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A B S T R A C T   

Deep neural networks (DNNs) are widely adopted to decode motor states from both non-invasively and inva
sively recorded neural signals, e.g., for realizing brain-computer interfaces. However, the neurophysiological 
interpretation of how DNNs make the decision based on the input neural activity is limitedly addressed, espe
cially when applied to invasively recorded data. This reduces decoder reliability and transparency, and prevents 
the exploitation of decoders to better comprehend motor neural encoding. Here, we adopted an explainable 
artificial intelligence approach – based on a convolutional neural network and an explanation technique – to 
reveal spatial and temporal neural properties of reach-to-grasping from single-neuron recordings of the posterior 
parietal area V6A. The network was able to accurately decode 5 different grip types, and the explanation 
technique automatically identified the cells and temporal samples that most influenced the network prediction. 
Grip encoding in V6A neurons already started at movement preparation, peaking during movement execution. A 
difference was found within V6A: dorsal V6A neurons progressively encoded more for increasingly advanced 
grips, while ventral V6A neurons for increasingly rudimentary grips, with both subareas following a linear trend 
between the amount of grip encoding and the level of grip skills. By revealing the elements of the neural activity 
most relevant for each grip with no a priori assumptions, our approach supports and advances current knowledge 
about reach-to-grasp encoding in V6A, and it may represent a general tool able to investigate neural correlates of 
motor or cognitive tasks (e.g., attention and memory tasks) from single-neuron recordings.   

1. Introduction 

Motor neural decoding consists in translating neural activity into 
motor behavior or into motor-related external variables (e.g., the shape 
of a specific object to reach and grasp). Neural decoding is performed by 
exploiting machine learning approaches and represents a fundamental 
processing stage for developing Brain-Computer Interfaces (BCIs), uti
lizing the decoder decision to provide feedback to the user, e.g., for 
guiding an external device [1]. Crucially, machine learning approaches 
have gained interest in neuroscience as tools not only able to translate 
neural activity [2] but also to shed light on the neural features under
lying the decoded motor states [3]. Indeed, the knowledge learned by 
the decoder could be exploited to identify which elements of the input 
neural activity, in a specific domain of interest (e.g., space or time) are 
more relevant for driving the decoder’s decision, thus obtaining a view 
in the corresponding domains, of how much information the neural 

activity contains about the decoded states. This could help to boost our 
comprehension of how movement properties are encoded in the brain. 

The posterior parietal cortex (PPC) hosts areas involved in the 
sensorimotor processing required to plan actions [4–7], and is known to 
be crucially implicated in the control/planning of upper limb motor acts, 
in both non-human and human primates. Several studies have applied 
decoding techniques to neural signals collected from PPC to infer 
reaching goals and trajectories, as well as grasping properties, both in 
non-human primates [8–11] and in human patients [12,13]. Among PPC 
areas, area V6A is a key node located in the dorsomedial stream, serving 
as connection between the extrastriate visual area V6 and the superior 
parietal lobule. V6A exhibits a gradient in terms of cytoarchitecture and 
functionality. Visual features are predominantly observed in the ventral 
portion (V6Av), characterized by a cytoarchitecture resembling the oc
cipital cortex and more connected with the occipital extrastriate visual 
areas (including V6) [14–16]. Sensorimotor features prevail in the 
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dorsal portion (V6Ad), characterized by a cytoarchitecture more similar 
to the parietal cortex and connected to the parietal and frontal cortex 
[14,15,17]. V6A was found to encode reaching goals and directions 
[18–22] in addition to grasp information [23–26], and it was proved 
that neural signals recorded from this area in non-human primates can 
be used to reliably decode reaching and grasping properties [27–32]. 

Deep neural networks (DNNs) have rapidly emerged in recent years 
as powerful tools for decoding neural signals, both from non-invasive 
recordings, e.g., electroencephalogram (EEG) acquired in humans 
[33–38], and from invasive recordings, e.g., activity of single cells in 
non-human primates [2,27–29,39]. By exploiting raw/lightly 
pre-processed neural signals, these decoders automatically learn the 
features that maximize the discriminability among the classes and 
proved to outperform traditional machine learning approaches, 
including linear discriminant analysis, support vector machine (SVM), 
XGBoost, and Naïve Bayes classifiers (see Refs. [2,36,40,41] for bench
marks and reviews). This holds also when decoders are applied to PPC 
recordings of non-human primates, as we obtained in recent studies (see 
Refs. [27,29] and in particular [28] for a benchmark study). DNNs are 
composed by the sequence of many layers of artificial neurons, and learn 
complex non-linear functions mapping the input multi-variate neural 
activity to the desired motor output by composing many simple 
non-linear functions, each learned within each network layer. Different 
DNNs exist depending on the connections between artificial neurons, 
such as convolutional neural networks (CNNs), fully-connected neural 
networks (FCNNs), and recurrent neural networks (RNNs). Crucially, in 
previous benchmark studies [28,36], CNNs resulted the most accurate 
DNN approach for decoding both non-invasive and invasive recordings. 
Because of their automatic feature learning on raw/minimally 
pre-processed neural signals, DNNs potentially represent good candi
dates to perform data-driven analyses of the elements of the neural ac
tivity that most encode a specific motor state. However, the main 
limitation of DNNs is that their automatically learned features are 
difficult to be directly interpreted in neurophysiological terms. This 
limit has two main negative implications in the field of neural motor 
decoding. First, the validation of DNNs for prospective BCI applications 
is lowered. Indeed, the validation would be only limited to decoding 
performance and not to the knowledge exploited by the decoder to 
produce a specific decision; thus, it would remain unknown what ele
ments of the input neural activity the DNN focuses on to take the deci
sion. Second, the scarce interpretability prevents to exploit the 
automatic feature learning of DNNs to identify and analyze the most 
relevant elements of the neural activity related to movement properties. 
To overcome this limitation, solutions enabling a neurophysiological 
interpretation of the DNN decision were proposed. Among these solu
tions, the most common one consists in coupling the neural network 
with an ‘explanation technique’, such as saliency maps [42] or 
layer-wise relevance propagation (LRP) [43,44], designing an approach 
of explainable artificial intelligence. Explanation techniques are devoted 
to explaining the network decision towards one specific decoded con
dition (e.g., one specific reached and grasped object). By doing so, they 
identify which elements of the input neural activity (in an interpretable 
domain e.g., spatial, temporal, frequency domain) mostly drive the 
network decision towards one specific decoded brain state. The crucial 
point in using such an approach in neuroscience is that it enables 
identifying aspects of the input neural signals that are most important 
for the underlying neural processes (e.g., motor planning and control). 
In this way, this approach could contribute to the validation and also to 
future advancements of motor/cognitive theories that functionally 
relate neural activity to movement properties. 

So far, explanation techniques have been applied to non-invasive 
recordings [34,35,38,45–49], empowering the analysis of the neural 
activity with respect to traditional analyses (e.g., event-related potential 
analyses in case of EEG) and supporting motor/cognitive neuroscience 
with the characterization of novel useful DNN-based biomarkers. 
Conversely, when dealing with signals from single neurons, DNNs have 

been used only as ‘black boxes’, and the potentials of applying expla
nation techniques for interpreting DNN decision still remain unexploited 
and unexplored. 

The aim of this study is to propose a computational framework, 
based on a CNN and on an explanation technique, to investigate the 
encoding of grip properties in area V6A of macaque monkey. In 
particular, a CNN is used to decode five different grip types from the 
activity of V6A cells recorded in 2 macaques during a reach-to-grasping 
task; the five grip types differ as to the degree of grip skills required, 
ranging from a highly rudimentary grip to a highly precise grip. The 
explanation technique is used to identify the spatial and temporal 
samples driving most the decision of the CNN when discriminating the 
different grips. Specifically, the adopted technique quantifies the impact 
(or relevance) of each cell (at different locations in space, e.g., located 
more dorsally or ventrally) and of each time step during the motor task 
in producing the decoding decision. This serves to explore possible dif
ferential contribution of different cells (e.g., dorsal vs. ventral) in 
encoding different grip types, as well as to evidence how grip encoding 
evolves along time. The proposed framework is based on successful 
methodologies previously adopted for non-invasive recordings (EEG), 
here transposed to single-neuron recordings. Specifically, the CNN is 
inspired by the design proposed by Lawhern et al. [33], and LRP [43,44] 
is used to explain network decision. We expected that the proposed 
framework, by highlighting the spatial and temporal samples in the 
input data that are most discriminative for decoding grip types, could 
not only support the current knowledge about reach-to-grasp informa
tion encoded in PPC, but also extend it by providing a more refined view 
of the temporal and spatial organization of reach-to-grasp encoding. 

2. Materials and methods 

2.1. Data description and pre-processing 

The data used in this study were obtained in a previous study [32]. 
The study was performed in accordance with the guidelines of EU Di
rectives (86/609/EEC; 2010/63/EU) and Italian national law (D.L. 
116-92, D.L. 26–2014) for the care and use of animals for scientific 
purposes. Experimental protocols have been approved by the Ethical 
Committee of the University of Bologna, by the Animal Welfare Body of 
the University of Bologna, and by the Italian Ministry of Health. 

Single-neuron activity was recorded extracellularly from the poste
rior parietal area V6A of two male Macaca fascicularis monkeys (mon
key 1 and 2), see Fig. 1a. Animals were trained to perform reach-to- 
grasping movements toward an object with the arm contralateral to 
the recorded hemisphere. Specifically, the activity from 93 cells and 
from 75 cells was recorded in monkey 1 and monkey 2, respectively. 
Depending on their location, V6A cells were assigned to the ventral 
(V6Av) or dorsal (V6Ad) sector, by identifying these sectors as in Lup
pino et al. [15]. Specifically, 59/53 cells (monkey 1/monkey 2) fell in 
V6Av, while 34/22 cells fell in V6Ad (see right panel of Fig. 1a). 

During recordings, monkeys sat on a primate chair with their head 
restrained in front of a rotating panel hosting one object to reach and 
grasp. Five objects with different shapes were used, presented to the 
monkey one at a time and evoking grip types with different hand con
figurations (see Fig. 1b): a ball (c0: whole-hand prehension), handle (c1: 
finger prehension), ring (c2: hook grip), plate (c3: primitive precision 
grip), stick-in-groove (c4: advanced precision grip). The five grip pos
tures differed in the level of coordination required: from more rudi
mentary grips involving the whole hand or all fingers (c0, c1) to more 
precise grips involving the index finger only (c2), or fingers-thumb op
position (c3) or index finger-thumb opposition (c4) [25,26]. The pre
sentation order of the objects was randomized. Animals performed 10 
trials per object, thus resulting in 50 trials for each monkey and neuron. 

Each trial was divided into different phases (‘epochs’), which are 
described in the following and are illustrated in Fig. 1c. The trial begun 
when the animal pressed a ‘home button’ near to its chest in complete 
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darkness. The monkey waited 1 s (free epoch, epoch 0) until the fixation 
LED mounted on top of the panel turned on (green). After a fixation 
period of 0.5–1.0 s (fixation epoch, random interval), in which the 
monkey had to maintain the fixation on the LED without performing any 
movement, the LEDs surrounding the object turned on, illuminating it 
(from that time on, the object remained illuminated until the end of the 
trial). Starting from the illumination of the object, an interval of 0.5 s 
(object visualization epoch) and a subsequent interval of 1–1.5 s (delay 
epoch, random interval) elapsed, during which the animal kept main
taining the fixation while attending the object, waiting for the go-signal. 
The delay epoch was divided into the early delay epoch (epoch 1, 1s-in
terval after the start of the delay epoch) and late delay epoch (epoch 2, 1s- 
interval before the end of the delay epoch). Finally, the fixation LED 
changed its color (from green to red), providing the go-signal to the 
animal. The monkey started the reach-to-grasping movement after a 
short reaction time; thus, the reaction time epoch and movement epoch can 
be identified (epochs 3 and 4, respectively). Once performed the 
movement, the animal kept holding (hold epoch, epoch 5) the object until 
the fixation LED switched off (0.8–1.2 s, random interval); this cued the 
monkey to release the object and to press the home button again, 
starting a new trial. 

During recordings of each trial and each neuron, action potentials 
(spikes) were isolated and sampled at 100 kHz. These were initially 
binned within a window of 5 ms and were then re-binned to cope for 

inter-trial and inter-neuron variability in epoch duration, by using a 
window length such that epochs had the same number of time samples 
(i.e., bins) across trials and neurons. Firing rates were computed from 
the re-binned activity, and the activity during the free, early delay, late 
delay, reaction time, movement, and hold epochs was considered in this 
study. Firing rates obtained during the t-th trial of one monkey are 
denoted in this study by Xt ∈ RN×T, 0 ≤ t ≤ Nt − 1, where N is the 
number of recorded neurons, T is the number of time samples in the trial, 
t is the trial index, Nt = 50 is the total number of trials. 

2.2. Framework for decoding single-neuron activity via neural networks 
and for explaining network decision 

This section describes the methodologies adopted to decode neural 
activity via neural networks and to analyze the neural activity most 
relevant for decoding the grip types. At a high level, the presented 
methodologies respond to the following two needs. First, we were 
interested in finding the relationship that maps small portions of neural 
activity (i.e., chunks) of the observed neuron population (i.e., V6A 
neurons in this case) to the object that the monkey reached and grasped 
(among 5 possible objects), thus, solving a 5-class classification problem 
(neural decoding). Then, this relationship, once found, was exploited to 
derive useful insights about the encoding of grip properties during the 
motor task from the recorded neuron population (explanation of network 

Fig. 1. Recording area and experimental paradigm. Panel a – 3D dorsal view of the left hemisphere of macaque brain (left, the shown directions are A = anterior, 
L = lateral) with the recording area highlighted (V6Av in yellow and V6Ad in orange), and 2D cortex projection of the medial parieto-occipital region with recording 
sites (right), as done in Refs. [14,50]. In the figure, besides area V6A, other areas are also marked: the ventral (PMv) and dorsal (PMd) premotor cortices, parietal 
reach region (PRR)/medial intraparietal area (MIP), anterior intraparietal area (AIP), primary motor cortex (M1), and PEc. Panel b – Objects and evoked grip types 
(reported in italic). These represent the motor conditions (i.e., classes ck, 0 ≤ k ≤ 4) that were discriminated by the decoder. Panel c – Trial structure. On top, the 
epochs defining each trial are illustrated. On the bottom, epoch timings are displayed. 
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decision). Fig. 2 schematizes the operations performed by the described 
framework. 

Neural decoding was performed on sliding windows of firing rates 
over the trial course, hereafter referred as ‘chunks’ of neural activity. In 
this approach, overlapped chunks Xt,i ∈ RN×Tz were extracted with 
window size of Tz = 60 ≡ 300 ms and a stride of Ts time samples, (see 
the ‘sliding window decoding’ process in Fig. 2). This last parameter was 
coarser during training (Ts = 10 ≡ 50 ms), to speed up network learning 
and was finer during inference (Ts = 1 ≡ 5 ms), to provide inference 
with the highest time resolution for all possible chunks. The chunk of 
neural activity (Xt,i) represents the input of the decoder: it is a 2D feature 
map corresponding to the activities of all cells within the considered 
sliding window, with cells along the rows and time samples along the 
columns. The label yt,i associated to each chunk sampled from a trial was 
the label associated to that trial (yt,i ≡ yt), i.e., one of the Nc = 5 possible 
grip types. This represents the desired label that the network should 
reproduce as output. We have: 
{

Xt,i ∈ RN×Tz

yt,i ≡ yt ∈ C = {ck}, 0 ≤ k ≤ Nc − 1 , 0≤ t≤Nt − 1, 0≤ i ≤ M − 1, (1)  

where i is the chunk index, k is the class index, and M = (T − Tz)/ Ts+ 1 
is the total number of chunks extracted per trial. Therefore, the dataset 
recorded from each monkey can be represented by the set: 

The stage of neural decoding consists in training the decoder (here 
realized by a CNN) on a labelled training set (corresponding to a parti
tion of D) to discriminate the grip types from each small chunk of neural 
activity (training stage), realizing the function f(Xt,i; ϑ) : RN×Tz →C 
parametrized in the parameters ϑ (trainable parameters) to fit the 
training set. Once the decoder is trained, it encapsulates in ϑ the 
knowledge needed to optimally discriminate between the contrasted 
motor states and it is then tested (inference stage) on a held-out test set 
(corresponding to a partition of D, different from the training set). In our 
analyses, while decoders were trained using epochs from early delay 
epoch to hold epoch (the interval in which the animal performed the 
task), during inference these were tested also on the free epoch, repre
senting a control interval in which the animal was not engaged in the 
task. The following Section 2.3 is devoted to the description of the CNN 
adopted for neural decoding. 

It is worth remarking that the use of a sliding window decoding 
approach has several benefits [27,28]:  

i. Fast decoding. The decoder is forced to produce a prediction 
based on a few hundred of milliseconds of neural activity (here 
300 ms, chunk-level decoding) instead of producing a prediction 
once the entire trial (lasting a few seconds) is processed (i.e., trial- 
level decoding).  

ii. Data augmentation. Sliding window decoding is equivalent to 
performing data augmentation via slicing and is commonly 
adopted when dealing with neural time series [51]. 

iii. Analysis of temporal dynamics of neural encoding. The discrim
inability of the contrasted conditions (e.g., grip types), as quan
tified by a performance metric (e.g., accuracy), can be analyzed 
as a function of time over the trial course. 

The stage of explanation of network decision was based on the use of 
an explanation technique (LRP) to identify the most relevant cells and 
temporal samples within the input Xt,i driving the decision of the trained 
network towards one of the five grip types. By doing so, a relevance 

representation associated to each tested input chunk Xt,i was obtained 
g(Xt,i) : RN×Tz →RN×Tz . Then, these relevance maps, appropriately pro
cessed, enabled to analyze the temporal and spatial properties of grip 
encoding across area V6A. Section 2.4 describes the network decision 
explanation. 

2.3. Neural decoding via FiringRateNet (FRNet) 

Here we used a CNN to realize the function f(Xt,i; ϑ) (i.e., to perform 
neural decoding), since in our previous study [28] this type of decoder 
resulted the best compared to both traditional decoders (e.g., XGBoost, 
Support Vector Machine, Naïve Bayes) and other DNNs (e.g., 
fully-connected and recurrent neural networks) on a variety of 
single-neuron motor datasets, including the reach-to-grasping dataset 
used in this study. 

The CNN structure adopted here, named FiringRateNet (FRNet), was 
inspired from the successful design proposed by Lawhern et al. [33] for 
decoding EEG signals. Here, spatial and temporal convolutions were 
performed in two separate convolutional layers and not in a mixed way 
within one mixed spatio-temporal convolutional layer, as in the CNN 
used in our previous benchmark study [28]. Furthermore, here convo
lutions were performed using a specialized layer (separable convolu
tional layer [52]) that reduces the number of parameters and limits the 
network size, an expedient useful for contrasting overfit of small data

sets. A schematic representation of the adopted CNN is reported in Fig. 2 
(‘neural decoding’ part). We adopted this design as it represents one of 
the most successful CNNs for EEG decoding, providing high decoding 
performance (e.g., it also won an international neural decoding chal
lenge, see Ref. [36]), and also because it is characterized by a peculiar 
compact design, introducing a limited number of parameters to fit (here 
2485, on average across monkey-specific decoders, see later for further 
details about network training). Furthermore, the network proposed by 
Lawhern et al. [33] was applied on neural time series other than EEG, e. 
g., magnetoencephalography [53], thus on time series with different 
nature (reflecting magnetic fields vs. electric potential). Therefore, 
while in our previous study [28] a CNN topology as general as possible 
was considered, with the aim of comparing different DNN families, here 
we used a topology inspired from a previous CNN known to decode other 
neural time series with high accuracy and in an efficient way (low 
number of parameter to fit) [33]. See also Section 4 for further com
ments on this point. 

In the following, we provide a summarized description of the 
network; more details about the network structure and its hyper- 
parameters (that is, the parameters that define the functional form of 
the decoder, e.g., number of convolutional filters) can be found in Sec
tion 2.3.1. The code for defining FRNet is available at https://github. 
com/ddavidebb/macaque-single-neuron-decoding.git. First, the 
network performed spatial convolution on the input chunk of neural 
activity, Xt,i, learning 16 spatial filters, each describing how to combine 
the information across all cells. Then, the network performed temporal 
separable convolution with 16 temporal filters learning temporal pat
terns within approximately 100 ms (as in Ref. [28]). All the previous 
units were activated via Rectified Linear Units (ReLUs). Lastly, feature 
maps were downsampled 10-times along the time-axis by applying an 
average moving window (average pooling), and were provided as input 
to the output layer (fully-connected layer) with Nc = 5 output units (one 
per class). Output units were activated via a softmax activation function, 
producing as output the probability that the input chunk Xt,i contained 
neural activity linked to a specific grip type, i.e., p(ck|Xt,i),0 ≤ k ≤ Nc −

D=
{(

X0,0, y0,0
)
,…,

(
Xt,i, yt,i

)
,…,

(
XNt − 1,M− 1, yNt − 1,M− 1

)}
, 0≤ t≤Nt − 1, 0≤ i ≤ M − 1 (2)   
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1. To increase the network generalization, batch normalization [54] was 
performed (immediately after each convolutional layer), and dropout 
[55] was applied (immediately before temporal convolution and before 
output layer). 

Networks were trained by using the cross-entropy as loss function 
and Adam as optimizer (500 training epochs, learning rate of 1e-3 and 
mini-batch size of 64). Network training and evaluation was performed 
separately for each monkey (realizing monkey-specific networks). This 
is commonly adopted in previous studies [27–32], in order to deal with 
the differences across monkeys in the recording setups (e.g., different 
positions and number of resulting recording sites due to different 
microelectrode penetrations, see Fig. 1a), and with the cross-animal 
variability in the neural activity, as these aspects hinder cross-animal 
model evaluations. The high inter-participant variability is also known 
to affect neural decoding in human, requiring the adoption of 
participant-specific models for achieving high decoding performance (e. 
g., for BCI applications) [45,56,57]. Using monkey-specific networks 
might introduce a polarization of results towards each considered ani
mal. However, this did not represent a drawback in our study, but rather 
an intentional choice. Indeed, in line with past studies analyzing 
neuronal firing rates separately for each monkey (via traditional statis
tical tools, i.e., not deep learning-based approaches) [14,23–26], here 
we were specifically interested into designing a framework for per
forming still an analysis at the single monkey level (i.e., 
monkey-specific), but using a deep learning approach. In particular, the 
focus here is the exploitation of the monkey-specific features learned by 
the neural networks, to derive useful insights about neural correlates 
and encoding of reach-to-grasping in a data-driven way. A 
subject-specific approach, being tuned on each subject, usually provides 
higher classification performance than other approaches (e.g., 
cross-subject) [45,56,57], with consequent higher reliability of the re
sults deriving from the analysis of the features learned by the networks. 

The dataset of each animal was split according to a 10-fold cross- 
validation scheme to perform network training (on the training set) 
and performance evaluation (on the test set). For each monkey and each 

cross-validation fold, a different neural network was trained, evaluated 
in terms of performance, and analyzed for highlighting the most relevant 
elements of the input neural activity. Specifically, for each cross- 
validation fold, the monkey-specific dataset (consisting of 50 trials) 
was split into 45 trials for generating the training set and 5 trials for 
generating the test set. A 10% of training trials (i.e., 5 trials) was held 
back from the training set for designing the validation set, that was 
exploited to define the number of training epochs. Indeed, for each 
cross-validation fold the model was trained until it maximized the per
formance on the validation set (early stopping). Considering the sliding 
window approach, the examples forming the training set, validation set, 
and test set were the chunks extracted from the corresponding trials. In 
particular, based on the cross-validation procedure, and on the sliding 
window size and stride, for each cross-validation fold, 380 examples (i. 
e., chunks) derived from 5 trials (one per grip type) were used in the 
validation set, 3040 examples derived from 40 trials (8 trials per grip 
type) were used in the training set, and 4780 examples derived from the 
remaining 5 trials (one per grip type) were used in the test set, on 
average across monkeys. Even though test examples were extracted from 
less trials than training examples, test examples were more abundant 
than training examples also due to the use of Ts = 1 while testing net
works (i.e., providing predictions at each time step), as explained in 
Section 2.2. It is worth remarking that we did not perform trial-level 
decoding (not feasible using deep neural networks in this case, due to 
the small dataset size) but rather we performed chunk-level decoding 
(sliding window decoding). Considering the details presented here and 
in Section 2.2, this corresponds to perform data augmentation via 
slicing, augmenting training data 76-times (from trial-level decoding to 
chunk-level decoding). Dataset properties are resumed in Table 1. 

For each cross-validation fold, each monkey-specific network was 
tested on the corresponding held-out test set. Specifically, for each trial, 
predictions were provided chunk by chunk by the network; thus, we 
computed the accuracy over time within the trial course. Furthermore, 
we also computed the confusion matrix within the trial epoch with 
highest performance, that is, the movement epoch (epoch 4); this was 
computed by considering the predictions of chunks falling into the 
movement epoch. Therefore, as 10 networks (one per cross-validation 
fold) were trained for each monkey, during model evaluation 10 pat
terns of accuracy over time and 10 confusion matrices for each monkey 
were computed (each relative to the held-out test set of each fold). Note 
that, the performance results presented in this study (see Section 3) al
ways refer to the held-out test set (across the 10 cross-validation folds). 

Finally, to provide a comparison of the CNN adopted here with 
respect to the state-of-the-art, we compared the performance of FRNet 
with the mixed spatio-temporal CNN that was proposed in our previous 
benchmark study [28] (see also Section 2.3.2). This mixed 
spatio-temporal CNN is a CNN composed by only 1 convolutional hidden 
layer that learns features both in the spatial and temporal domains 

Fig. 2. Proposed framework to decode reach-to-grasping from single-neurons using a CNN and to investigate the most relevant spatial and temporal samples for 
different grip types, by applying an explanation technique to the CNN. Once computed the firing rates from the neural activity recorded in each trial, we applied an 
explainable artificial intelligence framework, composed by two main stages. In a first stage (neural decoding), 300 ms-length sliding windows (i.e., chunks) of neural 
activity were decoded within each trial by using a CNN (named FRNet). The CNN accepted as input a 2D matrix (Xt,i ∈ RN×Tz ) containing the activity of all cells 
within the considered i-th chunk (reporting cells by rows and time samples by columns) of the t-th trial, and provided as output the probability that the input chunk 
belonged to each grip type (p(ck|Xt,i), 0 ≤ k ≤ 4). For brevity, only the main layers, i.e., convolutional, fully-connected, and pooling layers, are displayed. Boxes 
contain layer outputs, and the internal colored rectangles represents convolutional (blue) and pooling (red) filters. Connections of convolutional layers, pooling 
layers, and fully-connected layers are colored in blue, red, and black, respectively. See Section 2.3 and 2.3.1 for further details. In a second stage (network decision 
explanation), the relevance of each input cell and time samples (belonging to the input chunk) for decoding the associated grip type was derived (obtaining a chunk- 
level relevance map with the same shape of the input chunk, i.e., ∈ RN×Tz ). This representation was termed chunk relevance map. Then, by aggregating this in
formation across the chunks composing the trial, we also obtained the relevance of the cells in all time points composing the entire trial (obtaining a trial-level 
relevance map, with the same shape of the trial, i.e., ∈ RN×T). This representation was termed spatio-temporal relevance map. By averaging the spatio-temporal 
relevance map across cells, a temporal relevance pattern was derived (∈ RT), resuming the relevance in the temporal domain only. Similarly, ventral/dorsal and 
grip-sensitive/not grip-sensitive temporal patterns were derived (not shown in the figure for brevity), by averaging the spatio-temporal relevance map across a 
selection of cells (e.g., only V6Av cells), and not across the totality of cells. Lastly, the peak relevance value (maximum in the figure) within the movement epoch 
(epoch 4) was extracted from the temporal relevance pattern. All previous relevance representations were derived specifically for each decoded grip type (e.g., 
advanced precision grip in the figure). See Section 2.4 and 2.4.1 for further details. 

Table 1 
Data description.  

Property Set Value (monkey 1/monkey 2) 

No. of decoded classes (Nc)  5 
No. of recorded cells (N)  93/75 
Epochs train. and valid. [1,2,3,4,5] 

test [0,1,2,3,4,5] 
No. of time steps (T) train. and valid. 812/816 

test 1013/1017 
No. of examples train. 3040/3040 

valid. 380/380 
test 4770/4790  
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(‘mixed’ spatio-temporal feature learning), and introduces 61285 pa
rameters to fit (on average, across monkeys). We selected this decoder as 
state-of-the-art decoder since in our previous study [28], it significantly 
outperformed others machine learning and deep learning approaches 
(specifically, XGBoost, SVM, Naïve Bayes, RNNs, FCNNs), on motor 
datasets involving both reaching and reach-to-grasping, and also on the 
same dataset adopted in this study. 

It is crucial to remark that readers can find in our past study [28] an 
extensive benchmark on motor decoding, including reach-to-grasping 
with the same dataset adopted here. Therefore, in this study we 
compare FRNet only with the top-performing state-of-the-art algorithm 
as resulting from Ref. [28], while we focus mainly on the explainable 
approach to identify the temporal and spatial samples most guiding the 
decision. The code for designing the state-of-the-art CNN used as 
reference decoder is available online at https://github.com/ddavidebb 
/macaque-single-neuron-decoding.git. 

Neural networks were developed in Python (version 3.8.5) with 
PyTorch (version 1.9.0) [58] and network decisions were explained with 
Captum (version 0.5.0) [59], using a workstation equipped with an AMD 
Threadripper 1900X, NVIDIA TITAN V and 48 GB of RAM. 

2.3.1. Details about FRNet 
The details of FRNet are presented in the following and are sum

marized in Table 2. In FRNet, the input layer simply replicates the input 
neural activity in a single feature map; thus, the output shape of this 
layer is (1,N,Tz)=(1,93/75,60). Then, the first convolutional layer per
forms 2D convolution in the spatial domain using K0 = 16 filters with 
size F0 = (93 /75,1) depending on the monkey (i.e., depending on the 
number of recorded cells N), unitary stride and no padding. Neuron 
activations were then normalized via batch normalization [54], and 
passed through a ReLU non-linearity. Lastly, neuron activations were 
dropped out during training using a dropout probability of p = 0.5 [55]. 
The second convolutional layer performs 2D separable convolution [52] 
in the temporal domain. This convolution is composed by a first 
depthwise temporal convolution and a second pointwise convolution. 
Depthwise temporal convolution learns a set of D1 = 1 temporal filters 
for each spatially filtered version of the input (K1 = K0 • D1 = 16 in 
total) with size F1 = (1,21), unitary stride, and zero-padding such that 
the layer output shape matches its input shape, i.e., P1 = (0,10). Then, 
pointwise convolution learns how to optimally recombine the 16 feature 

maps provided by depthwise convolution. Neuron activations were 
normalized via batch normalization, passed through a ReLU 
non-linearity, and downsampled 10-times in time by using an average 
pooling layer with pooling size Fp = (1,10) and pooling stride Sp = (1,
10). Then, neuron activations were dropped out during training using a 
dropout probability of = 0.5, flattened into a 1D array and provided as 
input to the fully-connected layer with Nc = 5 neurons, providing the 
class scores as output. Finally, class scores were converted into the 
conditional probabilities by using the softmax activation function. 
Network hyper-parameters (e.g., number of convolutional filters, con
volutional filter size, etc.) were set via empirical evaluations. 

2.3.2. Details about the state-of-the-art decoder 
The reference state-of-the-art decoder adopted in this study consisted 

of a shallow CNN proposed in Borra et al. [28], and its details are 
summarized in the following (see Ref. [28] for further details), while its 
main parameters are reported in Table 3. In this network, after the input 
layer, a mixed spatio-temporal convolutional layer was used, learning 
K0 = 32 filters with size F0 = (93 /75,21) and applying zero-padding 
such that the layer output shape matches its input shape, i.e., P0 = (0,
10). This corresponded to learning filters within approximately 100 ms 
of temporal window for all cells in a mixed way in the spatio-temporal 
domain (i.e., without disentangling spatial and temporal contribu
tions). Neurons were activated via an Exponential Linear Unit (ELU) 
activation function [60], and neuron activations were pooled using an 
average pooling layer, halving the dimension of feature maps in the 
temporal domain, i.e., with pooling size Fp = (1,2) and pooling stride 
Sp = (1, 2). Dropout was applied with a dropout probability p = 0.5 
[55]. Lastly, as for FRNet (see Section 2.3.1), neuron activations were 
flattened into a 1D array and provided as input to the fully-connected 
layer with Nc = 5 neurons, activated via softmax activation function. 

2.4. Network decision explanation via layer-wise relevance propagation 

Layer-wise relevance propagation (LRP) [43,44] was used as expla
nation technique to realize the function g(Xt,i) (i.e., to explain network 
decision). Successful applications of LRP to neural time series are re
ported in the literature, e.g., for explaining DNNs applied to EEG [34,48, 
49]. LRP is a backward propagation technique that propagates one 
network class score of interest (one grip type, e.g., whole-hand pre
hension) – consisting of the activation of the output layer immediately 
before the softmax function – back to the input layer (replicating the 
input chunk of neural activity), by exploiting propagation rules applied 
locally at each layer of the network. Theoretical details of LRP are 

Table 2 
Details of FRNet. Each layer is provided with its name, main hyper-parameters, 
number of parameters to fit and output shape. Where not specified, stride (S) and 
padding (P) were set to (1,1) and (0, 0), respectively. Values are reported for 
both monkey 1 and monkey 2, separated by a forward dash symbol. The total 
number of parameters to fit was 2629/2341 (monkey 1/monkey 2).  

Layer name Hyper-parameters No. of tr. 
parameters 

Output 
shape 

Input  0 (1,93/ 
75,60) 

Conv2D K0 = 16, F0 = (93 /75,
1)

1488/1200 (16, 1, 60) 

BatchNorm2D  32 (16, 1, 60) 
ReLU  0 (16, 1, 60) 
Dropout p = 0.5 0 (16, 1, 60) 
Separable- 

Conv2D 
D1 = 1, K1 = K0 • D1 =

16, 
F1 = (1,21), P1 = (0,10)

592 (16, 1, 60) 

BatchNorm2D  32 (16, 1, 60) 
ReLU  0 (16, 1, 60) 
AvgPool2D Fp = (1,10), Sp = (1,10) 0 (16, 1, 6) 
Dropout p = 0.5 0 (16, 1, 6) 

Flatten  0 (96) 
Fully-Connected Nc = 5 485 (5) 
Softmax  0 (5)   

2629/2341   

Table 3 
Details of the mixed spatio-temporal CNN proposed in Borra et al. [28]. Each 
layer is provided with its name, main hyper-parameters, number of parameters 
to fit and output shape. Where not specified, stride (S) and padding (P) were set 
to (1,1) and (0, 0), respectively. The total number of parameters to fit was 
67333/55237 (monkey 1/monkey 2).  

Layer name Hyper-parameters No. of tr. 
parameters 

Output 
shape 

Input  0 (1,93/ 
75,60) 

Conv2D K0 = 32, F0 = (93 /75,
21), 
P0 = (0,10)

62528/50432 (32,1,60) 

ELU  0 (32,1,60) 
AvgPool2D Fp = (1,2), Sp = (1,2) 0 (32,1,30) 
Dropout p = 0.5 0 (32,1,30) 

Flatten  0 (960) 
Fully- 

Connected 
Nc = 5 4805 (5) 

Softmax  0 (5)   

67333/55237   
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described in Section 2.4.1. By doing so, given an input chunk Xt,i, LRP 
produces a representation containing one relevance value per 
spatio-temporal sample of that input chunk, thus, overall producing a 
relevance 2D map with the same dimension as the input. This repre
sentation – termed in this study as chunk relevance map (∈ RN×Tz ) – 
quantifies how much each spatio-temporal sample of the input chunk Xt,i 

contributed to the prediction of a grip type under analysis. Relevance 
values are not bounded in their values and can be both positive and 
negative, associated to positive and negative evidence for the model 
prediction. That is, the relevance quantifies to what extent each 
spatio-temporal sample contributed positively to the classification result 
(increasing the output class score, thus improving classification) or 
contributed negatively to the classification result (decreasing the output 
class score, thus worsening classification) [43]. Due to their unbounded 
nature, to understand whether relevance values are (significantly) 
relevant or not, they should be compared with the null relevance value 
(relevance equal to 0, see points iii., iv., and vi. in Section 2.5 for the 
statistical analyses conducted to this aim). 

Here we applied LRP on each trained decoder (i.e., for each monkey 
and cross-validation fold) using the test examples (i.e., test chunks) as 
input and the score of the associated grip as target class score (e.g., the 
class score of the whole-hand prehension in case of test chunks extracted 
from whole-hand prehension trials). Then, for each monkey and each 
cross-validation fold, by considering a specific grip type, the following 
processing on the chunk relevance map was performed (see also the 
schematization reported in Fig. 2 in the ‘explaining network decision’ 
part).  

i. From chunk relevance map (chunk-level) to spatio-temporal 
relevance map (trial-level). Each chunk relevance map (i.e., 
chunk-level representation) associated to the grip type under 
analysis was averaged across time samples within the chunk, 
obtaining a chunk relevance array (∈ RN), summarizing the rele
vance for each cell within the sliding window. By concatenating 
together, chunk-by-chunk, the chunk relevance arrays belonging 
to the same trial, a spatio-temporal relevance map (∈ RN×T) was 
obtained (i.e., trial-level representation), highlighting the 
importance of each cell and time sample for discriminating the 
grip type across the entire trial duration. 

ii. From spatio-temporal relevance map to temporal relevance pat
terns. The spatio-temporal relevance map obtained in the previ
ous processing point was averaged across all cells, thus obtaining 
a temporal relevance pattern (∈ RT). In addition, we also averaged 
the spatio-temporal relevance map separately across cells 
belonging to the dorsal and ventral sectors of V6A (see Fig. 1a) or 
separately across cells that resulted modulated (grip-sensitive) or 
not (not grip-sensitive) during the movement epoch (epoch 4), 
obtaining dorsal and ventral temporal relevance patterns (∈ RT), 
and grip-sensitive and not grip-sensitive temporal relevance patterns 
(∈ RT). Here, a cell was classified as grip-sensitive if its average 
discharge frequency during movement epoch (epoch 4), for the 
movement condition evoking the highest discharge, was signifi
cantly different compared to the free epoch (epoch 0), similarly to 
the analyses performed in previous studies [24,61]. Wilcoxon 
signed-rank tests (one for each neuron, separately for each 
monkey) were performed, and the Benjamini-Hochberg proced
ure was applied for correcting p-values for multiple tests [62]. 
From this procedure, 65.6% and 74.7% of cells were classified as 
grip-sensitive, respectively for monkey 1 and monkey 2.  

iii. From temporal relevance to peak relevance values. By separately 
considering the dorsal/ventral and grip-sensitive/not grip-sensi
tive temporal relevance patterns obtained from the previous 
processing point, we derived the peak relevance value (i.e., the 
maximum or minimum relevance value) inside the movement 
epoch (epoch 4), obtaining the peak relevance (∈ R). This scalar 

value summarized the relevance, separately of V6Av and V6Ad 
cells, or of grip-sensitive and not grip-sensitive cells, for the grip 
type under analysis during the interval of movement execution 
(including the phase of transport of the hand, change of wrist 
orientation, and finger pre-shaping into the appropriate grip). We 
selected the movement epoch (epoch 4) to extract the peak 
relevance, as this interval was the one associated with highest 
performance (see Section 3), and as it was also considered in a 
previous study [14] when investigating the functional spatial 
segregation of V6A during reach-to-grasping and in other studies 
[24,61] when classifying grip-sensitive cells based on their 
nature. 

At the end of these processing steps, overall (across cross-validation 
folds), each trial of each monkey-specific dataset (50 trials in total) was 
associated to its own spatio-temporal relevance map, temporal rele
vance patterns and peak relevance values, derived from the 10 trained 
monkey-specific networks. 

In order to complete and enrich the validation, we also validated the 
framework from a computational perspective, by analyzing how the 
model accuracy changes when using only a subset of cells among the 
most relevant cells or among the least relevant cells during model 
training and testing, rather than using all cells. To this aim, we consid
ered the peak relevance values across all cells, and we sorted cells from 
the least relevant to the most relevant. Then, we trained and tested the 
model using a subset of cells (with 5 or 15 or 25 cells) composed of the 
least or most relevant cells. Furthermore, we included also a third 
experimental condition (control condition), in which the model was 
trained and tested using a randomly selected subset of cells (i.e., without 
sorting cells by relevance). For this analysis, we considered the average 
decoding accuracy in the interval of movement execution (i.e., epoch 4), 
as this interval resulted the one associated with highest performance 
(see Section 3). 

2.4.1. Details about layer-wise relevance propagation 
Let us denote with ok the class score of the k-th class (0 ≤ k ≤ 4). 

Layer-wise relevance propagation [43] propagates the prediction of the 
network, represented by the class score ok (e.g., the predicted score 
associated by the network to the advanced precision grip, o4), backward 
in the network. To do so, propagation rules must be defined for each 
layer of the network. Let m and n be the indices of two neurons of two 
consecutive layers (l − 1 and l) of the network and let R(l)

n be the rele
vance for the neuron n of the layer l in predicting ok. The backward 
propagation of the relevance at a given layer back to a preceding layer of 
the network is achieved by applying the rule: 

R(l− 1)
m =

∑

n

zmn
∑

mzmn
R(l)

n , (3)  

where zmn weights how much the neuron m contributed to make the 
neuron n relevant, and the denominator 

∑
mzmn forces the conservation 

of the relevance during the propagation. Indeed, the conservation is 
ensured locally by 

∑

m
R(l− 1)

m =
∑

n
R(l)

n , and thus, globally throughout the 

network, as 
∑

i
R(0)

i = … =
∑

n
R(l)

n = … = ok. 

The propagation rule applied in this study is the LRP-ε rule [44], as 
previously done in Ref. [34] when using LRP with EEG data: 

R(l− 1)
m =

∑

n

amwmn

ε +
∑

mamwmn
R(l)

n , (4)  

where the term am denotes the activation of the neuron m, wmn denotes 
the weight of the connection from unit m to unit n, and ε is a small 
positive term that ensures that R(l− 1)

m is bounded for small or null values 
of neuron activations in the denominator 

∑
mamwmn. Compared to other 

ERP rules, LRP-ε rule reduces noise (high fidelity in the obtained rep
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resentations) by absorbing weak or contradictory contributions of neu
rons to the relevance (e.g., with respect to LRP-0 rule) [44]. Further
more, LRP-ε treats also negative contributions of neurons and not only 
positive contributions (e.g., with respect to LRP-γ rule) [44]. 

2.5. Statistical analyses 

For each monkey-specific decoder, the following statistical analyses 
were conducted on the performance and relevance measures.  

i. Comparison of the decoding accuracy over time scored by FRNet 
against the chance level (0.2). A permutation t-test with tmax 
correction (5000 iterations) [63] was performed.  

ii. Comparisons of each entry of the confusion matrix scored by the 
state-of-the-art decoder against the same entry of the confusion 
matrix scored by FRNet. Pairwise Wilcoxon signed-rank tests 
were performed and the Benjamini-Hochberg correction [62] was 
applied to correct for multiple tests (25 tests).  

iii. Comparisons of the temporal relevance patterns (averaged across 
grip types) against the null relevance (0). A permutation t-test 
with tmax correction (5000 iterations) [63] was performed.  

iv. Comparisons of the peak relevance (averaged across grip types) 
of grip-sensitive cells and of not grip-sensitive cells against the 
null relevance (0). Pairwise Wilcoxon signed-rank tests were 
performed and the Benjamini-Hochberg correction [62] was 
applied to correct for multiple tests (2 tests).  

v. Comparison of the peak relevance (averaged across grip types) of 
grip-sensitive cells against not grip-sensitive cells. A pairwise 
Wilcoxon signed-rank test was performed.  

vi. Comparison of the peak relevance of V6Av cells and of V6Ad cells 
against the null relevance (0), separately for each grip type. 
Pairwise Wilcoxon signed-rank tests were performed and the 
Benjamini-Hochberg correction [62] was applied to correct for 
multiple tests (10 tests).  

vii. Comparisons of peak relevance of V6Av cells against V6Ad cells, 
separately for each grip type. Pairwise Wilcoxon signed-rank tests 
were performed and the Benjamini-Hochberg correction [62] was 
applied to correct for multiple tests (5 tests).  

viii. Correlation analysis between peak relevance and the degree of 
grip skills required in the reach-to-grasp movement (increasing 
from k = 0 to k = 4, related to the ck grip type), separately for 

each sector (V6Av and V6Ad). The Pearson correlation coefficient 
was computed over the values of peak relevance obtained for 
each grip type and each cross-validation fold (10 folds and 5 grip 
types, resulting in 50 data points in total).  

ix. Comparison of the decoding accuracy between the different types 
of subsets used when training and testing the model only with a 
small subset of cells. Accuracies were compared between subsets 
formed by the most relevant cells vs. the least relevant cells vs. 
randomly selected cells. For each number of cells defining the 
subset (3 total subset sizes, i.e., 5, 15, 25 cells), pairwise Wil
coxon signed-rank tests were performed considering all possible 
combinations across the subset types, i.e., random vs. most rele
vant, random vs. least relevant, most relevant vs. least relevant. 
The Benjamini-Hochberg correction [62] was applied to correct 
for multiple tests (9 tests). 

3. Results 

The CNN adopted here is first validated in terms of decoding capa
bilities; then, the results of the analysis on the most relevant spatial and 
temporal samples driving the network decision are presented. 

As concerning the network decoding capabilities, Fig. 3 reports the 
accuracy scored by FRNet while decoding the 5 different grip types. The 
decoder was able to accurately discriminate between grip types signif
icantly above the chance level from the delay epoch (ramp up in accu
racy between epochs 1 and 2), reaching the maximum of accuracy at the 
end of the movement epoch (epoch 4), and returned at the chance level 
at approximately half of the hold epoch (ramp down in accuracy at 
epoch 5). As expected, the decoder performed at the chance level within 
the time interval in which the animal was not engaged in the task (epoch 
0, free epoch). 

Fig. 4 displays the confusion matrix scored by the state-of-the-art 
decoder (panel a) and by FRNet (panel b) within epoch 4, represent
ing the time interval with the highest decoding accuracy. Notably, no 
significant differences (p > 0.05) were observed between the confusion 
matrices scored by FRNet and by the state-of-the-art decoder across the 
two monkey-specific decoders. However, it is worth remarking that 
FRNet was slightly more accurate (but not statistically significant) than 
the state-of-the-art when decoding monkey 2 for some motor conditions, 
with accuracies (FRNet vs. state-of-the-art) of 0.8 vs. 0.73, 0.97 vs. 0.92, 
and 0.98 vs. 0.91, respectively in decoding whole-hand prehension, 

Fig. 3. Decoding accuracy over time scored by FRNet separately for monkey 1 and monkey 2. The thick black line represents the mean value of decoding accuracy 
(computed on the test set) across the ten cross-validation folds and the grey overlayed area represents the standard error of the mean. Orange stripes denote time 
samples at which the network classified the grip types significantly (p < 0.05) above the chance level (0.2, identified by the horizontal red line). The epochs outlining 
the time sequence of the task are color-coded as: purple: free; blue: early delay; red: late delay; magenta: reaction time; green: movement; grey: hold. 
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primitive precision grip and advanced precision grip (on average across 
cross-validation folds). Thus, the adopted CNN was comparable to the 
state-of-the-art or even slightly more accurate (for some grip types in 
monkey 2) than the state-of-the-art, while being a CNN structure 25- 
times more parsimonious in terms of parameters to fit, i.e., 2485 
(FRNet) vs. 61285 (state-of-the-art) parameters, on average across 
monkeys. 

Remarkably, in this study we aimed not only at decoding reach-to- 
grasping with a DNN, but also at detecting the spatial and temporal 
samples most relevant for each grip type decoding by using an 
explainable artificial intelligence approach, and the related results are 

presented in the following. 
Spatio-temporal relevance maps over the trial course, averaged 

across grip types, are displayed in Fig. 5a as heatmaps. The relevance for 
discriminating grips resulted strongly modulated across cells, with a 
group of cells in each monkey clearly appearing not relevant (i.e., 
having relevance value close to 0). This result was related to the inclu
sion of the entire set of recorded cells into the neural activity given as 
input to the CNN, as done in Refs. [27,28], without removing cells not 
modulated by movement. Indeed, by analyzing the peak relevance 
aggregated across cells that resulted grip-sensitive or not (reported in 
Fig. 5b), the former resulted significantly relevant, while the latter was 

Fig. 4. Confusion matrices scored by the state-of-the-art decoder (panel a) and by FRNet (panel b) during movement execution (i.e., epoch 4), separately for monkey 
1 and monkey 2. Matrices were computed on examples belonging to the test set. The state-of-the-art decoder used here was the mixed spatio-temporal CNN that 
scored the best performance across a wide set of machine learning and deep learning approaches in Borra et al. [28], also on the reach-to-grasping dataset adopted in 
this study. The (i, j)-th entry of the confusion matrix contains the ratio between the number of examples belonging to class i and predicted of class j, and the total 
number of examples belonging to class i. This ratio is displayed as mean ± standard deviation across the ten cross-validation folds. 
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Fig. 5. Spatio-temporal relevance maps (panel a), peak relevance of grip-sensitive and not grip-sensitive cells (panel b), and temporal relevance patterns (panel c), 
separately for monkey 1 and monkey 2. Panel a. For each monkey, spatio-temporal relevance maps were averaged across grip types and across cross-validation folds. 
This resulted into one average spatio-temporal relevance map for each monkey, and it was displayed as an heatmap with cells reported along rows and temporal 
samples across columns. Panel b. The peak relevance of grip sensitive cells and not grip sensitive cells was averaged across grip types. Grip-sensitive cells were 65.6% 
and 75.7% of the total population, respectively for monkey 1 and monkey 2. Bar heights denote the mean value and error bars represent the standard deviation across 
cross-validation folds. Results from the performed pairwise comparisons are reported. Distributions with relevance values significantly different compared to the null 
value (0) are marked on the left of each barplot († p < 0.05, †† p < 0.01, ††† p < 0.001). Relevance significantly different between grip-sensitive and not grip-sensitive 
cells is marked on the right of each barplot (* p < 0.05, ** p < 0.01, *** p < 0.001). Panel c. For each monkey, temporal relevance patterns were averaged across grip 
types and the mean value (thick line) and standard error of the mean (overlayed area) across cross-validation folds are displayed. Orange stripes denote time samples 
at which the network attributed a relevance value significantly (p < 0.05) different from the null relevance value (0, identified by the horizontal red line). For both 
panels a and c, the epochs outlining the time sequence of the task are color-coded as: purple: free; blue: early delay; red: late delay; magenta: reaction time; green: 
movement; grey: hold. 
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not; furthermore, grip-sensitive cells were significantly more relevant 
than not grip-sensitive cells. Thus, despite the network was fed with 
neural signals including 25–35% of cells not modulated by 
reach-to-grasping (as 65.6% and 74.7% of cells were grip-sensitive), it 
was able to exploit at most the useful task-related information contained 
in data (high and significant relevance for grip-sensitive cells), filtering 
out task-unrelated information (null relevance for not grip-sensitive 
cells). 

The temporal relevance patterns are reported in Fig. 5c, obtained by 
averaging the spatio-temporal relevance maps across all cells. In 
accordance with the results in Fig. 3 (temporal dynamics of decoding 
accuracy), the time steps within the free epoch (epoch 0) resulted not 
relevant, while time steps from the delay epoch (between epochs 1 and 
2) up to approximately half of the hold epoch (epoch 5) resulted 
significantly relevant, with the movement epoch (epoch 4) showing 
maximum relevance. However, it is worth noticing that the time pattern 
of relevance exhibits a sharper peak in epoch 4 (Fig. 5c), compared to 
time pattern of decoding accuracy (Fig. 3). 

In Fig. 6, the peak relevance aggregated across cells falling in V6Av 
and V6Ad is reported separately for each grip type. In most of the cases, 
the relevance resulted significantly different from the null value (0), 
except for the relevance of V6Av cells for hook grip in monkey 1 and 
primitive precision grip in monkey 2. More interestingly, the relevance 
attributed by the network to the different grip types was modulated 
depending on the cytoarchitectonic sector of V6A, i.e., depending on the 
spatial location within V6A of the decoded cells. Indeed, cells belonging 
to V6Av were more relevant than the ones belonging to V6Ad for rudi
mental grips (whole-hand prehension and finger prehension, consis
tently across monkeys); conversely, V6Ad cells resulted more relevant 
than V6Av cells for skilled grips (hook grip significantly for one monkey, 
and primitive and advanced precision grips consistently across mon
keys). Furthermore, the relevance for V6Av cells was significantly and 
negatively correlated to the degree of grip skills, while the relevance for 
V6Ad cells resulted significantly and positively correlated to the degree 
of grip skills (with strong and very strong correlations, for monkey 1 and 
monkey 2 respectively). 

Fig. 7 reports the results of the analysis conducted on the decoding 

accuracy within the movement interval (epoch 4) when using a small 
subset of cells instead of the whole neuron populations, that is, the most 
relevant cells, the least relevant cells, and randomly selected cells 
(control condition). As expected, the most relevant cells conveyed most 
of the grip-discriminative information for the network. Indeed, from 
Fig. 7 the highest decoding accuracies were achieved when using only 
these cells (for almost all the subset sizes tested), when compared to the 
least relevant cells and to randomly selected cells. On the other hand, the 
lowest decoding accuracies were scored when using the least relevant 
cells (for almost all the subset sizes tested), confirming that these cells 
conveyed less information for discriminating among different grip types. 
Furthermore, as the number of cells used for decoding increases, the 
accuracy appeared to increase faster for the randomly selected cells and 
the most relevant cells, while increased slower for the least relevant 
cells, with accuracies (on average) upper bounded at values < 0.5. 

4. Discussion 

This study proposes an explainable artificial intelligence framework 
based on a CNN aimed at decoding reach-to-grasping from V6A single- 
neuron recordings with high decoding capabilities, and also at 
deriving and analyzing spatial and temporal properties of reach-to-grasp 
encoding in area V6A, based on the features learned by the CNN trained 
to discriminate among different grip types. To the best knowledge of the 
authors, this is the first time that an explanation technique is applied to 
provide a neurophysiological interpretation of the DNN decision when 
using single-neuron recordings as input. As such, this study contributes: 
i) to not only further validate the performance of DNNs when decoding 
single-cell activity (as in past studies [2,27–29,39]), but also to uncover 
and inspect DNN decision, to corroborate the use of appropriate evi
dence for prediction. This can be of value to trust more network de
cisions for future practical applications (e.g., online decoding in BCIs), 
without using networks only as ‘black boxes’; ii) to propose an approach 
that can automatically disclose the input neural activity mostly impli
cated in encoding the predicted motor states at the level of single cells, 
by leveraging the knowledge learned by a neural network free to explore 
the entire information contained in the neural activity. 

Fig. 6. Peak relevance of V6Av cells and V6Ad cells, separately for monkey 1 and monkey 2 and for each grip type. For each distribution displayed, smaller black 
dots denote the single relevance observations scored in each cross-validation fold, while the bigger colored dot (yellow: V6Av, orange: V6Ad) denotes the mean value 
across folds. Error bars represent the standard deviation across folds. Results from the performed pairwise comparisons are reported. Distributions with relevance 
values significantly different compared to the null value (0, identified by the horizontal red line) are marked by bigger dots with a thicker edge. In addition, grip types 
with relevance values significantly different between V6Av and V6Ad are marked on top of each panel (* p < 0.05, ** p < 0.01, *** p < 0.001). Furthermore, results 
from the correlation analysis are reported too. Specifically, regression lines are displayed in the figure by means of black continuous (V6Av) and dashed (V6Ad) lines, 
while the Pearson correlation coefficient (r) and the p-value obtained from the correlation analysis are reported in the legend. 
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From the analysis of the decoding capabilities of the adopted CNN 
(FRNet), the first important result is that the network was able to 
accurately decode (well above the chance level) the different grip types. 
This indicates that the network learned some features from the data able 
to discriminate between the contrasted motor states, and thus, that the 
network is suited for the application of a post-hoc explanation technique 
for gaining a neurophysiological understanding about the elements of 
the input neural activity the CNN relies on for taking its decision. The 
second notable result is that the adopted network, inspired by a suc
cessful network design for decoding non-invasive recordings (e.g., EEG) 
[33], performed on par with the state-of-the-art decoder of 
single-neuron motor activity, as represented by the mixed 
spatio-temporal CNN proposed in our previous benchmark study [28]. 
Remarkably, the CNN adopted here represents a better compromise 
between performance and model size, as it introduces a much less 
number of parameters to fit compared with the state-of-the-art [28]. 
Thus, the present study further supports the use of CNNs as 
high-performing decoders for invasively recorded neural time series and 
highlights that high accuracies are not constrained to a specific CNN 
configuration, but rather is common to different designs, even highly 
parsimonious and even transposed from different recording modalities. 
This also provides the general indication that successful methodologies 
adopted for decoding neural signals with different nature and inva
siveness (e.g., scalp electric potentials or magnetic fields), may be 
effectively used for decoding single-neuron recordings as well. There
fore, future studies may benefit also from existing decoders proposed for 
other recording modalities, reducing the need to design from scratch 
new neural networks depending on the specific application. 

The main novel point of this study is the analysis of the relevance the 
network attributes to the input neural activity in the spatial and tem
poral domains for decoding grip types. Regarding the most relevant 
neural activity in the temporal domain, the relevance temporal dy
namics (with a sudden increase at the end of epoch 1, then a plateau and 
a clear peak in epoch 4, Fig. 5c) reflected the discharge dynamics of 
grasp-related V6A cells, as observed by Filippini et al. [32] who recorded 
and previously analyzed the dataset utilized here. Indeed, grasp-related 
V6A cells were found to discriminate among the different grips as soon 

as the motor plan can be formulated following the illumination of the 
object to reach and grasp, when an intermediate visuomotor trans
formation stage occurs, converting the visual information into motor 
commands [25]. Then, the discrimination power of V6A population 
increases while the monkey is preparing the reach-to-grasping action 
and peaks when the action is performed [26,32]. A similar pattern, 
although with the peak in epoch 4 less pronounced, emerged also by 
looking at the time course of network accuracy (Fig. 3); the latter is 
obtained thanks to the sliding window decoding approach that enables 
the analysis of the temporal dynamics of the chosen performance mea
sure (the accuracy in this study), reflecting the V6A grip discrimination 
power. The peak of the temporal relevance patterns in epoch 4 (Fig. 5c) 
appears related to the involvement of a larger number of cells encoding 
information in that epoch, as it results from the spatio-temporal rele
vance maps in Fig. 5a. Indeed, while a set of cells presented high rele
vance already during movement preparation, i.e., from the end of epoch 
1 up to epochs 4 and 5, another set of cells were highly relevant only 
later during movement and object holding, i.e., in epochs 4 and 5. Thus, 
due to this different temporal dynamics across cells (Fig. 5a), some cells 
added up their contribution to grip discrimination only during move
ment (epoch 4), resulting in the sharp peak of importance observed in 
Fig. 5c. It is worth remarking that the network, even from a small set of 
cells with high grip-discriminative power during movement preparation 
(epochs 1 and 2), was able to decode grip types with high accuracies 
(approximately at 0.8, see Fig. 3); then, later during the task, when also 
the second set of cells contributed to the discrimination, the network 
reached peak accuracies at values > 0.9. Notably, the most relevant cells 
were grip-sensitive (Fig. 5b), confirming that the network was able to 
automatically focus on the set of grip-sensitive neurons, while attrib
uting less importance to the not grip-sensitive set. In conclusion, rele
vance representations based on LRP, by enabling the characterization of 
the temporal dynamics of grip-discriminative power specifically for each 
single cell, provided a richer description of temporal dynamics of 
reach-to-grasp encoding when compared to simpler performance mea
sures tracked over time (e.g., the accuracy, as reported in Fig. 3). 
Overall, the previous results in the temporal domain are interesting as 
they show that the network is able to catch and capitalize on the 

Fig. 7. Decoding accuracy when using a subset of cells, separately for monkey 1 and monkey 2. The accuracy was computed when training and testing models using a 
subset of 5, 15, 25 cells, and was averaged in the interval with the highest accuracy as obtained from Fig. 3 (movement epoch, epoch 4). Three types of subsets were 
considered: randomly selected cells (‘random’ condition), the most relevant cells (‘most relevant’ condition), the least relevant cells (‘least relevant’ condition). Bar 
heights denote the mean value and error bars represent the standard deviation across cross-validation folds. Results from the performed pairwise comparisons are 
reported (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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temporal discharge pattern of grip-sensitive V6A cells during the 
reach-to-grasping task, although the network is fed by the entire set of 
cells, comprising 25–35% of not grip-sensitive cells that convey mainly 
noise. 

Besides the results in the temporal domain, probably the most 
intriguing result of this study is provided by the analysis of the relevance 
in the spatial domain, considering the two cytoarchitectonic sectors of 
V6A. Indeed, from our findings, V6Ad cells resulted more relevant in 
more skilled grips (hook, primitive and advanced precision grips, c2-c4) 
and V6Av cells in more rudimentary grips (whole-hand and finger pre
hensions, c0,c1). These results are in agreement with previous studies in 
the literature: in particular, grip-sensitive neurons preferring a rudi
mentary grip (specifically, whole-hand prehension) were found to be 
more concentrated in V6Av, while the ones preferring a skilled grip 
(specifically, advanced precision grip) were found more concentrated in 
V6Ad [14]. The difference in grip properties encoding between the two 
V6A sectors, observed in our results and also in past literature [14], can 
be related to two main neurophysiological factors. First, V6A is char
acterized by a significant higher concentration of visual neurons 
responding to complex visual stimuli (e.g., light/dark gratings and 
corners with different orientation, direction and speed of movement) in 
its dorsal sector, and of visual neurons responding to elementary stimuli 
(e.g., light/dark borders, spots and bars) in its ventral sector [14,64]. 
These visual properties of V6A cells are likely reflected in the motor 
domain by a functional segregation of the preferred grip types, with the 
grip-sensitive neurons more activated by complex objects (requiring 
precision grip skills) being located in V6Ad, and the ones more activated 
by simple objects (requiring rudimentary grip skills) being located in 
V6Av [14]. Second, the anatomical connectivity of the two sectors is 
strongly different, mirroring their architectural organization. Specif
ically, V6Av is strongly interconnected with occipital visual areas, e.g., 
with afferent connections from V6, and it is considered more a visual 
area as part of a dorsomedial cortical network serving a fast motion 
analysis essential for the visual guidance of reach-to-grasping [16]. 
Conversely, V6Ad, strongly interconnected with areas of the superior 
parietal lobule, e.g., with the medial intraparietal area (MIP) and the 
anterior intraparietal area (AIP), and with the frontal cortex, is consid
ered more a parietal area, as part of a parietofrontal network involved in 
the motor control of reaching and grasping [17]. Therefore, more skilled 
grips likely require more activation of the dorsal sector of V6A than 
more rudimentary grips, as obtained in our results (see Fig. 6). This can 
be a consequence of the higher degree of coordination required for 
prehension, that is, to control reach-to-grasp movements involving the 
selective use of only one finger (hook grip) or the opposition between 
the index finger/all fingers with the thumb (primitive and advanced 
precision grips). Notably, the results found here on the relative impor
tance of the two V6A sectors in encoding grip types, do not only support 
the current knowledge about the functional segregation of this PPC area 
in reach-to-grasping, but they add an important advancement. Indeed, 
past analyses focused on investigating segregation of cells preferring 
only the most rudimentary grip (whole-hand prehension) or the most 
skilled grip (advanced precision grip), while no analysis was performed 
on intermediate skilled grips (e.g., finger prehension, hook grip, and 
primitive precision grip in this study). To this regard, our analysis pro
vides a more refined view of the spatial properties of grip encoding 
across V6A area, showing that similar relevance differences between the 
two sectors, although to a less extent, hold also for intermediate skilled 
grips, with V6Av encoding more than V6Ad finger-prehension (other 
than whole-hand prehension) and V6Ad encoding more than V6Av hook 
grip and primitive precision grip (other than advanced precision grip). 
Even further, our analysis suggests the existence of a positive/negative 
linear trend between the amount of grip encoding in V6Ad/V6Av and 
the level of skills required by the specific grip. This result is in line with 
the hypothesis that V6Av encodes more simple features and V6Ad en
codes more complex features; indeed, as the level of complexity of the 
reach-to-grasping movement gradually increases from the simplest 

whole-hand prehension to the most complex advanced precision grip, 
our results indicate a different amount of involvement of these two 
subareas. 

Moreover, by analyzing the impact of the most relevant or of the least 
relevant cells on the decoding accuracy, we also validated LRP-derived 
measures from a computational point of view. Indeed, accuracy distri
butions and statistical analyses reported in Fig. 7 confirmed that the 
most relevant cells, as identified by LRP, were the ones with the highest 
grip-discriminative power (as quantified by the decoding accuracy) 
within the recorded neuron population, vice versa for the least relevant 
cells. Crucially, such analysis could also prospectively lead to a meth
odological improvement to invasive BCIs. Indeed, the most relevant cells 
(identified by our framework) were able to provide high accuracies 
(significantly above the chance level) while using only few recorded 
cells (e.g., only 15 cells to achieve >80% decoding accuracies, on 
average), and also achieved higher accuracies compared to randomly 
selected cells, i.e., with a non-informed selection of the cells used for 
decoding. Thus, our framework could also guide researchers to properly 
optimize the BCI recording setup in the future, e.g., by reducing the 
overall number of implanted electrodes, while at the same time maintain 
high decoding accuracies. 

5. Conclusion 

In conclusion, the adopted explainable artificial intelligence frame
work reveals, inside the single-neuron activities, meaningful neuro
physiological aspects related to grip-type prediction, in a similar way as 
obtained in prior studies applying comparable methodologies to non- 
invasive recordings (EEG) and to other tasks [38,45,47]. Thus, this 
study encourages the use of techniques devoted at analyzing the 
knowledge learned by DNNs, not only to design decoders in a more 
robust, transparent, and reliable way but also for boosting our 
comprehension into the neural correlates underlying the investigated 
task. The obtained results support the current knowledge on PPC neural 
encoding of reach-to-grasping, and also expand it by providing more 
refined representations. This suggests that theories about the neural 
processes related to movement control may be not only validated but 
also advanced by explaining neural networks applied to neural signals 
invasively recorded from single cells. As such, the proposed framework 
would be extremely useful to validate motor theories/models and, in 
contexts in which there are no predetermined hypotheses or known 
neural correlates, to pave the way towards new theories and concepts on 
the neural control of movement. Notably, the presented framework was 
applied here for investigating encoding properties of reach-to-grasping; 
however, it could be easily transposed in the future to other motor (e.g., 
reaching) or cognitive (e.g., attention and memory) tasks involving 
single-neuron recordings. 
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