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Abstract: Immune checkpoint inhibitors (ICI) have become the cornerstone of treatment in renal
cell carcinoma (RCC), for both metastatic disease and in an adjuvant setting. However, an adaptive
resistance from cancer cells may arise during ICI treatment, therefore many studies are focusing on
additional immune checkpoint inhibitor pathways. Promising targets of immunotherapeutic agents
under investigation include T cell immunoglobulin and ITIM domain (TIGIT), immunoglobulin-like
transcript 4 (ILT4), lymphocyte activation gene-3 (LAG-3), vaccines, T cell immunoglobulin and
mucin domain-containing protein 3 (TIM-3), and chimeric antigen receptor (CAR) T cells. In this
review of the literature, we recollect the current knowledge of the novel treatment strategies in the
field of immunotherapy that are being investigated in RCC and analyze their mechanism of action,
their activity and the clinical studies that are currently underway.

Keywords: renal cell carcinoma; RCC; immunotherapy; immune checkpoint inhibitors; ICI; TIGIT;
ILT4; LAG-3; TIM-3; vaccine

1. Introduction

In recent years, there has been a progressive increase in the incidence of renal cell
carcinoma (RCC), which is associated with a five-year survival rate that has increased from
50% in 1975 to 77% in 2019 [1]. Worldwide, there are over 400,000 new cases of RCC and
over 170,000 deaths annually [2].

RCC is divided into two main subtypes, with different clinical and prognostic charac-
teristics: clear cell RCC (ccRCC), which represents the most common histology (75–80% of
all cases) and non-clear cell RCC (nccRCC), accounting for 25–20% of RCC and composed
of several different histologies, the most common being papillary (15%) and chromophobe
(3–5%) RCC [3].

Currently, prognostic factors based on the evaluation of clinical and laboratory values
are used to stratify patients with metastatic RCC and therefore define the best therapeutic
strategy [4]. However, no validated biomarkers are yet available as predictors of efficacy
for current first-line therapies in metastatic RCC (mRCC) [5]. Nowadays, the most used
prognostic score for mRCC is the International Metastatic RCC Database Consortium
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(IMDC) risk score, based on clinical and laboratory criteria, and which stratifies patients
into three prognostic groups (favorable, intermediate, and poor risk), each with a different
median overall survival (mOS) [6].

In recent years, immune checkpoint inhibitors (ICI) have become the cornerstone of
RCC systemic treatment in both metastatic disease and adjuvant settings.

Immuno-based combinations, consisting of an ICI in combination with a tyrosine
kinase inhibitor (TKI) or with another ICI, have yielded unprecedented results in several
phase III trials conducted on treatment-naive patients with metastatic disease [7].

In the phase III Checkmate-214 trial, the first-line immunotherapy combination of
nivolumab (3 mg per kilogram of body weight) plus ipilimumab (1 mg per kilogram)
every 3 weeks for four doses, followed by nivolumab (3 mg per kilogram) every 2 weeks,
demonstrated a greater overall survival (OS) benefit than 50 mg sunitinib delivered orally
once daily in patients with intermediate/poor risk advanced ccRCC [8].

Keynote-426 is an open-label, phase III randomized trial, that demonstrates superi-
ority in terms of OS and progression-free survival for advanced ccRCC (PFS) (co-primary
endpoints) of first-line pembrolizumab 200 mg delivered intravenously (IV) every 3 weeks,
in combination with 5 mg axitinib delivered orally twice daily, when compared with
sunitinib [9].

The CheckMate 9ER phase III study confirmed the efficacy, in terms of PFS (primary
endpoint), OS and objective response rate (ORR)—secondary endpoints—of the combi-
nation of nivolumab 240 mg IV every 2 weeks and cabozantinib 40 mg orally once daily,
versus sunitinib [10].

Lastly, the phase III Clear study demonstrated an advantage in OS and PFS for the use
of 20 mg lenvatinib delivered orally once daily in combination with 200 mg pembrolizumab
IV every 3 weeks, when compared with sunitinib in advanced ccRCC [11].

The outcomes of first-line immune-based combination phase III trials with a positive
OS in mRCC are reported in Table 1.

Table 1. Outcomes of first-line immune-based combinations trials.

Trial Treatment
Median

Follow Up,
Months

OS
HR

mOS,
Months

PFS
HR

mPFS,
Months ORR, % Reference

Checkmate 214

Nivolumab + ipilimumab
(n = 550)

vs.
sunitinib (n = 546)

96 0.72 52.7 vs. 37.8 0.88 12.4 vs. 12.3 39 vs. 32
CR 12%

Motzer RJ
et al., N Engl J
Med. 2018 [8]

Keynote-426
Pembrolizumab + axitinib

(n = 432)
vs. sunitinib (n = 429)

67 0.84 47.2 vs. 40.8 0.69 15.7 vs. 11.1 61 vs. 40
CR 2%

Rini BI et al., N
Engl J Med.

2019 [9]

Checkmate-
9ER

Nivolumab + cabozantinib
(n = 323)

vs.
sunitinib (n = 328)

55 0.77 46.5 vs. 36.0 0.58 16.4 vs. 8.4 56 vs. 28
CR 13.6%

Choueiri TK
et al., N Engl J
Med. 2021 [10]

Clear

Pembrolizumab + lenvatinib
(n = 355)

vs.
sunitinib (n = 357)

48 0.79 53.7 vs. 54.3 0.47 23.9 vs. 9.2 71 vs. 37
CR 18%

Motzer RJ
et al., N Engl J
Med. 2021 [11]

OS: overall survival; HR: hazard ratio; mOS: median overall survival; PFS: progression-free survival;
mPFS: median progression-free survival; ORR: objective response rate; CR: complete response.

The outstanding outcomes of these studies led to the approval of the ICI–TKI combina-
tion for all IMDC risk class patients or the ICI–ICI combination for the intermediate/poor
risk class patients as the standards of care for patients with previously untreated mRCC.

However, adaptive resistance from cancer cells may arise during ICI treatment. Most
important is the loss of response to IFNγ and the secretion of immunosuppressive cytokines
like IL-6, IL-12 or TGFβ. These cytokines upregulate PD-L1 and create a T cell dysfunc-
tion [12]. Moreover, loss of neoantigen expressions leading to evasion from cytotoxic T cell
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attack have been described in patients with non-small cell lung cancer (NSCLC) [13]. Fur-
ther potential mechanisms of resistance to ICIs consist of the overexpression of oncogenes
and in the gathering of immunosuppressive cell populations inside the tumor microenviron-
ment (TME), such as tumor-associated macrophages (TAM), myeloid-derived suppressor
cells (MDSC), and regulatory T cells (Treg). These last two, in particular, seem to be
increased in tumor patients and to inhibit T cells activation and function [14,15].

Similarly, resistance to anti-angiogenic therapy may arise specifically due to the in-
creased production of pro-angiogenic factors, endothelial cell variability and cancer cell
crosstalk in the tumor microenvironment [16].

After progression on ICI-based first-line treatment, cabozantinib is the most widely used
TKI, demonstrating efficacy and safety in several studies as a second-line therapy [17,18];
this is also the case for patients treated with first-line ICI or primary refractory TKI [19].

As an alternative to the use of cabozantinib as a second-line treatment, there are
phase II trials and retrospective evidence that show that the combination of lenvatinib plus
everolimus leads to a benefit in terms of PFS with an acceptable toxicity profile [20,21].

Furthermore, other molecules are being studied on the angiogenic side, such as the
hypoxia-inducible factor-2α (HIF-2α) inhibitor belzutifan [22,23].

With regard to ICI therapy, rechallenge with anti PD-1/PD-L1 therapy did not demon-
strate significant benefits [24,25], therefore recent research has been seeking to explore new
immune checkpoint targets.

In this review of the literature, we recollect the current knowledge on novel treatment
strategies in the field of immunotherapy that are being investigated in RCC and analyze
their mechanism of action, their activity and the clinical studies that are underway.

2. Methods

We performed a search on Pubmed/Medline, using the following keywords: “renal cell
carcinoma” OR “kidney cancer” OR “RCC” AND “immunotherapy” OR “immune check-
point inhibitors” OR “ICI” OR “CPI” OR “anti-PD1” OR “anti-PD-L1“. We also searched
the words “TIGIT” OR “ILT4” OR “CAR-T” OR “LAG-3” OR “TIM-3” OR “vaccines” AND
“renal cell carcinoma,” to address the biochemical nature of the novel targets and their role
in the RCC treatment paradigm or its future perspectives. We selected pivotal registration
studies and the most relevant studies in terms of how they were conducted, innovation,
outcomes, statistical analysis and number of patients enrolled. We then performed a search
on the Clinicaltrials.gov database for ongoing studies, both recruiting and not recruiting,
using the keywords “renal cell carcinoma” AND “TIGIT” OR “ILT4” OR “CAR-T” OR
“LAG-3” OR “TIM-3” OR “vaccines.” The search was carried out between 11 March and
31 May of the current year.

3. New Immune Pathways

Novel immune pathways are being studied as related to resistance to currently used
ICIs and are being targeted with novel immune-related therapies. Herein, we discuss
promising fields of research in the context of RCC.

3.1. T Cell Immunoglobulin and ITIM Domain (TIGIT)

T cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory immunoglobulin
receptor expressed on lymphocytes, consisting of an extracellular immunoglobulin variable
domain, a type I transmembrane portion, and a short intracellular region with an inhibitory
motif based on immunoreceptor tyrosine (ITIM) and an immunoglobulin tyrosine tail-like
domain (ITT). First identified in 2009, TIGIT directly inhibits the proliferation of T cells and
the action of natural killer (NK) cells [26,27].

TIGIT is a competitive ligand of the immune activator receptor CD226 or the DNAX-1
accessory molecule (DNAM-1) for CD155 and CD112 adhesion molecules, which are nectin
receptors whose binding increases the activity of T and NK cells [28,29].

Clinicaltrials.gov
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Jhonston et al. identified a highly specific 15-gene signature associated with tumor-
infiltrating T cells with several co-inhibitors within TIGIT and programmed cell death-
1 (PD-1) using gene expression data from the Cancer Genome Atlas collection of lung
squamous carcinoma [30]. Similarly, this upregulation has been observed in ccRCC, colon,
endometrial and breast cancers [31], for which several clinical trials are ongoing [32].

In particular, TIGIT has been shown to be mainly expressed in ccRCC tissue as com-
pared with adjacent normal tissue [33].

3.2. Immunoglobulin-like Transcript 4 (ILT4)

Immunoglobulin-like transcript 4 (ILT4)—also named monocyte/macrophage
immunoglobulin-like receptor 10 (MIR-10), lymphocyte immunoglobulin-like receptor
(LIR) 2, or CD85d—is a type I transmembrane receptor with 4 extracellular tandem Ig-
like domains, a transmembrane region of 23 amino acids and a cytoplasmic tail with
3 immunoreceptor tyrosine inhibitory motifs. Its main ligands are major histocompatibility
complex (MHC) class I and human leukocyte antigens (HLAs) [34].

ILT4 belongs to a family of inhibitory and activating immunoglobulin-like transcripts
which modulates activation of immune cells. It is predominantly expressed in innate
immune cells, including macrophages, monocytes, granulocytes and dendritic cells. Fur-
thermore, ILT4 is expressed in hematopoietic stem cells, osteoclast precursor cells, platelets
and other neurons, being involved in their biological and functional regulation.

ILT4 has been shown to be overexpressed in malignant tumor cells from both hematopoi-
etic and solid tumors and in the tumor stroma cell microenvironment, favoring tumor
progression and metastasis [35].

Therefore, anti-ILT4 agents, in combination with other ICIs, could enhance the immune
response against tumor cells.

Siu et al. have demonstrated that a novel first-in-class human IgG4 monoclonal anti-
body targeting ILT4 (MK-4830), as monotherapy or in combination with pembrolizumab,
triggered antitumor activity in patients with pretreated advanced solid tumors, including
those whose disease had previously progressed during ICI while also maintaining a good
safety profile [36].

3.3. Chimeric Antigen Receptor-T (CAR-T)

Chimeric antigen receptors (CARs) are chimeric receptor proteins designed to give
T cells the ability to target a specific antigen. CAR-T is therefore a single receptor that
combines both the antigen binding and T cell activation functions.

Thus, CAR-T cells are used in genetically modified immunotherapy, now widely used
in the hematological field to treat some cancers, including diffuse large B-cell lymphoma,
acute lymphoblastic leukemia and multiple myeloma. The standard approach is to collect
T cells from patients, genetically alter them so they can recognize tumor cells, then infuse
the resulting CAR-T cells back into patients (autologous transplant) or use those from a
donor (allogeneic transplant).

Engineered CARs program T cells to recognize antigens expressed on cancer cells [37].
Therefore, the T cell linked to the antigen expressed on the tumor cell is active and exerts a
cytotoxic action [38].

CD70 is highly expressed in RCC, making it a promising target for CAR-T cells.
Several phase I and phase II trials with CAR-T cells are ongoing for solid tumors,

including RCC.
However, in solid tumors, unlike hematologic cancers, CAR-T cells have reduced

efficacy due to their difficulty in penetrating the tumor. Moreover an immunosuppressive
microenvironment restricts the efficacy [39].

Different toxicities are associated with CAR-T. Cytokine release syndrome (CRS) is one
of the most important due to the secretion of multiple cytokines like IL-1, IL-6, TNF-α, and
IL-10 that cause fever, arthralgia and myalgia. Similarly, endothelial activation driven by
cytokines results in disruption of the blood–brain barrier (BBB), while a temporary leakage
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of cytokines into the cerebrospinal fluid and brain causes neurotoxicity [40]. Many other
toxicities, like graft-versus-host disease, are observed in CAR-T therapy [41].

Chimeric antigen receptor natural killer (CAR-NK) is a new frontier of immunotherapy
that promises to improve efficacy while reducing toxicity. Unlike T lymphocytes, NK cells
have the ability to be transplanted into a new environment with different MHC expression
patterns while maintaining their functionality and without triggering graft-versus-host
disease or other toxicities, like CRS and neurotoxicity. With advancements in genetic
modification technologies, NK cells can be further engineered, including the introduction
of CARs and the knockout of inhibitory genes [42].

3.4. Lymphocytes Activation Gene 3 (LAG3)

Lymphocytes activation gene 3 (LAG3), also known as CD223, is an inhibitory receptor,
a structural homolog of CD4, and is highly expressed on exhausted T cells and many
other lymphocytic and non-lymphocytic cells. Its activity has been largely related to
downregulating the immune response in both tumors and infections, but a thorough
understanding of its ligands and its role in the immune pathways is still lacking [43].

Following the evidence that LAG3 tends to be overexpressed on exhausted T cells,
the idea that T cell activity could be restored by inhibiting LAG3 has arisen, leading to
anti-LAG3 immunotherapeutics. The association between anti-LAG3 relatlimab and anti-
PD1 nivolumab in previously untreated advanced melanoma patients was studied in the
randomized phase II/III RELATIVITY-047 trial, achieving a 12-month PFS rate of 47%,
compared with 36% with nivolumab monotherapy [44]. Furthermore, the abovementioned
association proved to be active and safe in heavily pretreated advanced melanoma pa-
tients who had progressed to a prior anti-PD(L)-1-containing regimen in the phase I/II
RELATIVITY-020 trial [45].

In 2022, these results led the FDA to approve opdualag, an association between
relatlimab and nivolumab, for the treatment of advanced melanoma [46].

Regarding RCC, an interesting study by Schoenfeld et al. investigated how LAG3
expression levels are, on average, lower at metastatic sites than those at primary RCC sites,
and how this difference was more enhanced in patients with high-risk clinical features, such
as those presenting with a larger primary tumor; with grade 4, IMDC poor-risk disease;
or with brain metastases [47]. The authors further showed that higher LAG3 levels at
metastatic sites may predict a greater response to immunotherapy and better survival
outcomes after the development of metastatic disease.

The purpose of the open-label, randomized phase 2 FRACTION-RCC platform trial
(NCT02996110) is to test the efficacy and safety of various combinations of nivolumab
compared with nivolumab and ipilimumab in participants with advanced RCC that has
progressed on or after ICI (participants undergoing anti-CTLA-4 therapy were eligible).
This study uses an adaptive design to test different combination therapies: one arm consists
of nivolumab and ipilimumab, another of nivolumab and relatlimab, another of nivolumab
and BMS-986205, and the last consists of nivolumab and BMS-813160. This trial aims to
recruit 200 patients with advanced RCC. The primary outcomes are ORR, PFS and duration
of response (DOR). The results of the arm with patients treated with nivolumab plus
ipilimumab were published in November 2022 and show that, with a median follow-up
of 33.8 months, the ORR was 17.4% (entire population n = 46) with 8 patients achieving
partial response and 19 patients achieving stable disease. The PFS rate at 24 weeks was
43.2%, mOS was 23.8 months and median DOR was 16.4 months.

3.5. T Cell Immunoglobulin and Mucin Domain 3 (TIM-3)

T cell immunoglobulin and mucin domain 3 (TIM-3) is a protein that is part of the
TIM family and is identified by type 1 T helper cells (Th1) surface and then on other cell
types such as type 17 T helper cells (Th17), monocytes, and macrophages. TIM-3 targets its
ligand galectin-9 (Gal-9), inducing the depletion of Th1, resulting in peripheral immune
tolerance and negative regulation of immune response. TIM-3 inhibition has been shown to
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be related to the blocking of tolerance induction in Th1 cells [48]. In addition, TIM-3 seems
to be involved in the negative regulation of the production of IFN-G in CD8+ Tc1 cells [49].
TIM-3 overexpression has been observed in hepatocellular carcinoma (HCC) and appears
to be related to poor prognosis, as the bond between TIM-3/Gal-9 promotes the depletion
of T cells in HBV-related HCC [50]. A study by Yuan et al. assessed the prognostic role of
TIM-3 overexpression ccRCC by analyzing 137 ccRCC tumor samples [51].

TIM-3 expression appears to be higher in tumoral tissue than in the adjacent normal
renal tissue, and the short interfering RNA (siRNA)-mediated knockdown of TIM-3 inhib-
ited proliferation and invasion in ccRCC cell lines. Furthermore, TIM-3 expression was
found to be related to both cancer-specific survival and PFS and to be associated with
poor prognosis.

3.6. Vaccines

Therapeutic cancer vaccines are based on the premise that a vaccine targets tumor-
associated antigens through a cytotoxic immune response to these agents, inducing long-
lasting immune responses by both establishing memory against tumor antigens and mini-
mizing toxicity related to an off-target immune system. MHC molecules present peptide
fragments derived from internal cellular proteins on the cell surface, thus allowing T cells to
discriminate between healthy cells and diseased cells, including virus-infected and tumor
cells [52].

Peptides that are predominantly present on tumor cells (and less so on healthy cells)
are called tumor-associated peptides (TUMAPs). Vaccination with TUMAPs is believed to
activate the immune system against cancer [53].

IMA901 is the first therapeutic vaccine developed for RCC. It is a vaccine consisting of
ten selected TUMAPs that are naturally present in tumors.

IMA901 was evaluated in an early clinical trial with a single dose of cyclophosphamide
(to deplete regulatory T cells), demonstrating that immune response to TUMAPs is asso-
ciated with longer OS [54]. In contrast, the phase III IMPRINT trial, comparing sunitinib
plus IMA901 versus sunitinib alone in first-line therapy for patients with metastatic ccRCC,
showed no benefit in OS [55].

An alternative personalized vaccine approach is AGS-003. This is based on amplified
tumor RNA, which was incorporated into autologous monocyte-derived dendritic cells
(called rocapuldencel-T or AGS-003) and administered as a therapeutic vaccine. In a phase
III trial, ASG-003 was combined with sunitinib versus sunitinib alone in intermediate or
poor-risk metastatic ccRCC. No significant differences in PFS or OS were demonstrated [56].

The most recent approach targets tumor neoantigens. These are a specific class of
tumor antigen and originate from somatic alteration. In many tumor types, neoantigen
loads are correlated with response to ICI therapy [57]. In ccRCC, neoantigen load is lower
than other immunotherapy sensitive cancer, like melanoma or lung cancer, but does not
correlate with the response to ICI therapy [58].

Generating a personalized neoantigen vaccine is a feasible strategy that is achieved by
sequencing a patient’s tumor genome and predicting which mutations generate peptides
that might bind to specific HLA class I alleles.

3.7. Immunosuppressive Cells and Resistance

As already mentioned, immunosuppressive cells, such as TAM, MDSC, and Tregs, can
contribute to a resistance to ICIs and have consequently become an important potential
target with which to increase the efficacy of immunotherapy. TAMs have been thought to
be involved in tumor development, proliferation and spread, with their high representation
in TME appearing to be related to the poor prognosis of a broad spectrum of tumors.
TAMs can undermine immune response by reducing T cells and NK activity, expressing
proteins or releasing soluble factors, and by recruiting other immunosuppressive cells,
such as Tregs [59]. Many studies have demonstrated the role of TAMs in immunotherapy
resistance, thus the specific mechanism is still unknown [60]. MDSCs are a broad population
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of immature myeloid cells which massively increase during tumor development and
proliferation. These cells both promote immune evasion, for example increasing PD-L1
expression to promote T cell anergy, and contribute directly to tumor proliferation via
angiogenesis and by facilitating metastatization [61]. Lastly, Tregs, which present CD25
and CTLA-4 on their surface, play key roles in preventing autoimmune and inflammatory
diseases. However, their increase in the TME suppresses anti-tumor immune response.
Many preclinical studies have demonstrated that circulating Treg depletion can enhance
anti-cancer immune response [62]. Immunosuppressive cells represent future potential
targets for the development of new immunotherapeutics.

The discussed immune pathways are depicted in Figure 1.
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Figure 1. Novel immune pathways. ILT4: immunoglobulin-like transcript 4, which modulates
activation of immune cells and appears to be overexpressed on the surface of solid and hematopoietic
tumor cells; MHC I: major histocompatibility complex class I; GAL-9: galectin-9, a widely expressed
receptor involved in immune response and tumor proliferation; TIM3: T cell immunoglobulin and
mucin domain-containing protein 3; CD155: cluster of differentiation 115, often upregulated on tumor
cells, contributing to proliferation; CD112: cluster of differentiation 112, a nectin receptor which, if
activated, enhances the efficacy of T and NK cells; TIGIT: T cell immunoglobulin and ITIM domain,
an immunoglobulin receptor expressed on lymphocytes, which directly inhibits the proliferation of
T cells and the action of natural killer (NK) cells; DNAM-1: DNAX accessory molecule, one of the
main NK cell-activating receptors; CAR: Chimeric antigen receptor; FGL1: fibrinogen-like protein 1;
LAG3: lymphocyte activation gene-3, an inhibitory receptor which downregulates immune response
in both tumors and infections; TUMAPs: multiple tumor-associated peptides.

4. Trials Ongoing
4.1. Phase I–II Targeting TIGIT

Numerous studies on anti-TIGIT drugs are ongoing in RCC patients.
NCT05805501 is a randomized, open-label, three-arm phase II trial that evaluates the

efficacy, safety, and pharmacokinetics of the anti-PD-1 and anti-LAG3 bispecific antibody
tobemstomig (also known as RO7247669) in treatment-naive patients with unresectable
or metastatic ccRCC. This trial is composed of two experimental arms—an arm A whose
participants will receive the combination of tobemstomig and axitinib versus an arm B
whose participants will receive the combination of tobemstomig, tiragolumab and axitinib—
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that are compared with a control arm (arm C) whose patients receive pembrolizumab
plus axitinib.

NCT05259319 is a phase I trial that evaluates the safety and efficacy of the combina-
tion of the anti-PD-L1 atezolizumab with the anti-TIGIT tiragolumab—associated with
concomitant or sequential stereotactic body radiation therapy (SBRT)—in patients with
oligometastatic disease. In this study, one cohort consisted of patients progressing to
first-line treatment.

Lastly, the NCT04626479 trial is a substudy of a larger research umbrella study (the
phase Ib/II MK-3475-U03 umbrella trial), which aims to evaluate the safety and effi-
cacy of experimental combinations of investigational agents (among which are faveze-
limab/pembrolizumab) in RCC. The substudy 03A (MK-3475-03A) involves participants
with advanced untreated ccRCC (estimated n = 400), including a safety lead-in phase and
an efficacy phase. On the other hand, the substudy 03B (MK-3475-03B) focuses on the
second-line setting, enrolling pre-treated mRCC patients (estimated n = 370).

MK-3475-03A investigates the addition of vibostolimab (anti-TIGIT) to pembrolizumab
in metastatic treatment-naive patients.

4.2. Phase I–II Targeting ILT4

The combination of pembrolizumab and MK-4830 is currently being studied in an
umbrella trial that includes RCC (NCT04626518). CDX-585 is another anti-ILT-4 agent
under investigation and is an open-label, non-randomized, multicenter, dose escalation
and expansion study in patients with selected solid tumors, including RCC. It is currently
open and enrolling (NCT05788484).

4.3. Phase I–II of CAR-T

Several phase I and II trials are ongoing to assess the safety and tolerability of CAR-T in
patients with advanced RCC (NCT05420519, NCT06182735, NCT04696731, NCT04438083).

Carbonic anhydrase IX (CAIX), a genetic product downstream of the hyperactivation
of the hypoxia inducible factor (HIF) pathway, is an interesting therapeutic target, being
present with greater density in patients with ccRCC. NCT04969354 is a trial that evaluates
the safety and efficacy of CAR-T cells targeting CAIX in metastatic RCC patients.

Furthermore, NCT03393936 is a dose escalation and dose expansion clinical study to
evaluate the safety, tolerability and anti-tumor activity of the autologous CAR-T cells CCT
301-38 or CCT 301-59 in patients with mRCC. All of these studies are still recruiting and
their results are awaited.

Another study investigated the administration of cells transduced with CAR VEGFR2,
which inhibited the growth of tumor cells in different mouse strains (NCT01218867). This
study is currently complete but final results have not yet been published.

For CAR-NK cells, NCT05703854 is a phase I/II study seeking to evaluate the safety,
tolerability and optimal cell dose of CAR-NK in patients with advanced RCC.

4.4. Phase I–II Targeting LAG3

The DUET-4 trial (NCT03849469) is a phase I trial assessing the safety, pharmacokinet-
ics and anti-tumor activity of the new anti-LAG3 drug XmAb22841, in monotherapy and in
combination with pembrolizumab, in patients with advanced solid tumors, including RCC.
This trial is complete, but results are yet to be reported.

One trial is currently studying the role of anti-LAG3 drugs in different settings of RCC.
The STELLAR-002 trial (NCT05176483) aims to assess the activity of a new multi-targeted
inhibitor of receptor tyrosine kinases, XL092, in combination with many immunotherapy
agents, such as the anti-LAG3 relatlimab, in unresectable advanced solid tumors, including
RCC. This trial is currently open and recruiting.
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4.5. Phase I–II Targeting TIM-3

Two trials have tested two anti-TIM-3 drugs in advanced solid tumors, as follows:
MBG453 (NCT02608268), also known as sabatolimab, and INCAGN02390 (NCT03652077).
The first trial (NCT02608268) is a phase I/II trial built to assess the safety, pharmacokinetics
and anti-tumor activity of the anti-TIM-3 drug MBG453 in advanced solid tumors, including
RCC, administered in monotherapy or in combination with spartalizumab. The second
study (NCT03652077) is a phase I trial which aims to investigate the safety and tolerability
of INCAGN02390. While both of these studies are complete, their results have not yet
been published.

4.6. Phase I–II of Vaccines

The NCT02950766 trial is currently assessing personalized neoantigen vaccines in com-
bination with ipilimumab in ccRCC. Moreover, the NCT05269381 trial is investigating the
safety and tolerability of tailored neoantigen vaccines in combination with pembrolizumab
in advanced or metastatic malignancies, including RCC. Lastly, the addition of personalized
neoantigen vaccines to the standard of care is being studied in the NCT05641545 trial.

We summarized ongoing phase I and phase II trials in Table 2.

Table 2. Ongoing phase I and phase II trials in metastatic RCC patients.

ClinicalTrials.gov ID Phase Setting Drug Primary Endpoints
and Phase

Estimated Primary
Completion Date

NCT05805501 II
Untreated, unresectable

locally advanced or
metastatic RCC

Tobemstomig (RO7247669)
plus axitinib with or without

tiragolumab versus
pembrolizumab plus axitinib

Efficacy, safety, and
pharmacokinetics September 2024

NCT05259319 I

Second-line therapy after
an anti-angiogenic plus

immunotherapy or
immunotherapy alone

Atezolizumab and
tiragolumab, with

concomitant or sequential
stereotactic body
radiation therapy

Safety and efficacy December 2024

NCT04626479 Ib–II
First-line in untreated

patient with advanced or
metastatic RCC

Vibostolimab/
pembrolizumab Safety and efficacy May 2026

NCT05788484 I
Relapsed, locally advanced
or metastatic setting after

standard treatment
CDX-585 Dose escalation December 2024

NCT04626518
Substudy 03B
MK-3475-03B

Ib–II Second and later lines Pembrolizumab + MK-4830 Safety and efficacy September 2025

NCT05420519 I Advanced or
metastatic RCC CD70 CAR-T cells Safety and tolerability December 2024

NCT04969354 I Advanced or
metastatic RCC CAIX-targeted CAR-T Cells Safety and efficacy September 2026

NCT03393936 I–II Advanced or
metastatic RCC

CCT301-38
CCT301-59 CART-T Cells

Safety, tolerability and
anti-tumor activity June 2023

NCT06182735 I Advanced or
metastatic RCC

Cyclophosphamide plus
fludarabine plus infusion of

CAR-NKT Cells

Safety, tolerability, PK,
and preliminary

efficacy
January 2025

NCT04696731 I Advanced or
metastatic RCC

Cyclophosphamide,
fludarabine, ALLO-647,

ALLO-316
Safety and efficacy August 2025

NCT04438083 I Advanced, relapsed or
refractory RCC CTX130 Safety and efficacy February 2027

NCT05176483 Ib Advanced or
metastatic RCC

XL092, novolumab,
ipilimumab, relatlimab

Safety, tolerability, PK,
preliminary antitumor

activity, and effect
February 2026
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Table 2. Cont.

ClinicalTrials.gov ID Phase Setting Drug Primary Endpoints
and Phase

Estimated Primary
Completion Date

NCT05641545 Ib Advanced or
metastatic RCC

Personalized neoantigen
vaccine plus standard of care.

Safety and
clinical toxicity December 2024

NCT05269381 I
Advanced or metastatic

solid tumors
(including RCC)

Cyclophosphamide,
neoantigen peptide vaccine,

pembrolizumab,
sargramostim

Safety and tolerability February 2025

NCT05703854 I–II
Advanced or metastatic

solid tumors
(including RCC)

CAR.70/IL15-transduced
CB-derived NK cells,

fludarabine phosphate,
cyclophosphamide

Safety, tolerability, and
optimal cell dose September 2025

RCC: renal cell carcinoma.

4.7. Overview on Ongoing Trials

All of these new treatment combinations could represent a valid alternative to the
current standard of care as first-line therapies and beyond in RCC, providing a broader
inhibitory profile of multiple immune checkpoint targets. Thus, it has to be underlined
that many of these studies involve small patient cohorts and often do not focus exclusively
on RCC, needing further future large-scale studies to confirm efficacy and safety across
different populations. Furthermore, despite the possible enhanced benefits in survival of
targeting multiple immune checkpoints, there remains the relatively unknown potential
of synergistics effects, the challenge of new resistance mechanisms and, as with every
combination therapy, the possible increase in toxicity. For example, for second-line treat-
ments and beyond, the use of anti-PD1 after progression on first-line ICIs may represent a
challenge, considering the use of a similar target beyond progression. Lastly, and especially
for CAR-T and vaccines, difficulties regarding manufacturing and costs may undermine
the broad adoption of these treatment strategies in clinical practice.

There are currently no ongoing trials involving immunosuppressive cells such as Treg,
MDSC, and TAM.

5. Conclusions

In both metastatic and adjuvant settings, immunotherapy is the cornerstone of treat-
ment for RCC. However, an adaptive resistance from cancer cells may arise during ICI
treatment. The mechanisms most frequently involved in the progressive resistance to ICI
are the loss of response to IFN-gamma, the secretion of immunosuppressive cytokines,
the loss of neoantigen expression, and the modifications of the tumor microenvironment
related to the overexpression of TAM, MDSC, and Treg.

This has made it necessary to investigate new immune checkpoint inhibitor molecules
that are able to overcome these crucial issues.

Drugs directed against TIGIT, ILT4, LAG-3, TIM-3 or therapeutic cancer vaccines
are currently being studied in early-phase clinical trials, showing promising results. Ad-
ditionally, trials are underway on the use of autologous and allogeneic transplants of
CAR-engineered T cells and CAR-NK cells. These new immunotherapeutic targets could
eventually change the therapeutic landscape of RCC, but the results of larger studies
are needed.
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