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Abstract: The environmental impact of Bitcoin mining has raised severe concerns considering the
expected growth of 30% by 2030. This study aimed to develop a Life Cycle Assessment model to
determine the carbon dioxide equivalent emissions associated with Bitcoin mining, considering
material requirements and energy demand. By applying the impact assessment method IPCC 2021
GWP (100 years), the GHG emissions associated with electricity consumption were estimated at
51.7 Mt CO2 eq/year in 2022 and calculated by modelling real national mixes referring to the
geographical area where mining takes place, allowing for the determination of the environmental
impacts in a site-specific way. The estimated impacts were then adjusted to future energy projections
(2030 and 2050), by modelling electricity mixes coherently with the spatial distribution of mining
activities, the related national targeted goals, the increasing demand for electricity for hashrate and
the capability of the systems to recover the heat generated in the mining phase. Further projections for
2030, based on two extrapolated energy consumption models, were also determined. The outcomes
reveal that, in relation to the considered scenarios and their associated assumptions, breakeven
points where the increase in energy consumption associated with mining nullifies the increase in
the renewable energy share within the energy mix exist. The amount of amine-based sorbents
hypothetically needed to capture the total CO2 equivalent emitted directly and indirectly for Bitcoin
mining reaches up to almost 12 Bt. Further developments of the present work would rely on more
reliable data related to future energy projections and the geographical distribution of miners, as well
as an extension of the environmental categories analyzed. The Life Cycle Assessment methodology
represents a valid tool to support policies and decision makers.

Keywords: life cycle assessment; cryptocurrencies sustainability; bitcoin; low-carbon electricity;
net-zero greenhouse gas emissions; energy transition

1. Introduction
1.1. Climate Change and Cryptocurrencies

Climate change is one of the biggest concerns of the modern era, due to the proven
impacts on human health [1–3] and ecosystems [4–6]. An increasing awareness of the
influence of human activities on climate change has captured the attention of both politics
and society [7] and pushed the research towards reaching a net-zero greenhouse gas (GHG)
emission goal [8,9] by taking actions to boost the implementation of sustainable processes
and technologies [10–13].

A worldwide picture of the cumulative CO2 emissions from 1750 to 2022 is reported
in Figure 1, representing the amount already emitted into the atmosphere. Although the
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global CO2 emissions are “only” slightly increased in 2023 compared to 2022 [14], the
concentration of CO2 in the atmosphere reached 427 ppm (June 2024) [15], stressing the
need for proper and timely mitigation actions.
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To tackle the issue of present and future emissions, beyond the transition to low-carbon
technologies and universal efforts towards greener industrial systems, it is essential to
identify the major sources of GHG emissions. Historically, transportation, building, and
industry have covered most of the GHG emissions, mainly due to energy requirements.
However, today, new sectors are growing, the impact of which remains little investigated, if
at all. Of relevance here, in a world increasingly oriented towards digitalization, cryptocur-
rencies have been widely discussed in recent years, because of their potential implications
on the monetary system [17–21], by removing the middlemen and establishing trust be-
tween unknown parties [22].

Cryptocurrencies have also been placed under investigation due to several environ-
mental implications [23]. Here, the Bitcoin mining activity is particularly noteworthy,
reporting that in 2021, the mining network globally consumed 89.00 TWh of electricity [24],
which represents about 0.3% of the total electricity consumed worldwide [25]. Qin and
colleagues (2023) recognized the significance of the impactful energy consumption and
consequent carbon intensity of the cryptocurrency system. They also reported the existence
of several implications that may affect both energy consumption and emission trends,
such as, for instance, the price of Bitcoin [26], whose relationship with the total energy
consumption is suggested to be “chaotic” and “nonlinear” [27].

The close link between CO2 emissions relative to the use of Bitcoin was also confirmed
by Polemis and Tsionas [28] by means of a Bayesian analysis and quantile cointegrated
vector autoregression investigation, which corroborates a Bitcoin use/carbon emissions
“causal effect” existing between them. In particular, the contribution of Bitcoin mining to
the total global carbon emissions in 2016 was estimated to be around 0.19% [29], a value
which is highly dependent on different factors, especially the electricity mix employed.
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In recent years, researchers have attempted to assess the environmental impact of
cryptocurrencies [22,23,30–33]. However, to the best of our knowledge, there is a lack of
adequate discussion on how this market fits into the pathway toward carbon neutrality
predicted for the coming decades. In fact, Kohler et al. (2019) [22] and Chamanara et al.
(2023) [23] presented a comprehensive model that included the evaluation of spatial vari-
ability by detailing all the countries involved, but they did not project GHG emissions for
the coming years. Liu et al. [32] accounted for the positive implications of mining alongside
its effects on climate change. However, in this study as well, the impacts were neither
assessed based on future projections nor was spatial variability considered.

Stoll et al. [34] provide a methodology to obtain precise estimates, as of November 2018,
of carbon emissions (22.0–22.9 Mt CO2) and annual electricity consumption 45.8 TWh, by
considering IPO filings of mining hardware, mining facility operations, pool composition,
and geographic footprint. Their understanding of the impact of Bitcoin mining leaves room
to define possible future carbon emission scenarios as well as the evaluation of the impact
of power recovery in mining operations.

According to one (logistic model) of the two models described by Shi et al. [35], estimated
carbon emissions of the Proof-of-Work-based Bitcoin will be in the 117.03–331.90 Mt CO2
range in 2030, increasing by about two orders of magnitude in 2050.

Roeck et al. [36] introduced the application of LCA as an innovation to a behind-
the-meter Bitcoin mining system, taking into account future energy projections in the
discussion. However, in this case, the study is limited to a single facility and does not
provide results on a global scale. To fill this gap, our study aims to calculate the GHG
emissions associated with the Bitcoin mining phase, striving to accurately represent the
electricity mixes of the involved states and considering potential future variations in both
the electricity mixes (in relation to projections aimed at reducing GHG emissions) and
the electricity for hashrate (EfH). These estimates will enable us to understand the role
and potential future responsibilities of Bitcoin in a world that must mitigate the impacts
of climate change. In particular, this study primarily aims to address the following two
hypotheses: (i) The increase in EfH could, at some point, nullify efforts made to reduce
the carbon intensity of energy mixes. This assertion is partially in contrast to what has
been stated by Lal et al. [37] and Bruno et al. [38], who understandably argue that the
increase in EfH could drive the energy transition; however, if this low-carbon energy is then
consumed for mining activities, other sectors may not benefit from it. (ii) Energy mixes
will reduce their carbon intensity, but if energy demand proves to be particularly high, it
will be necessary to rely on fossil resources to meet the share that cannot be obtained from
renewable sources.

1.2. Reaching Net Zero and Carbon Capturing

There is an international scientific consensus that, to prevent the worst climate damage,
global net human-caused carbon dioxide emissions need to be reduced by about 45%
from the 2010 levels by 2030, reaching net zero in 2050 [39]. This goal suggests that the
various sectors should proportionally contribute to the reduction. Such a vertical approach
relates to the concept of absolute sustainability, whose assessments have been developed
to quantitatively determine if the environmental impact of an activity [40], e.g., Bitcoin
mining, can be considered sustainable when inserted in the global context. This approach
is also useful for determining the global contribution of a sector or activity to total global
emissions, allowing for the assignment of a specific role to it and potentially identifying it
as a hotspot that requires targeted intervention.

CO2 capture from the atmosphere, combined with its utilization and/or storage, is one
of the proposed strategies to mitigate climate change [41] In particular, carbon capture from
industrial chimneys is considered among the most promising strategies aimed at limiting
the rise in the overall concentration of CO2 [42]. In this context, several technologies
have been developed in the last few decades to directly reduce the CO2 released during
industrial activities or remove CO2 from the atmosphere to balance emissions [43–45].
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Scientific research is facing numerous challenges to enhance the performance of both
liquid and solid sorbent materials, and IEA consistently provides a prediction about the
percentage of CO2 trapped by CCUS technologies [46]. For this reason, the following
sections consider the potential of CCUS technologies to mitigate CO2 emissions from
Bitcoin mining activities to be of particular interest.

The authors believe that raising awareness regarding the sectors with the greatest
impact on global GHG emissions, as well as the underlying causes of these impacts, would
support decision makers in developing policies and recommendations aimed at advancing
progress towards achieving net zero.

2. Materials and Methods

LCA is a methodology that consists of the evaluation of the environmental perfor-
mances of a system or a product in all the phases of its life cycle and is standardized by
ISO 14040:2006 [47] and ISO 14044:2006 [48], and it is structured into four fundamental
phases: (i) goal and scope definition; (ii) Life Cycle Inventory (LCI); (iii) Life Cycle Impact
Assessment (LCIA); and (iv) interpretation.

2.1. Goal and Scope Definition

The main goals of this study are to (i) estimate the carbon emissions (mass of carbon
dioxide equivalent) associated with the life cycle of Bitcoin in 2022 (baseline Scenario)
according to a site-specific LCA model; (ii) predict the carbon emissions associated with
2030 and 2050, by assuming a reduction in the carbon fraction of the electricity mix;
(iii) investigate five additional scenarios considering the reduction or increase in the EfH;
(iv) elaborate four different hypotheses related to the capability of the electricity mix to
supply low-carbon electricity (LCE), in relation to higher electricity demands.

The analysis is focused on Bitcoin, considered the cryptocurrency with the largest
market capitalization (≈80% of the total cryptocurrencies) [30]. The selected functional
unit is “1 year” of mining. The system boundaries include the extraction of raw materials
and the consumption of resources involved in electricity production, including related
infrastructure burdens, electricity generation at the plant, transmission losses and burdens,
and consumption during the mining phase, following a cradle-to-gate approach. A cut-off
was applied to the infrastructure (including informatic equipment) of the mining phase,
as it was considered out of scope. To avoid allocation, consistently with ISO 14044 [48],
the heat produced and recovered during the mining phase was included in the assessment
by expanding the system and following the ‘avoided product’ criterion, thereby crediting
a gain to the model (see Section 2.2.4). This strategy allowed for the avoidance of the
employment of allocations.

2.2. Life Cycle Inventory

The proposed study is structured around two main categories of data: (i) geographical
and flow information related to Bitcoin mining and cryptocurrency transactions, and
(ii) data about energy mixes.

2.2.1. Cryptocurrencies

The selected data source for Bitcoin mining is the Cambridge Bitcoin Electricity Con-
sumption Index (CBECI) website [24], whose “hybrid top-down approach” is suggested to
best account, among 22 blockchain energy investigations, for the proposed “best practices
for direct energy use analysis” [49]. The total amount of energy consumed for Bitcoin
mining in 2022 is estimated at 95.53 TWh. The website displays a mining map, allowing
one to determine the percentage of Bitcoin mined per country involved. The reported
percentages for Bitcoin mining distribution in January 2022 are as follows: USA (38%),
China (21%), Kazakhstan (13%), Canada (6%), Russia (5%), Germany (3%), Malaysia (3%),
Ireland (2%), and other (9%) (See Table S1 and caption).
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2.2.2. Electricity

The carbon intensity (i.e., kgCO2 eq/kWh) of electricity principally depends on the
energy sources and process technology employed in power generation [50–52]. In order to
simplify the description of the results, electricity will be divided into two macro-categories
according to its derivation, i.e., high-carbon electricity (HCE), constituted by oil, coal and
natural gas sources; and LCE, constituted by the electricity generated by nuclear and
renewable resources. The electricity mixes, specific to each country involved in the mining,
were accurately modelled in the SimaPro software (v. 9.6). In the case of the baseline
scenario (i.e., 2022), electricity mixes were modelled by referring to the most updated infor-
mation reported in IEA (2022) [53], while the environmental information associated with
the electricity production and supply was drawn by the ecoinvent database [54]. The use
of the ecoinvent database and the SimaPro software allows for the estimation of GHGs by
considering all phases of the life cycle of the electricity consumed during the mining phase.
This includes the impacts associated with the extraction and procurement of raw materials
needed for electricity production, the infrastructure burdens, whether at the level of the
production plant or the electricity distribution network, the electricity grid losses, as well as
emissions during the production phase at the plant (e.g., combustion gas emissions in the
case of thermoelectric power plants). When ecoinvent contained multiple technologies for
producing electricity from the same source, the production from that source was distributed
among the available technologies according to the proportions indicated in the ecoinvent
proxy [54]. For instance, if in the United States, nuclear energy production accounted for
6.4% of the country’s power generation in 2022 [54], and both boiling water reactor (32%)
and pressurized water reactor (68%) technologies were operating in the US, it was assumed,
for that country, that 2.0% of the nuclear power generation is produced using the boiling
water reactor technology and 4.4% by using the pressurized water reactor technology.

According to Section 2.2.1, ‘Other’ countries accounted for 9% of the Bitcoin mining
and, to simplify the calculation, by limiting the number of countries and their data, the
corresponding electricity mix was not modelled, and the 91% covered by the eight states
mentioned above was proportionally scaled to 100%.

Future projections associated with country energy mixes are reported in Table S2
and were drawn by different resources, often specific to the analyzed country. The first
projection scenario is modelled by referring to the best available data (BAD) found in the
literature and on the web for each involved country. Two more scenarios were created
according to different estimations provided by, respectively, the International Renewable
Energy Agency (IRENA) [55] and EMBER [56], which report percentages of LCE shares
referring to global averages. More details and references about the BAD, IRENA, and
EMBER scenarios are reported in Table S3 of the ESI. The authors are aware that future
projections are not absolute predictions, so the explored shares may not be easily achievable
for all the involved countries. Conversely, for some countries (e.g., Canada and Germany),
these objectives have already been met. Nevertheless, it was decided to maintain the BAD
as a reference scenario and to provide these two alternative perspectives to understand
how the conversion of energy mixes could impact the carbon intensity of Bitcoin mining.
In the cases where the set objectives had already been achieved, a stationary evolution to
the future was assumed (e.g., Canada had already achieved a percentage of 82.5% by 2022,
while the IRENA scenario indicates a global percentage of 40% by 2030, so that, for 2030, it
was decided to maintain the 82.5% for Canada, and so on).

2.2.3. Electricity for Hashrate

Hashrate refers to the computational power (in terms of speed and efficiency) of a
mining device to process transactions. The EfH consumed in 2022, reported by the CBECI
(2022) [24], was equivalent to 95.53 TWh. Because increasing the hashrate corresponds to
improving the ability to solve the complex algorithms required to validate transactions,
making the network more secure and efficient, an increase in time of the overall EfH is
expected. However, due to the high variability of Bitcoin values and the unpredictability
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of the market, it is not easy to predict EfH consistently with reliable future projections. To
enhance the robustness of our estimates relating to possible EfH fluctuations in the future,
five more EfH scenarios (EfH-Sc) were modelled, covering different decrease or increase
pathways in hashrate (i.e., −10%EfH; +10% EfH; +20% EfH; +50% EfH; +100% EfH with
respect to 2022). Two further estimates of CO2 emissions for 2030 are also provided by
extrapolating the EfH data available in ref. [24] considering either (i) the yearly available
data (2010–2023) modelling with a quadratic regression model or (ii) a linear regression
taking into account the 2016–2023 data, which results in the highest R-squared value (0.985)
whether consecutive years of the available data are considered (see plots in Figure 2).
The predicted values (and intervals) are equal to 232 TWh ± 25 (two-tailed, α = 0.05)
and 334 ± 19 (two-tailed, α = 0.05), therefore about +143% and +250% with respect to the
95.53 TWh of 2022.
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Figure 2. Plots of the linear (dashed red dots) and nonlinear regression (dashed blue dots) models
and the corresponding extrapolated predictions for 2030 (red and blue squares). Energy consumption
data are taken from ref. [24]. The 2022 value of 95.53 TWh is also highlighted. Data and models are
reported as Table S12.

2.2.4. Heat Recovered from Mining

Mining activity generates substantial amounts of heat from the hardware involved
in the process [37,57]. Although several private companies involved in Bitcoin mining
have already been set up to recover a portion of this heat, the actual amount potentially
recoverable from the mining process has not been quantified yet. To provide reliable
estimates, primary information shared by the company Mining Farm Italia [58] was used,
which reported heat generation of approximately 0.95 kWht per each kWhe of electricity
consumed. Based on the expertise of the company, up to 70–80% of the heat could be
recovered in a well-designed system. However, it has been conservatively assumed that
only 50% of this heat will be recovered. This assumption aligns with findings from other
mining machines [59]. The heat produced is assumed to be employed for district heating
and credited in the LCA model for avoiding the generation of an equivalent amount of
heat from natural gas combustion, by referring to the ecoinvent record “Heat, central or
small-scale, natural gas {GLO}| market group for heat, central or small-scale, natural gas |
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APOS, U” [54]. This assumption implies the presence of inhabited areas or, more in general,
locations where there is a demand for heat.

2.2.5. CO2 Sorbents

Beyond the main goals described in Section 2.1, a quantification of the adsorbing
materials hypothetically needed to sequestrate the amount of CO2 equivalent to compensate
the GHG emitted into the atmosphere from the baseline scenario was determined.

In the framework of the carbon capture technologies, we focused on the largely
employed amine-based sorbents [60–66]. To this aim, we referred to the work published by
Leonzio et al. (2022) [45], which reports the adsorption capacity values (expressed in mol
CO2/kg of sorbent) of Class I, II and III amine-functionalized sorbents.

It is worth mentioning that all these data were used, including the adsorption ca-
pacities of the same sorbent in different conditions/CO2 concentrations. Since for 3-
aminopropyltriethoxysilane (APS), an adsorption efficiency range was reported, the average
value of 0.45 mol CO2 eq/kg of sorbent was considered. The model to estimate the amount
of sorbents hypothetically employed to capture the quantity of CO2 necessary to mitigate
the GHG emitted in the mining phase does not consider the possibility of regenerating
the materials. Consistently, it also excludes energy and additional materials to allow for
such regeneration.

2.3. Life Cycle Impact Assessment

In the LCIA phase, material and energy flows identified and quantified in LCI (e.g.,
direct and indirect emissions, energy and resource consumptions) are converted into po-
tential environmental impacts using well-established cause–effect models. In our analysis,
according to the purposes of this study, the IPCC 2021 GWP (100 years) is adopted as the
LCIA method.

Breakeven Electricity

As highlighted above, the results were calculated based on the electricity mixes mod-
elled for the baseline and future scenarios, considering a set of hypothetical energy require-
ments that vary depending on the EfH, which reflects the Bitcoin market trends. In our
analysis, the global warming potential (GWP) value calculated for the baseline scenario
is set as the reference GWP for estimating the ‘breakeven electricity’ (BEE). The BEE rep-
resents the amount of electricity that can be required in each scenario to equal the GWP
of the baseline scenario in 2022, in relation to the mixes modelled for 2030 and 2050. We
believe that this normalization can emphasize that an excessive increase in future electricity
consumption for Bitcoin mining could trade off the beneficial effect of reducing the carbon
intensity of the electricity mix. Since the BEE is dependent on the mix employed to generate
electricity and the mix reflects the capacity of the country to satisfy the electricity demand,
four hypotheses are provided: (H1) it is assumed that countries will be able to meet the
increasing demand while maintaining a constant fraction of LCE in the mix (see Section
Hypothesis 1 (H1)); (H2) it is assumed that the electricity equivalent to that consumed in the
year 2022 (i.e., 95.5 TWh) will be produced according to the mix related to the 2030 and 2050
scenarios but that the excess of electricity required to reach the total emission of the baseline
scenario in 2022 will be produced entirely from HCE sources (see Section Hypothesis 2
(H2)); (H3) it reflects the same assumption of (H1), but it includes the contribution of the
avoided GWP emissions associated with heat recovery (see Section Hypothesis 3 (H3));
(H4) it is based on the same assumptions of (H2), but it includes the contribution of the
avoided GWP emissions associated with heat recovery (see Section Hypothesis 4 (H4)). A
summary of the assumptions applied in the four hypotheses is reported in Table 1.
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Table 1. Summary of the 4 hypotheses.

Hypotheses Description

H1 Countries will be able to meet the increasing EfH maintaining a constant
fraction of LCE in the mix.

H2
The electricity mix of the scenario is maintained constant until the electricity
consumption of 2022 is reached. Then the excess of electricity will be produced
entirely from HCE sources.

H3 Same as H1, but it includes the credit associated with the heat recovery.

H4 Same as H2, but it includes the credit associated with the heat recovery.

Hypothesis 1 (H1)

In H1, the BEE is computed by assuming that, in each scenario, the electricity con-
sumed by Bitcoin mining is generated from the same electricity mix modelled for that
scenario, independently of the absolute power consumed. BEEScenario represents the BEE
estimated for each future scenario (i.e., BAD 2030, IRENA 2030, EMBER 2030, BAD 2050
and IRENA and EMBER 2050).

Accordingly, the BEE of H1 (BEECmix,Scenario) is computed as reported in Equation (1),
where GWPtot is the GWP estimated for the baseline scenario; C%LC,Scenario is the percent-
age contribution of LCE in the mix; C%HC,Scenario is the percentage contribution of HCE
in the mix; and GWPLC,TWh and GWPHC,TWh are the GWP referring to the consumption
of 1 TWh produced by LCE and HCE, respectively (Equation (1)). The complete sequence
which generates Equation (1) is reported in the Supplementary Material (Section titled
“Equation (S1)”).

BEECmix,Scenario =
GWPtot ∗ C%LC,Scenario

GWPLC,TWh
+

GWPtot ∗ C%HC,Scenario

GWPHC,TWh
(1)

Hypothesis 2 (H2)

In H2, the BEE (BEEHCex,Scenario) is computed assuming that the electricity equivalent
to that consumed in 2022 (i.e., 95.5 TWh) will be produced by the electricity mix modeled
as for the future scenarios, but the excess of electricity required to reach the GWPtot of the
baseline scenario will be produced entirely from HCE sources. As depicted in Equation (2),
BEEHCex,Scenario is equal to the sum of GWP associated with the high-carbon fraction of
the mix (GWPHC,Scenario) and the GWP associated with the low-carbon fraction of the
mix (GWPLC,Scenario), both consistent with the considered scenario of the reference. In
H2, both GWPtot and GWPLC,Scenario are constant, while GWPHC,Scenario is dependent on
BEEHC,Scenario. The complete sequence which generates Equation (2) is reported in the
Supplementary Material (Section titled “Equation (S2)”).

BEEHCex,Scenario =
GWPLC,HCex

GWPLC,TWh
+

GWPtot−GWPLC,HCex

GWPHC,TWh
(2)

Hypothesis 3 (H3)

The equations reported above pertain to scenarios where no energy recovery is ex-
pected during the mining phase. In H3, Equation (3) is instead applied. Similarly to
Equation (1) (H1, Section Hypothesis 1 (H1)), H3 fixes the GWP to that estimated for
the baseline scenario (GWPtot) but also includes the contribution of the avoided GWP
emissions associated with heat recovery. The amount of heat assumed to be recovered is
0.475 kWht/kWhe (GWPTWht), according to the section. In H3, BEECmix,HR,Scenario is the
the breakeven electricity estimated for each scenario; BEELC,Cmix,Scenario is the breakeven
LCE estimated per scenario; GWPLC,HCex represents the GWP associated with the LCE
amount consumed in each specific future scenario, when the electricity consumed is fixed
at the amount consumed in 2022 (95.5 TWh [24]); GWPHC,HCex represents the GWP asso-
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ciated with the HCE consumed to reach the difference between GWPtot and GWPLC,HCex;
GWPLC,TWh and GWPHC,TWh are the GWP referring to the consumption of 1 TWh produced
by LCE and HCE, respectively; and GWPTWht represents the GWP assigned to 1 TWh of
heat consumed. The complete sequence which generates Equation (3), is reported in the
Supplementary Material (Section titled “Equation (S3)”).

BEECmix,HR,Scenario= BEELC,Cmix,Scenario+
GWPtot − GWPLC,Cmix ∗ (GWPLC,TWh − GWPTWht)

(GWPHC,TWh − GWPTWht)
(3)

Hypothesis 4 (H4)

Equation (4) defines how to estimate BEEScenario in H4, if the excess of electricity
required to reach the total emission of the baseline scenario is produced entirely from HCE
sources but including the credit associated with the heat recovery (BEEHCex,HR,Scenario).
Equation (2) is, therefore, modified to include the contribution of heat recovery, where
GWPtot is again the GWP estimated for the baseline scenario (Equation (4)); BEELC,HCex,Scenario
represents the breakeven electricity produced by LCE sources for each specific scenario;
GWPLC,HCex represents the GWP associated with the LCE amount consumed in each spe-
cific future scenario, if the electricity consumed equals the amount consumed in 2022
(95.5 TWh [24]); GWPHC,HCex represents the GWP associated with the HCE consumed to
reach the difference between GWPtot and GWPLC,HCex; GWPLC,TWh and GWPHC,TWh are
the GWP referring to the consumption of 1 TWh produced by LCE and HCE, respectively;
and GWPTWht represents the GWP assigned to 1 TWh of heat consumed. The complete
sequence which generates Equation (3) is reported in the Supplementary Material (Section
titled “Equation (S4)”).

BEEHCex,HR,Scenario = BEELC,HCex,Scenario +
GWPtot − GWPLC,Cmix ∗ (GWPLC,TWh − GWPTWht)

(GWPHC,TWh − GWPTWht)
(4)

3. Results and Discussion
3.1. Carbon Emission Estimations

The GWP estimated for the baseline scenario is 51.7 Mt CO2 eq/year, an amount
like the 2022 total carbon emissions of Singapore (53.25 Mt CO2 eq) [67]. The values
were derived as 98% from the USA (35.8%) and China (37.4%), which overcomes the USA
despite the lower EfH, and Kazakhstan (24.8%). The estimated GWP emission can be
compared with some important industrial chemical productions such as those for ammonia
and methanol. By taking as a reference the GWP estimated for the baseline scenario 2022
(51.7 Mt CO2 eq/year) and the carbon emissions of 1 kg of ammonia (Ammonia, anhydrous,
liquid {RER}| market for ammonia, anhydrous, liquid | APOS, U, 2.87 kg CO2 eq/kg) and
methanol (Methanol {RER}| market for methanol | APOS, U, 0.96 kg CO2 eq/kg) reported
in the ecoinvent database [54], it is possible to estimate that, in 2022, the carbon emission
predicted corresponds to the production of about 18 Mt of ammonia or 54 Mt of methanol,
corresponding to the 12% and 49% of the worldwide production for 2022 of such chemicals,
respectively [68,69].

Concerning the electricity mix projected variations, assuming that in 2030 and 2050,
the EfH of Bitcoin mining would remain the same as in 2022 (i.e., 95.53 TWh), GWP is
estimated to reduce as follows: −17.5% (2030 BAD), −11.9% (2030 IRENA), −37.6% (2030
EMBER), −54.5% (2050 BAD) and −72.3% (2050 IRENA and EMBER).

Figure 3a displays the GWP values (y axis) estimated according to future projections
(x axis) and changes in EfH (z axis). Figure 3b depicts pie charts containing the same values
presented in the histograms of Figure 3a but including the contribution of each country
in the estimated values. The contribution of the country reflects both the amount of EfH
consumed in the country and the electricity mix. Kazakhstan, the United States, and China
emerge as the main GWP hotspots, contributing 24.8%, 35.8%, and 37.4% of the GWPtot
in 2022, respectively. These countries were also characterized by the highest EfH scores.
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Moreover, according to our estimates, China and Kazakhstan were also characterized by the
highest carbon intensities of national electricity, with 0.88 kg CO2 eq/kWh and 0.93 kg CO2
eq/kWh, respectively. By assuming that the EfH sharing will remain constant in the next
few decades, the cumulative contribution of the remaining countries (i.e., Canada, Russia,
Germany, Malaysia and Ireland) is expected to be <2% of GWPtot. Assuming maintenance
of the same electricity mix, the GWP ranges from a minimum of 36.6 Mt CO2 eq (−10%
EfH) to a maximum of 127.2 Mt CO2 eq (+100% EfH). In the 2030 BAD Scenario, the GWP
ranges from a minimum of 24.7 Mt CO2 eq (−10% EfH) to a maximum of 120.0 Mt CO2
eq (+100% EfH) while, in the 2050 BAD scenario, the GWP ranges from a minimum of
12.4 Mt CO2 eq (−10% EfH) to a maximum of 66.2 kg CO2 eq (+100% EfH). The results are
reported in Tables S4–S10 with a higher level of detail.

On the other hand, considering the two estimated EfH values obtained by extrap-
olating the CBECI data to 2030 according to the two proposed models (linear model:
232 ± 25 TWh; quadratic model: 334 ± 19 TWh) described in Section 2.2.3, the BAD,
IRENA, and EMBER scenarios for 2030 in terms of carbon emissions can be determined.
Accounting for the increased values of EfH starting from 2022, the determined linear re-
gression models within each of these scenarios are shown in Figure 4 (see Table S13 for
the corresponding linear regression models). Their values range (predicted intervals) from
143 ± 2 TWh and 226 ± 3 TWh for the 2030 EMBER scenario to 154 ± 1 and 234 ± 1 TWh
for 2030 IRENA, and this latter almost overlapped with the results for the BAD scenario
(153 ± 1 TWh and 236 ± 2 TWh).

These findings allow us to make some considerations:

(1) The GWP estimated for the baseline scenario of 51.7 Mt CO2 eq for 2022 is more than
double with respect to the predictions as of November 2018 (22.0–22.9 Mt CO2) by
Stoll et al. [34], in agreement with the increase in the yearly electricity consumption,
which moves from 45.8 TWh [34] to 95.5 TWh in 2022 (from ref. [24]) considered in
this study.

(2) While the carbon emission projections to 2030, extrapolating values of EfH (see
Figure 4), are estimated within the range 117.03–331.90 Mt CO2 provided by Shi
et al. [35] in their PoW carbon projection logistic model, only values of the 2030 BAD
and 2030 IRENA scenarios for an EfH value increased by +100% (120.0 Mt CO2 and
121.0 Mt CO2, respectively, see Figure 3), remain within such a range.
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Figure 4. Carbon emissions (in Mt CO2) estimated for 2030 BAD, 2030 IRENA and 2030 EMBER
scenarios at the two extrapolated EfH values (see Figure 2), highlighted in green and blue, respectively
(see Table S13 for models).

3.2. CO2 Sorbents

Figure 5 reports the amount of amine-functionalized sorbent materials needed to
capture the CO2 emitted to generate the electricity employed in the mining phase of the
baseline scenario in 2022. The results are presented in the form of the three-class division
as reported by Leonzio and colleagues [45]. The same results are reported in Table S11.

According to the findings, if it is assumed to capture the total CO2 eq emitted directly
and indirectly in the mining phase for 1 year (i.e., again 51.7 Mt CO2 eq), an amount of sorbent
ranging from a minimum of 302 Mt for Hydrazine (N2H4) in Mg2(4,4′-dioxidobiphenyl-3,3′-
dicarboxylate) sorbent to a maximum of 11754 Mt for NH3 in SBA-15 would be required.
According to literature estimations, only 0.01 Mt CO2/year [70] can be captured from the
27 worldwide commissioned plants, thus requiring more than 5000 years to completely re-
move 1 year of Bitcoin-derived CO2 eq emissions. However, a remarkable reduction of 2 or-
ders of magnitude in time could be potentially achieved in the next few years, with the two
largest plants under construction designed to capture more than 1 Mt CO2/year [70–72].

If all the 130 new facilities projected by IEA [70] are built and activated in the coming
years, the capturing of 65 Mt CO2/year should be reached, enabling the mitigation of the
51.7 Mt CO2 eq/year emitted during Bitcoin mining (baseline scenario).

In addition, it is specified that the proposed estimation includes only the GHG emis-
sions occurring in the mining phase, while this discussion can be potentially extended to
all systems on which information systems, including artificial intelligence, are built.
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3.3. Breakeven Electricity

According to Equations (1)–(4), the BEE electricity associated with the four hypotheses
(i.e., H1–H4) is depicted in Figure 6. The calculation of the BEE allowed for the estimation of
the limit values of electricity consumption for which the reduction in the carbon intensity of
the energy mix of the involved nations would be a trade-off. In Figure 6, the black solid-fill
bars indicate the electrical consumption achievable, assuming that the percentages of LCE
and HCE remain constant for each specific scenario (H1). In contrast, the green solid-fill bars
show the electrical consumption achievable, assuming that the excess electricity is entirely
derived from HCE (H2). The dashed bars indicate the two already shown hypotheses (H1
and H2) but with additional electrical consumption achievable by introducing the credit
associated with the recovered heat into the model (black and green dashed bars H3 and H4).
The consumption limit observed for the H1 and H2 hypotheses grows, driven by increasing
LCE percentages in the mixes; for this reason, an increase in the limit is observed over time.
According to Figure 6, the window of 2030 ranges from 117.9 TWh to 130.6 TWh in the
BAD scenario, from 117.3 TWh to 124.8 TWh in the IRENA scenario and from 135.2 TWh
to 178.1 TWh in the EMBER scenario. Regarding 2050, the limits range from 146.3 TWh
to 235.1 TWh in the BAD scenario and from 172.9 TWh to 442.4 TWh in the IRENA and
EMBER scenario. The BEE calculated assumed to recover the heat generated during the
mining processes (Sections Hypothesis 3 (H3) and Hypothesis 4 (H4)) extends the ranges
between 175.3 and 194.1 TWh in the 2030 BAD scenario, 179.1 and 190.7 TWh in the 2030
IRENA scenario, 211.1 and 278.0 TWh in the 2030 EMBER scenario, 246.1 and 395.5 TWh in
the BAD 2050 scenario, and 284.4 and 727.4 TWh in the 2050 IRENA and EMBER scenario.
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3.4. Limits of the Study

This study is structured on reliable data provided by CBECI [24] and information
derived from the IEA [53], and the two mentioned sources allowed for a reliable estimation
of the GHG emissions of the baseline scenario. However, as highlighted by the results and
discussed in the Introduction, it is complex to define the actual impacts of Bitcoin mining
processes on GWP in future, as they depend on a series of unpredictable factors, such
as the energy mixes used, the geographical areas where mining will occur, and the EfH,
which, in turn, depends on uncertain economic dynamics. Regarding future projections
related to the electricity mixes, although nations have set targets for reducing the carbon
intensity, geopolitical situations and, consequently, energy market instability could alter
the predicted scenarios. Similarly, it is challenging to accurately predict how mining
percentages might be distributed across different countries. To address these issues, this
study presents different projections (different EfH), scenarios (from baseline to 2050 IRENA
and EMBER), and assumptions (related to the capacity of LCE sources to support high
consumption values) to provide a broad spectrum of possibilities. Furthermore, the data
related to heat recovery were not directly measured but based on a survey with experts in
the field [58]. Despite these limitations, our results are consistent with previous findings in
the literature [59]. It should be noted that the aim of this study is not to provide an exact
value of GWP associated with Bitcoin mining but to understand the role and potential
future responsibilities in a world that must mitigate the impacts of climate change. Finally,
this study did not evaluate the positive effects of a transition toward greater adoption of
cryptocurrencies. However, such benefits depend on market dynamics that are not easily
predictable, encompassing social and economic aspects in addition to environmental ones,
which fall outside the scope of this study.

4. Conclusions and Future Perspectives

In this study, LCA was applied to estimate the current (2022) and expected GHG
emissions associated with Bitcoin mining. The analysis covered the development of several
modelled scenarios: (i) future variations in the energy mix at constant EfH; (ii) increased
electricity consumption during the mining phase for a given country at different energy mix
projections; (iii) the energy mix ability to maintain a constant percentage of LCE production
despite a significant increase in electricity demand. The results indicate that uncontrolled
growth in energy demand associated with mining could be a significant limiting factor
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in the reduction in GHG emissions within the energy sector. The relevance of emissions
associated with mining was also illustrated by estimating the hypothetical amount of CO2
sorbents required to capture the equivalent of the CO2 eq emissions resulting from the
mining process, highlighting values in the range of about 300–12,000 Mt. Considering
uncertainty associated with the decarbonization roadmap of the national energy mix and
fluctuations in the Bitcoin market, our results are intended as preliminary estimates, to
be periodically updated by refining the LCA model created to show temporal-specific
information and representative data.

The approach adopted by the authors could be extended to a broader spectrum of
environmental categories since consequences associated with the employment of different
energy sources cannot be collected into one single category. For instance, nuclear energy is
known to affect ionizing radiation [73], biomass-sourced energy significantly contributes
to land occupation [74,75], thermoelectric plants, especially if carbon sources, emit consis-
tent amounts of particulate matter [76], and so on. Annual bitcoin water footprint may
have reached 2237·GL in 2023 [77],with land footprint and annual e-waste production of
1869.69 km2 in 2020–2021 [23], and about 31 kt as of May 2021 [78], respectively. In addi-
tion, the nexus between resources with a focus on water and energy (i.e., the water-energy
nexus) [79–81] and land and mineral exploitation [82] related to Bitcoin mining can be
outlined for future works.

Regardless of the estimated impacts, the significant EfH is certainly recognizable,
which cannot be excluded from debates on sustainability at a time when environmental pro-
tection is paramount. The global effort to convert energy mixes risks being rendered futile
if these devices require higher energy flows than renewable-based systems can support. It
is, therefore, necessary to precisely define which functions of these devices are essential for
the evolution of a sustainable market—economically, socially, and environmentally—and
which are not.

This study could benefit academic research by stimulating new studies in the field that
take inspiration from the proposed approach, which extends reasoning to future scenarios,
whether they derive from economic aspects (e.g., increases and decreases in EfH), energy-
related (e.g., evolutions in national energy mixes), or geographical-related (e.g., countries
where mining occurs). Decision makers could be the most interested stakeholders, finding,
in this study, evidence of the role that Bitcoin may play in hindering the energy transition.
Lastly, citizens might also be interested in better understanding the implications associated
with the employment of the currency. In conclusion, LCA is confirmed to be a versatile
and reliable tool to support strategic planning and policies engaged with the sustainability
challenge.
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