

Supplementary Material

Re-designing nano-silver technology exploiting one-pot hydroxyethyl cellulose-driven green synthesis

Blosi M^{1§*}, Brigliadori A^{1§}, Ortelli S¹, Zanoni I¹, Gardini D¹, Vineis C², Varesano A^{2,} Ballarin B³, Perucca M⁴, Costa AL^{1*}

¹National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC) Faenza (Ra), Italy

²National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for AdvancedManufacturing (CNR-STIIMA), Biella, Italy

³ Department of Industrial Chemistry "Toso Montanari" Via Gobetti 85, Bologna, Italy

⁴ Project HUB-360, 10051 Avigliana, Italy

[§]: These authors share first authorship

* Correspondence: magda.blosi@issmc.cnr.it; anna.costa@issmc.cnr.it

Figure S1 – Molecular structure of SoftCat SL30 (INCI Name: Polyquaternium-67) the quaternary ammonium salt of hydroxyethyl cellulose used as a chelating and reducing agent for the preparation of AgHEC.

Figure S2 – FE-SEM images and corresponding particle size distribution measured on more than 150 NPs for AgHEC-01 at increasing reaction times: a) 0 h, b) 1 h, c) 5 h, d) 12 h, e) 24 h; f) graph representing the increase of the mean particle size derived by FE-SEM images.

Figure S3 – UV-VIS spectra collected for sample AgHEC-01 at increasing reaction times: 0, 1, 4, 8 and 24 hours.

Figure S4 – UV-VIS spectra collected on AgHEC-based samples prepared at different molar ratios.