within very narrow variability ranges, as compared 
to the other clusters. It features low 222Rn concentrations and high BC 
levels. This cluster is characterized by slow NE winds, addressing to the 
sea (higher relative humidity, negligible 222Rn outgassing), excluding its 
association with strong synoptic forcing. Thus, although its nighttime 
prevalence excludes summer sea-breeze circulation, we cannot rule out 
its association with other breeze regimes typical of the night conditions. 
NE wind direction also intercepts Savona harbor emissions. Therefore, 
the significant occurrence of BC can be ascribed to ship emissions, 
(Chambers et al., 2019; Turekian et al., 1977). It is interesting to note the 
occurrence of a single episode, from 31 May to 4 June, almost 
completely assigned to Cl3 (Fig. 5b). Such an event might be due to the 
contingency of a north-easterly flow and the prolonged presence of 
several ships at berth in the harbor.

Cl4 (390 observations) is typical of the warm season, the median 
temperature, humidity, and pressure are like Cl3, although with wider 
ranges. However, 222Rn activity concentration is higher than for most of 
the other clusters, except Cl1, while the most concentrated stable species 
in this cluster are benzene, (m,p)-xylene, o-xylene, and NO2. All these 
species are characteristic of road traffic (Tan et al., 2021), and their 
presence in this cluster can be again ascribed to local circulation. Indeed, 
besides a weak NE wind component conducive of a local origin (0.9–1.5 
m s− 1), Cl4 is characterized by westerlies (up to 2.7 m s− 1), which 

transport air masses from the highway and inland in agreement with the 
higher concentrations of 222Rn in the cluster. The low wind speeds with 
occasional faster flows down valley from the west suggest that this 
cluster is dominated by katabatic flow conditions (stable nocturnal 
shallow mixing conditions). This cluster therefore suggests the influence 
of road traffic. The higher correlation in this cluster between aromatic 
species and NO2, rather than with NO, suggests a relatively aged air mass 
where primary NO tends to be converted to secondary NO2, especially in 
the low wind speeds conditions characterizing this cluster.

Cl5 (810 observations) is independent of the season with observa
tions scattered throughout the day (Fig. 5), no peculiar meteo-climatic 
conditions are observed, while a slight increase of 222Rn is present. 
The winds are weak from all directions (to the utmost, they reach 3.4 m 
s− 1 from NW), while the most significant pollutants are NO2 and SO2. 
These species can be ascribed to fossil fuel combustion (Langner and 
Rodhe, 1991; Prospero et al., 1983), therefore this cluster represents the 
local recirculation of relatively aged pollutants.

Cl6 (1041 observations), finally, represents periods characterized by 
lower pollution levels. It is independent of the season, features no 
distinct atmospheric conditions with highly variable wind direction, nor 
a high concentration of 222Rn. This cluster therefore represents efficient 
redistribution and dispersal of pollutants resulting in better-than- 
average air quality. The wind rose of this cluster suggests the preva
lence of low wind speeds from both NW and NE directions. The NE 

Fig. 6. a) Boxplots of the meteorological variables (temperature, relative humidity, pressure) and activity concentration of 222Rn; b) wind roses for each cluster.
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direction from the Ligurian Sea is also shared by Cl3 and Cl4, which 
however are characterized also by stronger wind speeds from this di
rection. Conversely, Cl6 appears mostly connected to reduced wind 
speeds, pointing to a very local origin (order of 1–2 km or less) which 
possibly explains, at least partially, the low 222Rn contribution. In 
addition, this cluster’s prevailing daytime contribution suggests the 
connection with intense mixing and dilution of the emissions. The NW 
direction, instead, where most of the pollution sources are located, is 
shared with Cl1 and Cl2. These clusters are mostly associated with 
higher wind speeds from this direction. In addition, as previously 
described, the diurnal patterns of these clusters are distinct, with Cl1 and 
Cl2 mostly present at night and Cl6 mostly present at daytime when 
mixing is much deeper.

This strong variability in air pollutant concentration at the sub-daily 
scale reflects the combination of meteorological variability, complex 
topography of the Ligurian coast, strongly affecting circulation patterns 
from the local to the regional scale, emission sources modulation, and 
different reactivity (atmospheric lifetime) of the single chemical species 
due to intrinsic molecular properties and to photochemical conditions. 
Such a circumstance is roughly conducive to a coastal breeze regime 
wherein morning flows from land seaward promote pollution seaward 
dispersal from local sources (industrial settlements, fossil fuel power 
plant, traffic and shipping, dense conurbation), leading to air quality 
transitory improvement over the urban airshed, while after midday air 
masses rich in ship emissions, secondary and aged pollutants from the 
sea with typical shipping markers and/or enriched in secondary species 
such as ozone for example, are returned to the coast (Fortezza et al., 
1993; Millán et al., 2002).

The reported results, however, are in good agreement with those 
reported in the previous work from our group (Palladino et al., 2021), 
carried out on daily PM10 chemical speciation data. The PMF model 
based on those data revealed the presence of seven source factors, that 
can be compared with the clusters obtained here by SOM i.e. with a 

completely independent methodology and dataset. The present SOM did 
not find “crustal” and “sea spray” sources due to the absence of specific 
markers in the dataset. However, both approaches recognized “traffic” 
(Factor 2 in the previous PMF study and Cl4 in the present one), 
“naval-maritime” (Factor 5 and Cl3), and “coal burning” (Factor 6 and 
Cl2) sources. The previous PMF study also identified two factors (3 and 
4) described by secondary NO3

− (Factor 3), SO4
2− and NH4

+ (Factor 4). 
The secondary nature of these factors can be compared with what re
ported for Cl5, representing locally aged air masses. Cl1 and Cl6, 
instead, cannot be compared with any factor of the previous PMF study. 
Both approaches agree in terms of emission source diagnostics, due to 
co-emissions of gaseous and particulate components in all the emerged 
sources. It has to be noted that PMF data and SOM data were collected 
during the same campaign and the same time lag. Nevertheless, chem
ical speciation data and sampling time resolution used in the two in
dependent elaborations we performed, address different aspects of the 
same emissive phenomenology in the studied airshed. The comple
mentarity of the two studies enriches the understanding of chemical 
(and physical) phenomenology. Noticeably, while PMF focuses on the 
specificity of chemical tracers with robust multivariate methods, SOM 
seems able to shed light on the dynamics of emissions, enabling a 
reasonable capacity of disentangling emission source contributions of 
criteria pollutants.

3.2. SOM with chemicals and OPS data

As already mentioned, the OPS data were available only in the sec
ond part of the campaign, consistently limiting SOM computation and 
preventing the comprehensive evaluation of air quality behavior. This 
paragraph thus is exclusively devoted to warm-season data discussion.

In this case, an 8 × 7 map was trained, and the number of epochs for 
the training phase was set to 100, using Gaussian neighborhood as in the 
previous elaboration. At the end of the computation, all units were 

Fig. 7. Heatmap of the quartile distribution of chemical and OPS variables.
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populated by at least one observation. The heatmaps in Fig. 7 show a 
different behavior of air pollutants compared to that of Fig. 3, which can 
be ascribed both to the specificity of the season covered (previously not 
resolved from the cold one) and to the inclusion of aerosol information 
from the OPS to the dataset. In this case, the correlation between 
compositional parameters is enhanced, in particular between two cou
ples of organic species: benzene and (m,p)-xylene, and toluene and o- 
xylene; the profiles of both couples are, indeed, almost identical. The 
inorganic gaseous species reveal a limited correlation, with the highest 
correlation between NO and NO2, due to their “genetic” connection. NO2 
seems partially correlated also to benzene and (m,p)-xylene which 
suggests a local source due to the relatively short lifetime of the species 
involved in the temperate Mediterranean conditions. NO2, indeed, 
though a secondary species (only a few percent fractions being initially 
released at any combustion/high-temperature source compared to the 
highly reactive NO), can be as reactive as the aromatic species to which 
it is correlated (Friedrich et al., 2021). BC, instead, as already discussed 
in paragraph 3.1, does not show any apparent correlation with any other 
parameters as it can be attributed to a series of combustion sources 
active across the Savona airshed, unless using suitable constraints such 
as directionality at the sub-daily scale or seasonality (e.g., absence of 

domestic wood heating in the warm season or modulation/trends in 
maritime traffic) and/or 222Rn.

OPS data, finally, shows good to excellent correlation among the 
coarse fraction bins, likely associated with their buoyancy (distinct from 
sub-micron particles), though with an even more limited correlation 
with bin8 (>10 μm), reasonably due to the low population of this 
fraction. Bin1 (0.3–0.5 μm), instead, largely representing the accumu
lation mode, seems uncorrelated with all the others, because of its sig
nificant involvement in secondary aerosol formation (Raes et al., 2000) 
and in aerosol aging (Morozzi et al., 2021; Palladino et al., 2021; Tositti 
et al., 2018). Such lack of cross-correlations among macro-pollutants 
can be ascribed to the absence of specificity typical of criteria pollut
ants at the source, i.e., they are emitted simultaneously by multiple 
sources and recirculated across the same airshed. Nevertheless, their 
different emission sources might be distinguished based on wind di
rection and speed, distinctively affecting detection at the receptor site in 
terms of location/distance from the source and of their chemical kinetics 
(i.e. reaction rates, typical of each chemical species) all affecting their 
atmospheric residence time, but also the buildup of secondary species, 
often including a change of phase as in the case of submicron particles 
(e.g. the accumulation mode among the OPS fractions described above).

Fig. 8. Boxplots of chemical and optical particle counting variables based on the cluster division.
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Again, clustering based on DB-Index divided the dataset into six 
clusters (Fig. 8). Similarly to section 3.1, the behavior of the variables in 
the six clusters, and the daily distribution of observations are reported in 
Fig. 9. Meteorological variables, 222Rn concentrations, and wind roses 
for each cluster are shown in Fig. 10.

As previously reported, this analysis was conducted only on warm 
season data, thus no seasonal behavior can be deduced from SOM re
sults. Indeed, no specific meteorological conditions characterize any of 
the clusters, except for some peculiar humidity levels (Fig. 10a). How
ever, such conditions allow drawing the attention to distinct pollution 
events that can be argued from the analysis of the six clusters.

Cl1 (316 observations) is mainly a diurnal cluster (observations are 
concentrated between 9:00 to 18:00) as confirmed by the lower daytime 
concentration of 222Rn (Fig. 9a), due to enhanced instability conditions 
(Chambers et al., 2015), and scattered along all days. Winds are mainly 
from W-NW (Fig. 10b), with the lowest median RH among these clusters. 
It is also characterized by a significant contribution of coarse particles, 
OPS-bins 5 to 7 (3.0 to > 10 μm). This cluster can be considered anal
ogous to Cl2 observed in the previous SOM (par. 3.1), with the contri
bution of SO2 due to the coal-fired power plant in the northwesterly 
direction from the sampling point, addressing the opencast coal storage 
facility.

Cl2 (313 observations) is characterized by higher concentration 

levels of all the chemical pollutants including fine particulate matter (i. 
e., bin1, 0.3–0.5 μm) and 222Rn. The most interesting meteorological 
feature of this cluster is the wind, which is typically very weak (<1.3 m 
s− 1) addressing to low efficiency of dispersion processes. Except for the 
data collected between 9 and 11 May, all the observations cover 
nighttime data, collected between the hours 21:00 and 9:00 (mostly 
between 5:00 and 7:00). This is in connection with the higher boundary 
layer stability developing as soon as temperature decreases over the 
ground, but also the marked local and continental character reflected by 
the higher 222Rn levels. The days 9–11 May are characterized by high 
atmospheric stability, with a complete absence of wind and high pres
sure (up to 1030 hPa), that enhance the accumulation of atmospheric 
pollutants.

Cl3 (289 observations) is characterized by higher-than-average 
concentrations of fine particles and the lighter among the coarse ones 
(bins 2 to 5, in the range 0.5–3.0 μm) and by southwesterly winds that 
also reach 4.5 m s− 1, suggesting a limestone quarry SW of the receptor 
site (Fig. 1) as a likely source (Ekpa et al., 2023; Khazins et al., 2022), 
compatible with the average wind speed and coarse particle size, typical 
of mechanically produced particles.

Cl4 (276 observations) is well characterized and confirms Cluster 3 
of the previous SOM (Figs. 4 and 5). It is characterized by higher con
centrations of BC, in this case in association with bin1. Indeed, this 

Fig. 9. a) Hourly cluster distribution with the corresponding observations counts; b) daily cluster distribution along the whole sampling period: each hour 
(observation) of each day is assigned to a specific SOM cluster. White cells (ND in the legend) represent hours for which the observation was not available.
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agrees with the typical fine/ultra-fine nature of elemental carbon, while 
the NE wind direction emerging from the clustering confirms the high- 
temperature fossil fuel source identified in shipping activities at the 
nearby commercial harbor. The days between 31 May and 4 June are 
univocally assigned to this cluster, confirming the previous attribution 
in paragraph 3.1.

Cl5 (585 observations) is characterized by lower pollution conditions 
similar to Cluster 6 of the previous SOM though now extended to aerosol 
fractions. This cluster is characterized by northerly winds from the 
polluted Po Valley airshed. Such winds were sufficiently intense to 
improve the original air quality by efficient pollutant dispersion as well 
as by wet removal by orographic clouds during the transit across the 
Alpine–Apennine range.

Cl6 (178 observations) is characterized by higher-than-average 
counts of all OPS bins, except for bin1. This cluster shares some char
acteristics with Cl3 (it is also present on the same days), particularly the 
influence of W-SW winds. The position of this cluster in the SOM, top-left 
corner (Fig. S7), between Cl1 and Cl3, and the lower number of obser
vations included indicate that this cluster contains unresolved obser
vations with coarse particulate matter, of lower environmental and 
health concerns, but involving multiple sources such as the highway, the 
cave, and others upwind the receptor site.

4. Conclusions

A six-month sampling campaign was carried out near Savona, a 
medium-sized city in northern Italy. The concentrations of eight chem
ical species and the number of particles at eight OPS bin dimensions 
were collected on an hourly basis. A source profiling method using Self- 
Organizing Maps was computed. Two SOMs were trained with chemical 
variables only over the whole sampling period and using the full set of 
variables over the hot season only. Meteorological parameters and the 
concentration of 222Rn were finally used to evaluate the clustering ob
tained by SOM and to highlight pollution sources for each cluster. In 
both cases, six clusters were obtained and, for most of them, a well- 
defined air pollution source has been described, considering both the 
pollution profile and the meteorological characteristics. The SOM 
method was also able to highlight correlations between the variables, 
and the presence of OPS counts made it also possible to determine a 
dimension range for some kind of pollution, such as the fine particulate 
due to BC. These results were obtained with a data-analysis methodol
ogy requiring lower computational effort than PMF, showing its capa
bility for source profiling applications, in particular when dealing with 
small datasets, not suitable for PMF. Moreover, although the chemical 
species used in the present work were criteria pollutants, generally 
considered unsuitable for source profiling due to the multiple co- 
emissive sources, the use of SOM and the integration with meteorolog
ical parameters, above all wind direction and speed, enabled emission 

Fig. 10. a) Boxplots of the meteorological variables (temperature, relative humidity, pressure) and activity concentration of 222Rn; b) wind roses for each cluster.
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sources by spatial association to be revealed, rather than by time 
consuming and costly chemical speciation based methods. Indeed, SOM 
allowed the identification of groups of pollutants (or single species) 
described by the SOM clusters. Then, their origin was traced thanks to 
the complementary use of meteorological data, that was independent of 
SOM computation, considering wind speed and direction (evaluating 
local or distant origins) and the circadian (day/night) behavior of 
clusters, useful to evaluate the reactivity of the identified pollutants.
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