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A B S T R A C T

This study presents a new design tool for working fluid mixtures in organic Rankine cycles. The proposed tool comprises a blend model for the thermophysical
properties of the formulated mixtures, an ORC model to predict the performance of the mixtures in a specific application, and an optimizer based on the Bayesian
inference method to identify the optimal mixtures compositions to be assessed. The tool is programmed to optimize an objective function based on predefined
optimization targets. Importantly, the targets and their respective weights within the objective function can be adjusted to meet the specific requirements of the
application under analysis, making this approach adaptable to diverse research and industrial objectives. The algorithm is applied to a case study to demonstrate its
ability to define a low-GWP blend that can replace HFC-134a in a micro-scale ORC with recuperator, while maintaining and potentially enhancing performance. The
optimization targets specified for the case study are the net power output, the net efficiency, the GWP and the blend size. Power and efficiency are computed through
a validated model of the low-temperature ORC system used as benchmark case. The results showed that the procedure was able to formulate several blends that
comply with the targets of the assigned task. Amongst the high-scoring mixtures, the most used pure fluids are R32, R152a, R1234yf, and R1234ze(E). The presence
of HCs is limited to fewer mixtures, playing the main role of GWP-limiter. A method to estimate the flammability classification of the blends has been also applied,
obtaining that most of them belong to the ASHRAE class 2l, except when an HC is present, in which case the fluid is may result in class 3.

1. Introduction

Organic Rankine cycle (ORC) is considered a mature technology in
the field of low-grade heat-to-power conversion. However, there is still
substantial potential for further commercial deployment, as a large
amount of heat from renewable sources (e.g., geothermal and solar en-
ergy) and waste heat remains underutilized. Currently, the total
installed capacity worldwide is around 4.5 GW, with future market
growth mainly expected in geothermal and small waste heat applica-
tions [1,2]. The main obstacles to widespread adoption are related to
economic and performance issues, such as high installation costs and
relatively low conversion efficiency, leading to long payback periods.
The performance of the system is strongly affected by the working fluid,
whose selection represents a critical aspect influencing the efficiency
and applicability of ORC systems [3].

Traditional organic fluids, such as refrigerants and hydrocarbons
(HC), have been predominantly used due to their favourable thermo-
dynamic properties. However, emerging concerns regarding environ-
mental impact, safety, and efficiency have propelled the exploration of

alternative working fluids. Among these alternatives, the use of mixtures
as working fluids in the ORC has garnered considerable attention.
Mixtures offer the potential to tailor fluid properties to match specific
application requirements, such as target values of thermodynamic
properties or environmental impact [4]. By blending different pure
molecules, it is possible to achieve desirable characteristics, including
improved heat transfer, enhanced thermal stability, and reduced unde-
sired properties, such as flammability or Global Warming Potential
(GWP). Zeotropic mixtures may improve cycle performance due to their
ability to match the temperature profiles of heat sources more closely
and to reduce the exergy losses during non-isothermal phase change
[5,6]. Furthermore, there is a growing need to replace high-GWP sub-
stances, which can be addressed by blending them with low-GWP fluids,
particularly during the transition to environmentally cleaner solutions.
Several works have been dedicated to demonstrating the potential
benefits of the adoption of ORC fluid blends, in terms of performance
improvement, greater sustainability, and safety issues. For example,
Braimakis et al. [7] investigated the exergetic performance of binary
mixtures of R32 and ultralow-GWP fluids in ORCs, finding that zeotropic
mixtures enhance efficiency, especially at lower heat source
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temperatures. Shu et al. [8] assessed the utilization of highly flammable
HC blended with flammable retardants (such as R11 and R123) to obtain
low-GWP mixtures and, at the same time, mitigate the resulting
flammability.

In the literature, the working fluid optimization has been addressed
in numerous studies. On the highest level, the optimization task can be
classified in three categories, depending on the solution domain
considered, as follows:

• Optimization within a list of defined conventional fluids: this
approach involves selecting from a predefined set of conventional
fluids available in thermodynamic libraries. The optimization pro-
cess typically utilizes established properties of these fluids to find the
most suitable candidate for specific applications, such as efficiency
and environmental impact in ORCs.

• Optimization considering the design of new molecules: this
method focuses on the design of entirely new molecules using
Computer-Aided Molecular Design (CAMD) models. It employs
computational techniques to generate novel molecular structures
with tailored properties, optimizing them based on performance
metrics relevant to their intended application. This approach allows
for the exploration of previously unconsidered chemical species.

• Optimization by mixing conventional fluids: this technique in-
volves creating mixtures of two or more conventional fluids to
enhance performance characteristics. By optimizing the composition
of these mixtures, it is possible to achieve desired thermodynamic
properties that may not be attainable with single-component fluids.
This method can be particularly useful in achieving specific

performance or environmental goals while maintaining compati-
bility with existing systems.

Regarding the optimization techniques used in the working fluid
selection process, the most adopted methods fall into three main cate-
gories, namely deterministic, heuristic, and statistical optimization,
whose main features are summarized in Table 1. In the following, a non-
exhaustive state of the art review is presented with relevant examples for
each of the optimization techniques.

An example of deterministic technique applied to conventional
fluids can be found in Freeman et al. [12], which presents a fluid opti-
mization problem in a domestic-scale distributed solar combined heat
and power (S-CHP) system based on ORC engine. They compared eleven
pure fluids of different families (HFC, HCFC, CFC, HC) over a wide range
of evaporation temperatures (between 60 ◦C and 240 ◦C). The fluids that
emerged from the parametric optimization considering different irra-
diance levels are R245ca, R123, R11, however, new low-GWP working
fluids that might have been suitable for the application, such as the
hydrofluoroolefin (HFO) R1234yf or R1233zd, were not included.

Chen et al. [15] presented a study on the design of ORC working
fluids by combining the group contribution method (GCM) with cubic
equations of state for calculating thermophysical properties. By fixing
the operating conditions, the optimization process aims to maximize the
output work by means of parametric optimization. The optimal fluid,
resulting from the parametric optimization of subcritical cycle, is
CH2FCF2CF3, with an evaporation temperature of 113 ◦C, a net power
output of 276 kW, and an efficiency close to 12%.

Schilling et al. [14] presented a method for the integrated design of
ORC cycle and working fluid mixture using a 1-stage CoMT-CAMD

Nomenclature

Acronyms
BS Blend size
BWR Back Work Ratio
GP Gaussian Process
GWP Global Warming Potential
HC Hydrocarbon
HFC Hydrofluorocarbon
HFO Hydrofluoroolefin
HoV Heat of Vaporization (kJ/kg)
MW Molar weight (kg/kmol)
OPT Mixture with the highest objective function score
ORC Organic Rankine Cycle
UCB Upper Confidence Bound

Symbols
A Acquisition function
cP,cV Specific heat at constant pressure and volume (kJ/kg/K)
D Searching domain (pure fluids of the fluid list)
F Number of atoms of fluorine
Fobj Objective function
H Number of atoms of hydrogen
h Specific enthalpy (kJ/kg)
K Kernel matrix
ṁORC ORC mass flow rate (g/s)
M Predictive mean function; Mixture
N Normal distribution; Rotating speed (rpm)
p Pressure (bar)
Pnet Net power production (W)
Q̇ Thermal power (W)
T Temperature (◦C) or (K)
V̇ Flow rate (l/s)

w Weight of the objective function
X Input domain values (mass fraction)

Subscript
ad Adiabatic flame (referred to the temperature)
amb Ambient (referred to the temperature)
BS Minimum blend size (referred to individual optimal

mixture)
C,in Cold water inlet at condenser
CR Critical (referred to the temperature)
ev Evaporator
exp Expander
GWP Minimum GWP (referred to individual optimal mixture)
H,in Hot water inlet at the evaporator
L Saturated liquid state
P Maximum net power output (referred to individual optimal

mixture)
pp Pump
ref Reference state
sat Saturation
V Saturated vapor state
η Maximum net efficiency (referred to individual optimal

mixture)

Greek letters
β Expansion ratio (− )
ηnet Net efficiency (− )
θ Exploration/exploitation split hyperparameter
λ Thermal conductivity (W/m/K)
μ Dynamic viscosity (Pa⋅s)
ρ Density (kg/m3)
σ Molecular complexity (kJ/kg/K2)
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approach. They applied this method to a small-scale ORC for low-
temperature waste heat recovery application, employing the PC-SAFT
to model both equilibrium and transport properties of mixtures. They
used mixed-integer nonlinear program (MINLP) as optimization tech-
nique. The binary mixture propane/diethyl ether resulted the optimal
solution in terms of net power output, while the blend propene/pro-
pionaldehyde ensured the lowest specific investment cost.

Cignitti et al. [16] utilized an integrated working fluid/plant opti-
mization approach to optimize the waste heat recovery of the exhaust
gas from a marine diesel engine. Their tool combines CAMD technique
with deterministic optimization of the cycle key parameters such as net
power output, pressure ratio, and degree of superheating. Best-
performing fluids were 2,2,3,3,4,4,5,5-octafluorohexane and 5-chloro-
4,5,5-trifluoro-2,3-dimethylpent-2-ene, which both offer improved
cycle performance and a low environmental impact.

Also White et al. [13] employed a deterministic method (MINLP),
and extended the CAMD model to the design of blends of working fluids
for non-recuperated subcritical ORC systems. They identified iso-
heptane, 2-pentene, and 2-heptene as optimal solutions for heat-source
temperatures of 150 ◦C, 250 ◦C, and 350 ◦C, respectively, with specific
investment costs (SICs) of £5620, £2760, and £2070 per kW, and power
outputs of 33 kW, 137 kW, and 214 kW.

With regards to heuristic techniques, Chitgar et al. [19] evaluated
three geothermal-based ORC configurations to optimize energy pro-
duction for freshwater generation and minimize the total cost rate,
utilizing a multi-objective optimization technique that combines genetic
algorithms (GA) and artificial neural networks (ANN) to model system.
They achieved the highest exergy efficiency with R1233zd(E) at
vaporization temperature of 135 ◦C, while R1234ze(Z) offered the
lowest total cost rate. Ammonia was identified as the best overall choice
for maximizing power generation and freshwater production, demon-
strating superior performance in terms of levelized costs of electricity.

The heuristic approach was also used by Papadopoulos et al. [20],
who developed a CAMD methodology that employs group contribution
methods in combination with simulated annealing (SA) multi-objective
optimization for the generation of optimum working fluid. They applied
their method to a representative example of ORC supplied by low tem-
perature heat source (below 100 ◦C), obtaining best energetic and eco-
nomic performance with methyl-formate and methoxy-ethane due to
their favorable balance of efficiency, low flammability, toxicity, and
minimal environmental impact. Another example is available in Lampe
et al. [18], where the authors optimized both the working fluid and
process parameters using the continuous-molecular targeting (CoMT-
CAMD) approach. The optimization employs the perturbed chain sta-
tistical associating fluid theory (PC-SAFT) model to evaluate thermo-
physical properties, with the net power output as the unique objective.
They identified a list of ten most promising working fluids – including
HFCs, HCFCs and HCs – with a power output ranging between 1.6 and
2.7MW, for the low-temperature geothermal application under
consideration.

Li et al. [22] applied another heuristic technique – namely the Par-
ticle Swarming Optimization (PSO) – to design low-GWP refrigerant
mixtures for HVAC system, with the aim of maximizing energy efficiency
and minimizing flammability. They identified R32/R1234yf and R32/
R1234yf/R125 as best-performing mixtures, obtaining an improvement
of cycle efficiency and a significant reduction of flammability and GWP
compared to the benchmark case.

Fang et al. [21] utilized a genetic algorithm for multi-objective
optimization of a non-recuperated ORC system that recovers heat from
the exhaust gas of a heavy duty diesel engine. They considered four
working fluids (R245fa, R123, toluene and decane) and their zeotropic
mixtures, and varied the evaporation and condensation temperatures
over a wide range, finding that zeotropic mixtures are able to reduce
heat transfer area but leading to lower thermodynamic performances.

Heuristic methods, such as those mentioned hereabove, simplify the
searching process, and offer fast search capabilities while ensuring a
solution of sufficient quality. However, they may fall short in finding the
global optimum solution and lack clear measures of result quality across
all potential options. On the other hand, deterministic optimization
provides precision and predictability, but it is computationally intensive
and lacks of flexibility, hence it may result more effective in problems
that feature a small-size solution domain.

In this context, statistical (or stochastic) techniques emerge as
attractive options. Statistical methods can combine some pros of both
deterministic and heuristics techniques, such as the achievement of
optimal solutions and flexibility to the problem definition, ensuring also
a low computational effort. Specifically, Bayesian optimization,
leveraging a probabilistic surrogate model and an acquisition function
based on Bayes’ theorem [24], stands out for its ability to efficiently map
the solution domain. The strength of this method lies in i) the possibility
to approach unknown black-box objective functions of any complexity
without special requirements on their derivatives; ii) the ability to
provide information on both the predicted shape of the objective func-
tion and its uncertainty by means of the statistical nature of the surro-
gate function; iii) the efficient drawing of the objective function in multi-
dimensional domains by means of the acquisition function; iv) the ca-
pacity of achieving the global optimum. The state of the art analysis
reveals that, despite their potential, the use of statistical methods for
ORC working fluid design has been minimally explored, with only a few
recent studies available. A relevant example can be found in the work
published by Díaz-Secades et al. [23], where the Bayesian approach is
applied to the optimization of the ORC working fluid in a marine waste
heat recovery system. Among 80 pure substances they considered, the
low-GWP fluids R1233zd(E), Novec 649 and SES36 presented the
highest performance, with a maximum power recovered around
160 kW.

Table 1
Main optimization techniques.

Deterministic [9] Heuristic [10] Statistical [11]

Definition Deterministic
optimization
methods yield
repeatable results
for well-defined
problems based on
fixed input values.
The outcomes are
entirely predictable,
as there is no
randomness
involved in the
process.

Heuristic
optimization
methods search
for satisfactory
solutions through
rules of thumb or
trial-and-error
approaches. They
do not guarantee
optimality but
provide good
enough solutions
in a reasonable
timeframe.

Stochastic
optimization
incorporates
randomness into the
optimization
process,
acknowledging that
some parameters
may be uncertain or
variable. This
approach aims to
find robust
solutions that
perform well under
various scenarios.

Characteristic Exact Solutions:
Provides optimal ad
hoc solutions under
defined constraints
by means of fine
tuning.
Predictability: The
same inputs will
always produce the
same outputs.

Speed: Generally
faster than
deterministic
methods.
Flexibility: Can
be applied to a
wide range of
problems without
extensive
modification.

Handling
Uncertainty:
Effectively deals
with variability in
data or model
parameters.
Probabilistic
Models: Often uses
statistical methods
to inform decision-
making.

Examples Linear
programming,
nonlinear
programming, and
parametric
optimization.

Genetic
algorithms,
simulated
annealing,
particle swarm
optimization, and
neural networks.

Stochastic gradient
descent, Monte
Carlo methods, and
Bayesian
optimization.

Example
references

[12 13 14 15 16 17] [18 19 20 21 22] [23]
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1.1. Aim and contribution

This work focuses on developing an optimization tool based on
Bayesian inference, aiming to guide the identification of low-GWP fluid
mixtures for ORC applications. The tool integrates a validated ORC
model and a set of simple equations for assessing the thermal properties
of the formulated mixtures. To demonstrate the methodology’s capa-
bilities, the code was executed for the task of replacing R134a in a low-
temperature micro-ORC with a new mixture, aiming to enhance per-
formance and reduce environmental impact. This case study has been
chosen primarily due to the availability of a validated ORC model,
thanks to the test bench installed in the UNIBO laboratory [25]. None-
theless, we believe the case study is significant as the system can be
employed with several low-temperature heat sources in small applica-
tions, such as low-grade waste heat recovery, geothermal and solar
thermal energy. Nonetheless, the procedure can be employed for any
fluid design task, by changing some input parameters and variables and
the optimization targets and implementing a specific ORC model if
required. An extensive discussion is dedicated to the analysis of the
optimal mixtures, providing the reader with potential post-processing
techniques to assess the results reliability. The main contributions of
the study are summarized as follows:

- Utilization of Bayesian statistical method for optimizing ORC fluid
mixtures. To our knowledge, in the literature this technique has been
adopted only by [23] for the optimization of pure fluids, while
mixtures so far have been mostly designed by means of deterministic
and heuristic approach. Thus, this work is one of the first to show the
high potential of Bayesian optimisation tools to guide the definition
and production of market mixtures of fluids.

- ORC model validated within the benchmark case included in the
optimization algorithm, and methodology to adjust the empirical
coefficients accounting for the change of fluid.

- Low information and tuning requirements for the tool, enabling it to
provide useful results even in the early stages of the design process.

- Modular structure of the tool, allowing for the integration or
replacement of different function blocks to target diverse objectives.

The search algorithm is a modified version of the original work by
some of the authors [26], as well as the ORC model, which is adapted
from the one presented in [27]. A preliminary version of the procedure
has been presented in [28], where a simplified version of the blend

model was introduced. The main developments since that study include
the integration of the ORC model into the optimization routine,
improvement to the objective function and targets with corresponding
weights and normalisation techniques, and the application of a method
for estimating the safety classification of formulated mixtures.

2. Materials and methods

The general structure of the procedure is the one described in Fig. 1,
and is made essentially of three blocks of functions. The algorithm is
developed with the aim of being modular, allowing the users to imple-
ment their libraries or tools just by replacing one or more corresponding
blocks. The tool can be employed for the first design of a system as well
as in the case of retrofitting an existing plant. Moreover, it can be tar-
geted for diverse specific purposes at different stages of a project.

Following the scheme of Fig. 1, the general features of the main
functions are reported below, while the detailed description of the
approach is presented in sections 2.1–2.3 for the case study analysed in
this work. In this work, each module has been developed in Python.

The blend model is any system of rules used to calculate the thermal
and transport properties of the formulated mixture. It must comprehend,
at least, the equations of state (EoS) for all the pure fluids to be mixed. In
the application presented here, a hybrid approach is implemented with
the open-source library CoolProp used to compute pure fluids’ proper-
ties, which are then inserted into user-defined expressions for the mix-
tures’ properties.

The system model contains the functions for computing the perfor-
mance of the mixture in the specific application. It can involve a detailed
model of the ORC heat exchangers and machines, if available, or a
simpler one with constant parameters based on the conditions of the
heat source and sink. This stage is the one associated with the highest
uncertainty contribution, since even a validated model may be inaccu-
rate if the working fluid changes. This aspect should also be accounted
for when choosing the pure fluids to be mixed. Here, a previously
developed and validated semi-empirical model of a micro-ORC system is
used [27].

The optimizer represents the actual optimization tool, used for
combining the given pure fluids in a certain number of blends depending
on the user-defined objective function, by learning from previous iter-
ations. In this study, the optimizer is based on the Bayesian probabilistic
approach.

The setup presented in the following sections is specifically related to
a possible application of the tool, i.e. the replacement of a high-GWP
hydrofluorocarbon (HFC) in a plant retrofit with new low-GWP mix-
tures. Different applications can be considered: for example, in a simpler
version of the algorithm [28], the target was to optimize a low-GWP
mixture with similar properties to those of R134a, without considering
a specific application or working conditions. In that case, the system
model was not included in the procedure, as the fluid properties were
available from the blend model and fed directly to the optimizer block.

2.1. Blend model

A set of rules and correlations has been defined for the assessment of
the blends’ thermal and transport properties. The properties are
required to solve the equations in the ORC model and are used as points
of comparison between the mixture solutions.

The blend model is based on the knowledge of the thermophysical
properties of the pure fluids composing the mixture. For this task, the
open-source library CoolProp V6.4.3 [29] has been employed.

The rules have been established pursuing three defined goals: i) good
accuracy over a certain range of conditions; ii) low computation time (i.
e. iterative routines must be limited); iii) being mostly based on math-
ematical laws, avoiding the use of empirical coefficient. The imple-
mentation of rules against the use of well-established codes, such as
REFPROP, has been adopted for three main reasons: i) the choice to

Fig. 1. General structure of the optimization tool.
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develop an open source and fully editable tool, thus, licensed software
with pre-defined list of fluids should be avoided; ii) the need of quick
calls for mixture properties calculation, as a slowing down of the Python
code due to REFPROP calls has been experienced; iii) feeding REFPROP
with complex mixtures that are not included in its fluid list may cause
properties extrapolation out of the reliability range, increasing the un-
certainty associated with such properties. This issue has been discovered
also in other works [15].

Accordingly, the following set of rules has been selected as blend
model: i) the mixture’s critical temperature (TCR) is calculated as moles
weighted average; ii) the mixture’s enthalpy (h), heat of vaporization
(HoV), heat capacities (cP,cV), thermal conductivity (λ), and GWP values
are calculated as mass weighted averages; iii) the mixture’s density (ρ) is
calculated as mass weighted inverse average; iv) the dynamic viscosity
(μ) is calculated according to the Grunberg-Nissan law [30]. The
expression has been simplified by neglecting the cross terms that involve
empirical coefficients, which may not be available for all the fluids; v)
the quality of the expansion (dry, wet or isentropic) is quantified by the
so called molecular complexity (σ), defined as the inverse of the slope of
the saturated vapor line calculated by definition at reduced temperature
Tr = 0.7⋅TCR; vi) the saturation temperatures (Tsat) and pressures (psat)
are calculated by solving the Vapor-Liquid Equilibrium (VLE) for non-
ideal mixtures via the Soave-Kwong-Redlich equation of state. The full
expressions for the calculation of properties from critical temperature to
molecular complexity are summarized in Table 2.

For addressing the VLE problem, the system of equations reported in
Eq. (1) is implemented and numerically solved. The system comprises
the VLE for each non-ideal component (x and y are the mass fractions of
vapor and liquid phase, respectively), the calculation of the fugacity
coefficient, Φ, the Soave-Kwong-Redlich (SKR) cubic equation of state
[31] (with Z compressibility factor), and the mass conservation. α, β, A,
and B are fluid-dependent parameters. The complete description of this
approach is presented in [26].
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi⋅ΦV
i ⋅p = xi⋅ΦL

i ⋅p

Φi = exp
[

βi(Z − 1) − ln(Z − 1) −
A
B
(αi − βi)⋅ln

(

1+
B
Z

) ]

Z3 − Z2 +
(
A − B − B2

)
⋅Z − AB = 0

∑N

i=1
xi = 1

(1)

All the rules included in the blend model have been validated by
comparing the resulting properties with those of a set of 53 commercial
mixtures [32], calculated using REFPROP as a benchmark. For the
validation of temperature- and pressure-dependent properties, four
reference states have been selected, characterized by temperatures equal
to 20 ◦C and 70 ◦C, and vapour quality equal to 0 (saturated liquid) and 1
(saturated dry vapor). The validation results have shown that the
properties calculated via the user-defined expressions feature a

coefficient of determination (R2) greater than 0.9 in all the four test
conditions. Only for the expression used for the viscosity of the saturated
liquid, a slightly under-performance is observed, which however ensures
R2 > 0.8. The extensive validation results are provided as parity plots in
the Appendix.

2.2. ORC model

The cycle model implemented in the procedure is derived from the
one presented in [27], related to the micro-ORC test bench installed at
the University of Bologna.

The system is a recuperated ORC using HFC-134a as working fluid.
The nominal power output is around 2 kW, while the temperature of the
heat source ranges between 50 ◦C and 90 ◦C. It is driven by a volumetric
piston expander with three radial cylinders. A simplified version of the
ORC layout is presented in Fig. 2. In the regular operation, the working
fluid in the liquid state is drawn by the pump, then it is preheated in the
recuperator before entering the evaporator, where it is vaporized and
superheated at high pressure. The vapor is expanded in a piston
expander, leading to the reduction of its temperature and pressure while
remaining in the vapor state. In the recuperator, the low-pressure
vapour transfers the residual sensible heat to the evaporator-inlet
liquid stream. After the recuperator, the exhaust vapor is condensed in
the condenser to restart the cycle. Liquid water is used as hot source and
cold sink is water. For the full description of the test bench, its compo-
nents and the control equipment, please refer to [25,33].

Fig. 3 reports the workflow diagram of the ORC model, which is
formed by the combination of the sub-models of each of the main
components. The code is developed in Python 3.0 using the numpy and
scipy open libraries. Each component of the system has been imple-
mented as a Python function and included in a two-level implicit
problem, thus, the solution is reached through an iterative process on
two iterative control variables: the expander inlet temperature (T1) and
the condenser outlet temperature (T4).

The input variables are the flow rates and temperature of the hot
source and cold sink at the inlet of the evaporator (V̇H,in, TH,in) and
condenser (V̇C,in, TC,in), and the ambient temperature (Tamb). The outputs
are the thermodynamic state of all the sections indicated in Fig. 2, the
thermal power transferred in the heat exchangers and the electrical
power of pump and expander. The solution is achieved iteratively by
reducing the errors on the two iterative variables, T1 and T4. The model
was calibrated using experimental data acquired with R134a as working
fluid, with temperatures of the heat source ranging from 60 to 85 ◦C and

Table 2
Expressions of the mixing rules adopted in the blend model.

Property Rule

Critical temperature TCR =
∑

xiTCR,i
Enthalpy h =

∑
zihi

Heat of vaporization HoV =
∑

ziHoVi
Heat capacities cP/V =

∑
zicP/V,i

Thermal conductivity λ =
∑

ziλi
Global Warming Potential GWP =

∑
ziGWPi

Density 1
ρ =

∑ zi
ρi

Viscosity lnμ =
∑

xilnμi
Molecular complexity σ =

sTr − s0
0.7TCR − T0

Fig. 2. Simplified Micro-ORC test bench layout.
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with a range of expander power output between 200 and 1600W.
More in detail, the heat exchangers (evaporator, recuperator,

condenser) are modelled with the ε–NTU method and a moving
boundary approach applied in steady-state conditions. According to this
method, evaporator and condenser are split into three heat transfer re-
gions (subcooled zone, two phase zone and superheated zone). The
global heat power (Q̇HE) is calculated by the sum of the heat transfer
occurring in the i-th zone, according to Eq. (2):

Q̇HE =
∑

Q̇i =
∑

Q̇max,i⋅εi (2)

where Q̇i is the real power exchanged in the i-th zone and Q̇max,i is the
related ideal power, according to the well-known definition of heat
transfer effectiveness εi. The latter is determined for the evaporator and
the recuperator via Eq. (3), valid for plate heat exchangers (the form for
the shell-and-tube condenser is omitted for the sake of brevity) [34]. The
subscript i indicating the difference zone is omitted for better
readability.

ε =
1 − e−

UA
Cmin

⋅(1−
Cmin
Cmax

)

1 − Cmin
Cmax⋅e

−
UA
Cmin

⋅(1−
Cmin
Cmax

)

(3)

with Cmin and Cmax corresponding to the minimum and maximum ther-
mal capacity of the hot and cold fluid, U is the global heat transfer co-
efficient, calculated with common correlations for the estimation of
convective coefficients [35], and A is the heat exchanger surface area,
which is a calibration parameter. According to the procedure applied in

[27], the value of U is adjusted accounting for the change of fluid
properties with respect to the benchmark case (R134a), in particular the
density ρ, the specific heat cp, the thermal conductivity λ and the vis-
cosity μ, by means of Eq. (4).

Ufluid = UR134a⋅
( ρfluid

ρR134a

)0.8

⋅
( cpfluid
cpR134a

)α

⋅
(

λfluid
λR134a

)1− α

⋅

(
μR134a
μfluid

)0.8− α

(4)

with coefficient α assumed equal to 0.4, 0.3 and 0.35 for the evaporator,
the condenser and the recuperator respectively [36]. For the complete
treatment of the calculation procedure, please refer to [27].

The expandermodel is the one introduced in [37], adapted from the
semi-empirical method developed for volumetric expanders in [38] and
[36]. The approach provides for solving the ideal internal expansion as
the combination of an isentropic expansion and an isochoric pressure
drop. The resulting ideal power is then diminished by the various losses
contributions, which include recompression, under- or over-expansion,
pressure losses at the intake and discharge valves, internal leakages
and heat dissipation to the ambient. The expander power output and
total efficiency are then calculated according to Eq. (5) and Eq. (6),
where ηem represents the electro-mechanical efficiency of expander and
generator.

Pexp = (h1 − h2)⋅ηem (5)

ηexp =
Pexp

h1 − h2,is
(6)

The expansion model is well-represented by the scheme in Fig. 4,

Fig. 3. Workflow diagram of the ORC model. The inputs are shown in green, the iterative variables are shown in orange, the intermediate variables are shown in
black, the output are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Volumetric expander sub-model scheme and p-V diagram.
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which also reports a generic pressure–volume diagram of the piston
expander. The extended explanation of the model can be found in
[37,27].

The feed-pump and circuit resistance model is used to calculate
the pressure increase, Δp, and the volumetric flow rate, V̇. It is based on
the characteristic curve obtained experimentally with the benchmark
fluid, and modified for each formulated mixtures using correlations that
involves fluid-dependent variables, such as density and viscosity [27].
The pump’s electric power consumption is determined by its efficiency,
ηpp, which accounts for both hydro-mechanical and electromechanical
losses. The value of ηpp is calibrated with experimental data [27].

Ppp =
V̇⋅Δp

ηpp
(7)

The overall performance is determined by assessing the net power
output (Pnet = Pexp − Ppp) and net efficiency (ηnet = Pnet

Q̇ev
), which are

included among the optimization targets within the case study discussed
hereinafter.

The validation results are shown in Fig. 5 only for the main perfor-
mance indicators (expander and pump power, evaporator power and
mass flow rate), in a wide range of operating conditions.

2.3. Optimizer

The optimization algorithm is based on the Bayesian statistical
inference, which aims at finding the optimum across the solution
domain by combining exploitation and conscious exploration. The al-
gorithm is inspired by a previous work of some of the authors [26], in
which the Bayesian approach is applied to maximize the match between
gasolines of unknown composition from the market and multicompo-
nent mixtures from the optimizer.

The role of the optimization algorithm is to get intel on the shape of
objective function (Fobj) across the input domain (D) using the minimum
number of evaluations. Based on this iteratively increased knowledge,
the algorithm eventually identifies the set of input values that returns
the global maximum value of the objective function.

According to the conditional probability definition, the Bayesian
statistics provides a routine to review the belief on how the mixture
composition shapes the objective function once new evidences are given
from the latest composition test. In the first step, no information on the
objective function are available, thus, a training set of the input values is
used (typically by a uniformly distributed random selection) to evaluate
the associated value of the objective function. This sampling is then used
to create the so called ‘priors’, i.e. the initial beliefs on the shape of the
function, namely the surrogate function. The typical choice for the

Fig. 5. Parity plot between experimental and calculated: a) Expander power production, b) Pump power absorption, c) Evaporator heat power absorption, d) mass
flow rate. The error band is set at 10%.
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surrogate function is the Gaussian Process (GP), which assumes that the
possible values of the objective function in each point of the input values
(X) domain are normally distributed N ≈ ±2 std deviation). Therefore,
in a multi-dimensional domain the GP ‘prior’) is a set of possible func-
tions that fit the training set including the predictive mean function
M(X), which precisely interpolates the training set, and other functions
that interpolates the values that are normal distributed±2 std deviation)
around the mean of each test point. Those other functions are defined in
shape by the kernel matrix K(X).

GP(X) = N(M(X), K(X) ) (8)

Based on the shape of the priors, the next point to be evaluated must
be selected, aiming at gathering from it as much as possible information
on the objective. In order to accomplish this task, the Bayesian algorithm
relies on the acquisition function (A(X)), i.e. a merit function which
defines the sampling strategy by combining exploitation and conscious
exploration. In this framework, exploiting means testing new solutions
in the surroundings of a mapped zone of the input domain where good
scores have been returned. Exploring means testing new solutions in
zones of the input domain with poor information on the value of the
objective function. In this study, the Upper Confidence Bound (UCB)
acquisition function (Eq. (9)) is adopted due to its easy formulation,
clear expression and control of the exploitation/exploration split, and
ability to promote a faster convergence [39]. Thus, the new evaluation
point will be the input set that maximizes A(X). In Eq. (9), θ is the
exploitation-exploration split hyperparameter. θ = 0 means full exploi-
tation, thus, new evaluations will be performed close to the latest
maximum value of the predictive mean. High θ values (e.g.> 5) mean a
heavy weight on the exploration phase, thus, new evaluations will be
moved towards points associated to the maximum uncertainty of the GP
priors (i.e., the bounding functions of the 95% normal distribution).

A(X) = M(X) + θ⋅K(X) (9)

At this step, the new point is evaluated, and the corresponding value
of the objective function is used to update the priors. Thus, the GP is re-
calculated including the new pairs (X, F) by means of the Bayes’ theorem
to generate the new set of fitting functions (again according to a multi-
variate normal distribution) called ‘posteriors’. This process is repeated
iteratively by using the posteriors of the former iteration as priors for the
next one up to the maximum number of iterations fixed by the user.

A graphical illustration of the steps of this routine is given in Fig. 6
for a one-dimensional example. In Fig. 6 the dotted black curve is the
black-box objective function F, the solid black line is the predictive mean
M(X), the blue area bounds the y-range in which lie all the functions that
can fit the actual observations, the violet line is the UCB acquisition
function (a high θ value has been used in this example, thus, the next
evaluation point (red star) is taken at the maximum uncertainty).

2.4. Algorithm set-up and convergence

The Bayesian optimization routine is developed in Python 3.0 by
means of the bayes_opt [40] and numpy open libraries. In this study, the
searching domain D is represented by the mass fraction values of the
pure fluids included in the fluid list (X). The mass fraction of each pure
fluid is limited at 80%, while the minimum threshold is imposed equal
to 4% in order to include only fluids that contribute significantly on the
characteristics of the final mixture. The pure fluids embodied in the
searching domain have been selected by means of a preliminary
screening based on the following criteria: i) the fluid’s thermophysical
properties must be available (i.e. the fluid is included in the CoolProp
library); ii) the fluid’s critical temperature is around the value of TCR
related to the fluid that must be replaced (within a maximum range
of± 70 K); iii) fluids belonging to different chemical families are
included; iv) fluids with non-null value of the Ozone Depletion Potential
(ODP) are excluded; v) the number of fluids in the list should be limited
to a maximum around 20, in order to maintain good performance of the

Fig. 6. Illustration of three iterations of the Bayesian iterative routine including the current observations (black dots), the predictive mean function (solid black line),
the uncertainty including the set of likely fitting functions (blue area), the acquisition function (solid violet line), the new point to evaluate (red star). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
List of fluids for the optimization.

Fluid Family TCR(K) GWP 100 y [42]

R134a HFC 374.2 1430
R32 HFC 351.3 675
R245fa HFC 427.0 1030
R227ea HFC 374.9 3580
R152a HFC 386.4 124
Propane HC 370 3
i-butane HC 407.8 5
R1234yf HFO 367.9 4
R1234ze(E) HFO 382.5 6
R1233zd(E) HFO 439.6 77
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numerical method [41]. In the present case, the list of ten fluids pre-
sented in Table 3 has been selected as searching domain.

The nominal operating condition selected for the optimization is
defined by the input data of the ORC model, which are provided in
Table 4.

The performance of each mixture option is evaluated via the objec-
tive function F, whose general expression has been identified in the
weighted average of four user-defined optimization targets. The weights
wi are hyperparameters associated to each optimization target. Adjust-
ing the value of the weight means to change the importance assigned to
the contribution given by the corresponding target to the final score of
the mixture. In some cases, when the code is struggling to optimize a
target, we may decide to increase its weight to rebalance its contribution
to the objective function. As far as the weighted average is concerned,
the sum of the weights must be unitary, thus, the chosen value of each
weight lies in the interval 0–1.

The quantities selected as optimization targets are: the net power
output Pnet and the net efficiency ηnet resulting from the operation of the
ith mixture in the system model; the GWP of the blend; the ‘blend size’
(BS), namely the number of components in the mixture. The ratio behind
this objective function shaping is the search of working fluids that can
improve, or at least maintain, the performance of the existing plant
(higher or equal power output and efficiency) while fulfilling the envi-
ronmental constraint to be on market (limited GWP) and practical
realization (limited number of components). Due to the different mea-
sure units and order of magnitudes of the target properties, each one has
been normalized as follows: for net power production and net efficiency,
the normalisation values are taken equal to the maximum values ach-
ieved experimentally in the reference system with the fluid R134a (Pnet,
ref, ηnet,ref); GWP and BS are normalized against the lower limits of 150
(according to the latest limitations posed by the F-gas regulation [43])
and 4 (typical size of commercial mixtures), respectively. The final
expression of the objective function is reported in Eq. (10).

Fobj = wPnet ⋅
Pnet
Pnet,ref

+wηnet ⋅
ηnet

ηnet,ref
+wBS⋅

4
BS

+wGWP⋅
150
GWP

(10)

In this form, the right-hand side of Eq. (10) can be divided into two
parts: i) the first half is composed of two performance terms, which

contribute to higher scores if the normalisation value is exceeded. Thus,
mixtures that outperform the R134a as working fluids (achievement of
greater net power and net efficiency predicted by the ORC model) are
rewarded. ii) the second half is composed of two constraints terms,
which contribute to higher scores if they are below the normalisation
value. Thus, mixtures with less than four components and GWP lower
than 150 are rewarded.

For the sake of brevity, Eq. (10) can be summarized as Fobj = FP +

Fη + FBS + F*GWP. The mark on the term F*GWP means that the contribu-
tion of the warming potential is regularized if the GWP value is lower
than 150. This expedient is adopted to prevent the dominance of the
FGWP in case of mixtures with ultra-low GWP, which would mislead the
search towards non-optimal solutions in terms of performance. In the
state of the art, this principle is widely used in the framework of neural
networks with L1 and L2 regularization techniques [44].

In Table 5 the hyperparameters of the algorithm and their values are
summarized. The number of random samples, the number of maximum
iterations, the exploitation-exploration split (θ) and the GWP regulari-
zation threshold, and the weights have been tuned, while the other
hyperparameters are default of the library [40]. Both the random sam-
ples and the maximum iter have been set after different test runs.

Increasing the random samples enhances the likelihood of pointing
solutions around the high objective zone of the domain, in order to
provide the guided search with some high potential starts. Increasing the
maximum iter gives the possibility to check that different successive
scores are smaller, or at least in line, compared to higher ones obtained.

Table 4
Case–study data provided to the micro-
ORC model for the optimization process.

Input Value

Tamb 20 ◦C
TH,in 75 ◦C
TC,in 15 ◦C
V̇H,in 1.8 l/s

V̇C,in 1.4 l/s

Table 5
Hyperparameters definition.

Hyperparameter Choice/Value

Optimization targets Normalized
Random samples 50
Maximum iter 300
GP regressor kernel Matérn
ν 5/2
α 1.0 x 10-6

θ 0.5
GWP regularization 1.0
Weights (¡)
w − net power 0.25
w − net efficiency 0.35
w − GWP 0.10
w − BS 0.30

Fig. 7. Workflow of the optimization algorithm applied to the benchmark case.

V. Mariani et al. Energy Conversion and Management: X 24 (2024) 100733 

9 



This would be a sign that both the refinement and the conscious
exploration cannot detect new zones of the search domain that include
outperforming solutions.

A trial-and-error approach has been applied in order to determine
the maximum number of both random samples and iters as well as the
value after which a further increasing would not significantly change
neither the score nor the components’ type/number associated to suc-
cessive solution. The regularization threshold has been set aiming at
equalizing the reward to solutions with GWP 150, thus, solutions with
GWP=150 (compliance required by the marketplace) and GWP=4
contribute in the same manner to the final score. The weights have been
tuned by starting from their uniform distribution (each weight equal to
0.25) and then increasing/decreasing their values according to the value
achieved by the associated objective term (FP, Fη, FBS, F*GWP) against the
overall score (Fobj). The goal was to avoid reaching high overall score
given by the combination of excellent scores plus scarce scores of some
of the objective terms. Therefore, starting from wi= 0.25, the optimizer
straggles to find solutions with efficiency higher than the reference
working fluid as well as a number of components lower than six. Thus,
the values ofwηnet andwBS have been arbitrarily increased. Then, in order
to ensure the unity of the weights’ sum (begin the objective function a
weighted average), the values of wPnet and wGWP should be decreased. As
far as the optimizer can find solutions with extremely low GWP (e.g., 4),
focusing the weight decrease only on the GWP term could be a balanced
choice to avoid solutions without improved power (if wPnet would have
been decreased as well) while ensuring compliant GWP despite the
penalty introduced.

The workflow of the optimization algorithm is reported in Fig. 7.
Given that the optimizer operates on a statistical inference approach,

executing multiple runs with identical parameters will yield different
results each time. The overall convergence of the method should be
assessed based on the consistency and reliability of the outcomes. Dur-
ing the post-processing phase, the algorithm convergence can be verified
by comparing the composition of the high-scoringmixtures (F80%) across
different runs (typically at least five). These mixtures should contain the
same components with similar mass fractions and exhibit comparable
values of the objective function. Additionally, the balance between the
different contributions to Fobj can be examined, as will be elaborated in
Section 3. If any of these aspects are found to be unsatisfactory, the
convergence can be enhanced by adjusting the parameters of the
objective function (such as the weights wi), modifying the optimizer
parameters (like the split hyperparameter θ), or increasing the number
of iterations.

3. Case study results

Once the optimisation process has been completed, the results are
subjected to two distinct analytical procedures. Initially, the algorithmic
performance and the overall results are examined. Subsequently, the
most relevant mixture solutions are analysed in greater detail, along
with their performance in the case study.

3.1. Algorithm performance

Fig. 8 shows the overall distribution of the blend scores versus the
iterations of a complete run, for a first evaluation of the general per-
formance of the algorithm. At the end of the optimization process, the
tool has designed 350 mixtures, of which the first 50 are obtained within
the training phase and 300 are the trained solutions. Among these, 268
fulfil the light constraint of GWP<750, (light blue circles). The solutions
associated to the maximization of each optimization target are marked
with coloured stars. Considering only the trained iterations, 99% of the
objective function values lie in the range between 30 and 126, with a
median around 81. Concerning only the training iterations, the median
reaches the lower value of 63, and 94% of their scores is below the
median of the trained solutions, confirming the effectiveness of the
learning process. As a further effect of the good training process, the
optimizer starts to find high-score solutions at an early stage (17% of
optimization process). Then, the global optimum is reached at 27% of
the process (red star), but the code continues finding mixtures with total
scores next to the highest until the last iterations. This behaviour is the
consequence of the exploitation strategy of the Bayesian algorithm, as
described in Section 2.3.

The following analyses will be focused on a subset of forty-nine high-
score solutions characterized by values of objective function above 100,
corresponding to 80% of the maximum achieved score (F80%).

Fig. 8. Overall objective function score achieved during the optimization
process. The black dashed line represents the median value of the objective
function; light blue circles represent mixtures with GWP<750; white circles
represent mixtures with GWP>750; the star marker represents best mixtures.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Illustration of the value assumed by each optimization target for the most relevant solutions (F80%).
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For each of the 49 high-score mixtures, Fig. 9 reports the individual
contribution of each weighted optimization target (FP: net power; Fη: net
efficiency; FBS: blend size; FGWP: GWP) in a parallel coordinates plot.
Each line is one of the high-score mixtures, with the colour depicting the
value of the objective function according to the colour scale provided on
the right. Lines intercept the parallel axis at the value of the corre-
sponding single weighted contribution to Fobj. Such plot is instrumental
in illustrating the balance among the contributions of the optimization
targets to the total score of each mixture.

Due to the form of the objective function and the weight values
assigned to each optimization target (see Table 5), it is clear that the
terms FBS and FGWP present a maximum that can be determined a priori,
due to the regularization described in Section 2.4. In particular, the max
FBS equal to 20 is achieved with blends composed of two fluids, while the
max FGWP equal to 30 is obtained with any value of GWP lower than 150.

On the other hand, the maximum achievable values of FP and Fη are
higher and cannot be established a priori. As a consequence, the largest
share of the total score Fobj is associated with the performance of the
blend (power and efficiency). Moreover, the individual scores of power
and efficiency present a quite balanced trend, especially within the
blends with highest total score (dark and light red lines). The mixtures
with highest scores present a BS between 3 and 5.

3.2. Mixture analysis

In order to perform a preliminary analysis of the designed mixtures
in the micro-ORC virtual test bench, a statistical analysis is conducted on
some key properties. The statistical analysis is presented in Fig. 10, in
which the properties are presented as normalized values against the ones
of the reference working fluid (R134a) in order to give a compact
overview. All the properties present the median value around the± 25%
and a narrow range of IQR (interquartile range), except for σ, ρV, and μL.

Critical temperatures are close to the R134a as a consequence of the
pure fluids chosen to compose the database. Therefore, all the best
mixtures exploit efficiently the low-grade heat source (hot source tem-
perature lower than 100 ◦C) with a sub-critical cycle. The molecular
weight of the full set of the considered solutions is below that of R134a.
Molecular complexity of the solutions subset presents the widest range
of IQR (0.42), beside the median value is closed on R134a. In the graph,
normalized σ < 1 describes a lower superheated degree needed by some
mixtures to avoid wet expansion. The maximum increase in slope is
below − 2.2, indicating that the solutions can be considered at least
isentropic, as the R134a with a σ value of − 1.2, as opposed to wet fluids
like water with a much more pronounced negative slope (σ = -9.2).
Vapor density presents a 20% decrease in the median value, which says
that for most of the designed mixtures a decrease of the refrigerant mass
used in the system would be observed in working conditions, as well as a
reduction of the expander production. Thus, a high rotational speed of
the positive displacement must be considered for the improvement of
the performance indexes. The viscosity of the designed mixture is a key
parameter to check since a significant decrease suggests that the mix-
tures may suffer from larger working fluid leakage in the gear pump. In
this case, μL presents a median value of 0.92 and an IQR of 0.12, thus, no
relevant consequences are expected, otherwise, the change of the fluid
machinery or other cautions should be considered. Enhanced thermal
properties (normalized values> 1), such as latent heat and liquid spe-
cific heat at evaporator conditions, may result in a better heat absorption
compared to R134a. This is likely a consequence of the zeotropic nature

Fig. 10. Box chart of the main properties of interest for fluid selection in ORC
cycle. The median value is shown with red line; the lower edge of the box
represents the first quartile (Q1); the upper edge of the box represents the third
quartile (Q3); The lines extending beyond the box stretch from the minimum
value (Q1-1.5⋅IQR) to the maximum value (Q3+ 1.5⋅IQR) each variable can
take. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. Composition of the most relevant mixture solutions (left-hand axis), and the corresponding objective function score (black line, right hand axis).
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of most of the designed mixtures, that reduces the irreversibility during
the heat exchange. Besides, a decrease of vapor specific heat can be
noticed.

3.1.1. High-scoring mixtures (F80%)
Fig. 11 shows the composition of the high–score mixtures. The

mixtures are sorted by increasing values of the objective function (black
curve). In Fig. 11: it is visible that the most performing mixtures are

mainly composed of HFOs and HFCs in similar proportions. Four pure
fluids are recurrent in the designed mixture, namely R32, R152a,
R1234yf, R1234ze(E). R1234yf and R1234ze(E) are the most employed
HFOs due to their low-GWP (close to zero) and to their thermal prop-
erties that are similar to those of R134a. This result is consistent with the
current state of the art, as these HFOs are the most employed working
fluids for replacing the R134a [45].

Fluids like R245fa, R227ea, R134a are barely used moving towards
the right side of the graph (i.e. high values of objective function), likely
due to their high GWP. It is worth mentioning that R245fa is scarcely
selected due to the presence of R1233zd(E), which is recognized as its
‘clean’ substitute. The latter is not selected frequently due to the high
value of the critical temperature compared to the heat source temper-
ature considered in this study, which negatively affects the ability of the
mixture to take advantage of the heat source. The presence of HCs is
limited to less mixtures with low mass fraction (14.8% on average),
playing the main role of GWP-limiter as their contribution to the per-
formance targets is rather low.

3.1.2. Individual optimal mixtures
The analysis is now focused on the five solutions marked with stars in

Fig. 8 (blend with lowest GWP (MGWP), highest efficiency (Mη), mini-
mum BS (MBS), maximum net power production (MP), maximum overall
score (MOPT)), whose specifics are reported in Table 6 along with ther-
mal properties calculated at 1 atm for liquid and vapor. It can be
observed that values of liquid density (ρL) are similar (around 1220 kg/
m3) for all these mixtures, with the exception of MGWP that presents a
density 865 kg/m3, which can be ascribed to the large presence of
isobutane. The same applies to liquid viscosity (μL) that exhibits the
lowest value forMGWP. A different trend is observed for the specific heat,
with is significantly higher for MGWP both in liquid (1.65 kJ/kg/K) and
vapor state (1.11 kJ/kg/K). Heat of vaporization of the five individual
optimal blends is between 220 and 270 kJ/kg, with the lowest value for
MBS and the highest for Mη and MP.

The radar chart in Fig. 12 compares the values of net power output
(Pnet), net efficiency (ηnet), back work ratio (BWR), expander efficiency
(ηexp) and pump efficiency (ηpp), calculated for the mixtures included in
Table 6 and the reference fluid R134a, in the working conditions re-
ported. The BWR corresponds to the ratio between the pump power

Table 6
Composition and objective function score of individual optimal mixtures provided and main properties at 1 atm.

Mixture Composition Mass
fraction
(%)

F
(¡)

Fi
(¡)

ρL/ρV(kg/
m3)

μL/μV(μPa⋅s) λL/λV(mW/m/
K)

cPL/cPV(kJ/kg/
K)

HoV(kJ/
kg)

MGWP i-Butane / R1234ze(E) 42 / 58 101.46 F*GWP =

30
865.49/4.09 265.09/8.26 97.78/11.54 1.65/1.11 260.67

Mη R134a / R32 / R1234yf /R227ea /
R152a / R1234ze
(E)

9 / 16 / 19 /
7 / 31 / 18

103.25 Fη =

43.6
1211.10/
4.25

324.29/9.22 116.91/9.29 1.39/0.86 266.78

MBS R152a / R1234ze(E) 21 / 79 105.94 FBS = 20 1225.60/
5.01

326.47/9.28 98.06/10.01 1.35/0.85 222.73

MP R32 / R1234yf /R152a / R1234ze
(E)

21 / 27 /
25 / 27

124.35 FP = 30 1210.30/
4.21

317.15/9.11 119.78/9.15 1.39/0.86 268.47

MOPT R32 / R1234yf / R152a 17 / 64 / 19 125.64 − 1218.50/
4.54

302.31/8.98 110.03/8.99 1.33/0.84 246.37

Fig. 12. Comparison between main performance indexes of the five ndividual
optimal mixtures, against the R134a.

Table 7
Fluids performance indicators and operating conditions.

FLUIDS Pnet(W) BWR(%) ηexp(%) ηpump(%) ṁORC(g/s) Npp(rpm) Nexp(rpm) pV(bar) β( − )

R134a 532.64 48.68 36.44 27.26 152.5 197.35 752.7 18.16 2.52
MGWP 447.73 54.65 32.33 20.56 111.82 177.55 1717.46 11.97 3.03
Mη 943.93 41.72 33.93 31.57 178.66 257.7 1300.74 19.85 2.82
MBS 473.57 49.54 34.21 23.62 130.35 179.55 963.14 14.58 2.79
MP 973.59 42.33 34.33 32.94 187 274.8 1296.68 20.98 2.77
MOPT 865.32 45.72 34.52 33.5 190.43 290.25 1075.89 21.48 2.75
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consumption and the expander power output, and is particularly critical
with fluids with low critical temperature [46]. To facilitate the com-
parison, each index in Fig. 12 is normalized by dividing its value by that
obtained with R134a. Hence, R134a performance in the radar chart are
represented by a regular polygon with vertexes pointed at 1.0. Punctual
values of performance indexes and operating conditions are collected in
Table 7. Compared to R134a, a substantial increase in the power output
and net efficiency is observed for the three mixtures Mη (+77%
and+ 25%, for power and efficiency respectively), MP (+83%
and+ 23%), MOPT (+62% and+ 19%). Consistently, such blends pre-
sent also a modest decrease in the BWR, which is in the range between
40% and 45%. The other two blends, MGWP and MBS, feature a slight
reduction in both power (− 16% and − 11%, for MGWP and MBS
respectively) and efficiency (–13% and − 4%). Similar trend is detected
for the pump efficiency, whose highest value (close to 35%) is achieved
with the mixture MOPT, with considerable improvement with respect to

the value obtained with R134a. None of the optimal mixtures allows to
exceed the expander efficiency obtained with R134a, which is close to
36.5%. However, the penalization of ηexp due to the use of the mixtures
is limited to few percentage points.

The lowest performance is registered withMGWP, which also presents
the highest BWR (close to 55%), and the lowest values of pump and
expander efficiency (32% and 21% respectively). Table 7 also reports
information regarding the working conditions simulated with the ORC
model in the operating point selected for the optimization (TH,in = 75◦C,
TC,in = 15◦C). The analysis of working pressures, flow rates and rotating
speeds is fundamental especially in case of retrofit of an existing plant
(such as the present case-study), as it provides first indications of the
changes on the power plant that may be required to operate with the
new fluid. The pump speed remains in the range of rotating speed
achievable with the feed-pump of the test bench (90–300 rpm), with the
highest values obtained with MOPT (290 rpm) and MP (275 rpm). Such

Fig. 13. Temperature-specific entropy diagrams of R134a and the five individual optimal mixtures.
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conditions suggest that the replacement of the pump is more likely to be
considered if these two blends are employed, especially if the system is
expected to operate also with higher heat source temperatures. In fact,
increasing TH,in the vaporization pressure must increase too, in order to
keep the same superheating degree at the expander inlet. Since higher
values of pV are obtained by increasing the fluid mass flow rate –hence
the pump speed – the margins of regulation are limited for these two
fluids.MOPT andMP are also the fluids characterized by higher values of
vaporization pressure (both around 21 bar), while the lowest values are
registered with MGWP (12 bar) and MBS (14.6 bar). The condensation
pressure is higher than the ambient pressure for all the six fluids, which
allows to avoid the implementation of deaeration systems. The

minimum condensation pressure is observed with MGWP, and is close to
4 bar. The values of the expansion ratio (β) for all the optimized blends
lie in a limited range (2.75–3.03), and are slightly higher than that of
R134a (equal to 2.52). The mixtures MOPT, Mη and MP are zeotropic,
with temperatures glides (ΔTglide = (TV − TL)p=const.) between 4 K and
7.5 K; the mixture MGWP is near-azeotropic, with a glide lower than 2 K,
while the mixture MBS acts as a pure fluid (glide equal to zero). It is
worth noting that the mixture MOPT seems very similar to the commer-
cial fluid R457A, a blend made of R32 (18%), R1234yf (70%) and
R152a (12%) currently used in HVAC applications as low-GWP
replacement for R404A [47].

A graphical comparison of the thermodynamic cycle obtained with
each fluid on the temperature-specific entropy diagram is presented in
Fig. 13.

3.3. Environmental and safety performance

In assessing the environmental and safety performance of mixtures,
the mixing rule outlined in Section 2.1 has been applied to determine the
GWP, while the ASHRAE Standard 34 [48] has been used for safety
classification (see Table 8).

The toxicity class A is assumed for all the five optimal blends, since
all their pure components are classified as low-toxic. The flammability
classification was assessed according to the methodology presented in
[49], by applying a normalized index that combines the maximum
adiabatic flame temperature (Tad) and the number of atoms of fluorine
and hydrogen (F/F+H). The adiabatic flame temperature was calculated
using the open-source kinetics solver Cantera, and mechanisms avail-
able in the literature [50,51,52].

All the mixtures shown in Table 8 ensure a strong GWP reduction
(>60%) compared to that of R134a, with the highest value achieved by
Mη (close to 520). Mixtures MOPT, MBS and MGWP have GWP lower than
150, which is already the upper limit for some applications in the F-gas
regulations [43]. These blends represent the most suitable retrofit op-
tions considering long-term scenarios. The lowest value of GWP around
5 is obtained with MGWP, as it is composed by an olefin and i-butane.

Due to the presence of a large fraction of HC, MGWP is also the only
mixture that falls in the highest flammability class (A3). The other
blends are all classified as low-flammable (A2L) due to the large pres-
ence of HFOs. In Fig. 14 the ASHRAE Standard 34 flammability classi-
fication (A1, A2L, A2, or A3) is shown as a function of Tad and F/F+H for
the five best mixtures and the reference pure fluid R134a.

Table 8
Fluids environmental (GWP) and safety (flammability class) properties
comparison.

FLUIDS GWP 100y SAFETY CLASS

R134a 1430 A1 (no flame propagation)
MGWP 5.6 A3 (higher flammability)
Mη 518.5 A2L (lower flammability)
MBS 30.3 A2L (lower flammability)
MP 176.5 A2L (lower flammability)
MOPT 142.1 A2L (lower flammability)

Fig. 14. Flammability class classification (A1, A2L, A2, or A3) shown as a
function of Tad and F/(F+H) [49].

Fig. 15. Performance comparison between the five best solutions and the R134a at three different heat source temperatures: 65, 75, and 85 ◦C. a: net power output.
b:net efficiency.
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3.4. Off-design performance

In the final analysis conducted on the five optimal mixtures of
Table 7, the ORC model was used to compare the performance metrics
(net power and efficiency) of these mixtures and R134a under off-design
operating conditions, in particular considering the heat source temper-
ature equal to 65 ◦C, 75 ◦C (as in the optimization task) and 85 ◦C. The
outcomes are presented in Fig. 15.

Regarding Pnet, Fig. 15a reveals that at TH,in equal to 65 ◦C, the peak
power outputs achieved with MOPT, MP and Mη are remarkably similar.
In the cases of TH,in equal to 75 ◦C and 85 ◦C instead, the highest value is
obtained with MP (close to 1000W and 1400W respectively). In all
conditions, the power output with MOPT, MP and Mη surpasses that of
R134a, with the difference becoming more pronounced at higher heat
source temperatures. The blendsMGWP andMBS shows slightly lower Pnet
values than R134a under all tested conditions.

The findings related to the net efficiency (ηnet) are depicted in
Fig. 15b. The fluid R134a shows the highest efficiency only at a TH,in
equal to 65 ◦C, while at a TH,in of 85 ◦C the highest value of ηnet is ob-
tained with MP. It’s important to note that the net efficiency attainable
with the reference ORC test rig is low in general (a few percentage
points), primarily due to the large impact of pump consumption (high
BWR, see Table 7 and [25].

This analysis suggests that, in case the power plant is expected to
work under different heat source conditions, the optimization code
should be targeted considering multiple operating points. This task can
be accomplished, for instance, by running the model under several
working conditions and incorporating average performance indexes into
the objective function.

4. Applications and limitations of the proposed method

While the methodology has been developed to be adaptable to any
specific objective, its application to very different case studies may
require some modifications to the settings of the sub-models. The main
modifications relate to the blend model and the ORC model, which
should be revised according to the specifics of the benchmark case. In
particular, the ORC model needs to be replaced by a detailed model of
the benchmark case, if available, or by a simplified model based on heat
balances and using fixed efficiencies and operating parameters, such as
expander and pump efficiencies, superheat and subcooling degrees,
pinch point temperature difference, etc. (as the one proposed in [53]). If
the global heat transfer coefficient has to be calculated, the correlation
for estimating the convective coefficients should be carefully selected
according to the fluids considered and the working conditions, as the
correlations used here may not be suitable for all ranges of temperature
and fluid properties. As far as the optimiser is concerned, minor modi-
fications can be related to the choice of optimisation targets in the
objective function and the corresponding weight values and normal-
isation techniques.

To provide more insights on how the approach can be adapted
effectively to different cases, here we would like to propose some ex-
amples of potential applications, extremely different from the one pre-
sented in this paper as benchmark case:

Example 1: preliminary design of medium-scale ORC system for in-
dustrial waste heat recovery.

- Inputs: heat source and cold sink conditions.
- ORC model: simple model in design conditions with fixed
parameters.

- Blend model: REFPROP library, equations of state or simple relations
(must be verified).

- Optimization targets: net output power, GWP, flammability, heat
exchangers surface area, glide.

Example 2: retrofit of refrigeration cycle using low-GWP mixtures.

- Inputs: nominal temperature and cooling capacity, ambient
temperature.

- ORC model: detailed model of benchmark refrigeration cycle or
simple model in design conditions with fixed parameters.

- Blend model: REFPROP library, equations of state or simple relations
(must be verified).

- Optimization targets: Energy Efficiency Ratio (EER), GWP, flamma-
bility, heat exchangers surface area.

Example 3: design of a new blend with similar properties to con-
ventional fluid to be replaced.

- Inputs: benchmark fluid’s properties.
- ORC model: none.
- Blend model: REFPROP library, equations of state or simple relations
(must be verified).

- Optimization targets: specific fluid’s properties, GWP, flammability.

It must be noted that the limitation of the number of pure working
fluids included in the optimization domain (limited to 20 max) can be
overcome by executing multiple runs on different sets of fluids with the
same targets. The fluids of each set with highest performance will
compose the set for the final optimization. This can be helpful in case the
criteria for the pre-screening are not clear at the beginning of a project.

As concluding remark, while using mixtures as working fluids in ORC
systems can offer potential benefits in terms of efficiency, environmental
impact, and safety compared to pure fluids, there are several practical
challenges in mixing and handling these mixtures in real-world settings.
There is a lack of literature on this topic, so here we try to summarize
some key points related to the main implications related to real use of
blends:

- Working fluid mixtures can lead to deterioration in heat transfer
performance, reducing the real heat transfer coefficients especially
during evaporation and condensation [54]. Systems with such mix-
tures may eventually require larger heat transfer equipment
compared to those using single-component working fluids.

- During operation, the composition of the working fluid mixture can
shift due to selective evaporation of the more volatile component.
This can lead to changes in the thermodynamic properties and per-
formance of the ORC system over time [55].

- Many potential mixtures contain flammable components. Proper
safety measures and handling procedures are necessary to mitigate
the risks associated with flammable fluids in industrial settings
[49,22].

- Using mixtures adds complexity to the ORC system design, model-
ling, and optimization. For example, thermal properties may not be
available with accuracy. More parameters need to be considered,
such as the composition and mixing ratio of the components.
Furthermore, there is a limited amount of experimental data
available on the performance of mixtures in real ORC systems. Most
studies have been based on simulations using estimated fluid
properties.

- Eventually, the use of mixtures may increase the initial and oper-
ating costs of the ORC system compared to using pure fluids, due to
the need for more complex equipment and additional safety
measures.

5. Conclusion

In this paper, a procedure for the design of working fluid mixtures in
ORC was developed and tested. The procedure involves three main
blocks of functions: the blend model, the system model and the opti-
mizer. These can be tailored to meet specific application objectives. The
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blend model is used to calculate the thermophysical properties of the
formulated mixtures. The ORC system model applies the mixtures
properties to predict their performance in a specific case study, and here
is represented by the semi-empirical lumped-parameter model of an
experimental ORC test rig. The optimizer follows a probabilistic
approach, as it employs the Bayesian inference theorem to identify the
solution to be analysed. Blend model and ORC model have been vali-
dated against Equations of State libraries and experimental data,
respectively.

The algorithm capabilities have been tested in a case study aimed at
replacing the high-GWP fluid HFC-134a in a micro-scale ORC with
recuperator. The targets of the case study were to maximize net power
output and overall efficiency, and to minimize the GWP and the number

of pure fluids composing the blend (BS).
Each optimization target contributes to the value of the objective

function, which represents the total “score” of each mixture formulated
by the algorithm. A preliminary selection of pure fluids to be mixed is
required to define the search domain. The fluid list for the presented case
study includes ten substances from different families, specifically HFCs
(R134a, R32, R245fa, R227ea, R152a), HFOs (R1234yf, R1234ze(E),
R1233zd(E)), and HCs (propane and i-butane), all characterized by
critical temperatures close to that of the fluid to be replaced. The safety
performance of the designed mixtures has also been estimated, by
applying a procedure (available from the literature) to determine the
flammability classification of each of the best solutions.

The results show that the most performing mixtures formulated by

Fig. 16. Parity plot between REFPROP and mixing rules results of: a) critical temperature (TCR), b) specific enthalpy (h), c) latent heat of vaporization (HoV), d)
specific heat at constant pressure (CP), e) specific heat at constant volume (CV), f) thermal conductivity (λ).
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the algorithm are characterized by a large presence of HFOs and HFCs,
with smaller incidence of HCs that are mostly used as GWP-limiter. In
particular, the solution with the highest score of the objective function is
a ternary blend of R32 (17%), R1234yf (64%) and R152a (19%), which
allows an improvement in both net power and efficiency compared to
R134a (+62% and+ 19%, respectively), with a GWP reduction below
150. All the blends composed of HFC and HFO are classified as low
flammable (ASHRAE A2L). The best mixture with the lowest GWP value
is a blend of isobutane (42%) and R1234ze(E) (58%), which however
resulted highly flammable (A3). The mixtures related to the highest
performance are mostly zeotropic with a glide between 4 K and 7 K.

The working variables simulated with the ORC model, such as the
working pressures, flow rate and rotating speeds, remain within a range

that is compatible with the conditions achievable by the reference ORC
test rig. This is particularly convenient in case of plant retrofitting, as it
suggests that only minimal equipment adaptations may be required to
operate with the new fluid.

In conclusion, this study introduces a simple yet powerful strategy
for designing the optimal mixture in ORC applications. The real
advantage of this strategy is its ability to be modified to suit various
research and industrial aims, allowing users to adjust the procedure to
achieve their unique objectives.

Future developments might be dedicated at increasing the accuracy
and applicability of the proposed method. These are some examples for
future research activities:

Fig. 17. Parity plot between REFPROP and mixing rules results of: a) GWP, b) density (ρ), c) viscosity (μ), d) molecular complexity (σ), e) saturation pressure (Psat),
f) glide.
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- developing a systematic technique of fluid pre-screening in order to
enhance the efficacy of the pre-screening process and to ensure that it
is not bonded to case-related criteria that may not be accessible;

- reducing the uncertainty associated with the blend model and ORC
model in different applications, especially if the considered set of
fluids differ substantially from those of the case study presented in
this work; this would mean to provide mixing rules that ensure ac-
curacy in estimating mixture properties and adjusted correlations
and coefficients for assessing the heat transfer properties;

- performing experimental tests with binary and tertiary mixtures for
acquiring experimental data to validate the mixing rules and the
models, and for providing information on practical issues within
real-world settings.
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of organic Rankine working fluids via Bayesian optimization of a preference
learning ranking for a waste heat recovery system applied to a case study marine
engine. Ocean Eng Aug. 2024;306:118124. https://doi.org/10.1016/j.
oceaneng.2024.118124.

[24] Stigler SM. Thomas Bayes’s Bayesian Inference. J r Stat Soc Ser Gen 1982;145(2):
250–8. https://doi.org/10.2307/2981538.

[25] Bianchi M, Branchini L, Casari N, De Pascale A, Melino F, Ottaviano S, et al.
Experimental analysis of a micro-ORC driven by piston expander for low-grade
heat recovery. Appl Therm Eng Feb. 2019;148:1278–91. https://doi.org/10.1016/
j.applthermaleng.2018.12.019.

[26] V. Mariani, L. Pulga, G. M. Bianchi, S. Falfari, and C. Forte, ‘Machine Learning-
Based Identification Strategy of Fuel Surrogates for the CFD Simulation of Stratified

V. Mariani et al. Energy Conversion and Management: X 24 (2024) 100733 

18 

https://doi.org/10.1016/j.applthermaleng.2023.119980
https://doi.org/10.1007/s40974-019-00132-7
https://doi.org/10.1016/j.enconman.2017.05.078
https://doi.org/10.1016/j.rser.2017.02.020
https://doi.org/10.1016/j.energy.2020.117801
https://doi.org/10.1016/j.energy.2020.117801
https://doi.org/10.1016/j.energy.2014.07.007
https://doi.org/10.1155/2012/756023
https://doi.org/10.1155/2012/756023
https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1016/j.apenergy.2016.04.041
https://doi.org/10.1016/j.energy.2018.07.098
https://doi.org/10.1016/j.rser.2020.110179
https://doi.org/10.1016/j.rser.2020.110179
https://doi.org/10.1016/j.ecmx.2022.100245
https://doi.org/10.1016/j.apenergy.2017.06.031
https://doi.org/10.1016/j.apenergy.2017.06.031
https://doi.org/10.1016/j.enconman.2023.117072
https://doi.org/10.1016/j.enconman.2023.117072
https://doi.org/10.1016/j.applthermaleng.2019.04.114
https://doi.org/10.1016/j.ijrefrig.2021.01.003
https://doi.org/10.1016/j.oceaneng.2024.118124
https://doi.org/10.1016/j.oceaneng.2024.118124
https://doi.org/10.2307/2981538
https://doi.org/10.1016/j.applthermaleng.2018.12.019
https://doi.org/10.1016/j.applthermaleng.2018.12.019


Operations in Low Temperature Combustion Modes’, Energies, vol. 14, no. 15, Art.
no. 15, Jan. 2021, doi: 10.3390/en14154623.

[27] Bianchi M, Branchini L, De Pascale A, Melino F, Ottaviano S, Peretto A, et al.
Performance and total warming impact assessment of pure fluids and mixtures
replacing HFCs in micro-ORC energy systems. Appl Therm Eng Feb. 2022;203:
117888. https://doi.org/10.1016/j.applthermaleng.2021.117888.

[28] Mariani V, Ottaviano S, De Pascale A, Cazzoli G, Branchini L, Bianchi GM.
Guidelines and optimization criteria of a machine learning-based methodology for
mixture design in ORC systems. ESP 2023. https://doi.org/10.12795/
9788447227457_41.

[29] ‘High-Level Interface — CoolProp 6.4.3 documentation’. Accessed: Jul. 03, 2023.
[Online]. Available: http://www.coolprop.org/coolprop/HighLevelAPI.html.

[30] L. Grunberg and A. H. Nissan, ‘Mixture Law for Viscosity’, Nature, vol. 164, no.
4175, Art. no. 4175, Nov. 1949, doi: 10.1038/164799b0.

[31] Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state.
Chem Eng Sci Jun. 1972;27(6):1197–203. https://doi.org/10.1016/0009-2509
(72)80096-4.

[32] ’W-refrigerant’ Accessed: Aug. 24, 2023. [Online]. Available: https://w-
refrigerant.com/en/technology-en/tables/.

[33] Ottaviano S, Poletto C, Ancona MA, Melino F. Experimental investigation on micro-
ORC system operating with partial evaporation and two–phase expansion. Energy
Convers Manag Dec. 2022;274:116415. https://doi.org/10.1016/j.
enconman.2022.116415.

[34] J. P. Holman, Heat Transfer. in McGraw-Hill series in mechanical engineering.
McGraw-Hill, 2002. [Online]. Available: https://books.google.it/books?
id=M3wpAQAAMAAJ.

[35] W. Kays, M. Crawford, and B. Weigand, ‘CONVECTIVE HEAT AND MASS
TRANSFER’, Convect. Heat Mass Transf..

[36] Giuffrida A. Modelling the performance of a scroll expander for small organic
Rankine cycles when changing the working fluid. Appl Therm Eng Sep. 2014;70(1):
1040–9. https://doi.org/10.1016/j.applthermaleng.2014.06.004.

[37] Bianchi M, Branchini L, De Pascale A, Melino F, Ottaviano S, Peretto A, et al.
Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston
expander: Performance prediction and design optimization. Energy Sep. 2020;206:
118174. https://doi.org/10.1016/j.energy.2020.118174.

[38] Y. Glavatskaya, P. Podevin, V. Lemort, O. Shonda, and G. Descombes,
‘Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a
Passenger Car Application’, Energies, vol. 5, no. 6, Art. no. 6, Jun. 2012, doi:
10.3390/en5061751.

[39] Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. Taking the Human Out of
the Loop: A Review of Bayesian Optimization. Proc IEEE Jan. 2016;104(1):148–75.
https://doi.org/10.1109/JPROC.2015.2494218.

[40] Bayesian Optimization. (Dec. 13, 2023). Python. bayesian-optimization. Accessed:
Dec. 13, 2023. [Online]. Available: https://github.com/bayesian-optimization/
BayesianOptimization.

[41] S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh, ‘High Dimensional Bayesian
Optimization with Elastic Gaussian Process’, in Proceedings of the 34th International
Conference on Machine Learning, PMLR, Jul. 2017, pp. 2883–2891. Accessed: Jun.
03, 2024. [Online]. Available: https://proceedings.mlr.press/v70/rana17a.html.

[42] ‘AR4 Climate Change 2007: Synthesis Report — IPCC’. Accessed: Mar. 14, 2024.
[Online]. Available: https://www.ipcc.ch/report/ar4/syr/.

[43] Radley-Gardner O, Beale H, Zimmermann R. Eds., Fundamental Texts On European
Private Law. Hart Publishing 2016. https://doi.org/10.5040/9781782258674.

[44] ‘tf.keras.Regularizer | TensorFlow v2.16.1’, TensorFlow. Accessed: Jun. 03, 2024.
[Online]. Available: https://www.tensorflow.org/api_docs/python/tf/keras/
Regularizer.

[45] Bahrami M, Pourfayaz F, Kasaeian A. Low global warming potential (GWP)
working fluids (WFs) for Organic Rankine Cycle (ORC) applications. Energy Rep
Nov. 2022;8:2976–88. https://doi.org/10.1016/j.egyr.2022.01.222.

[46] Quoilin S, Broek MVD, Declaye S, Dewallef P, Lemort V. Techno-economic survey
of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev Jun. 2013;22:
168–86. https://doi.org/10.1016/j.rser.2013.01.028.

[47] Llopis R, Calleja-Anta D, Sánchez D, Nebot-Andrés L, Catalán-Gil J, Cabello R. R-
454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A:
Experimental evaluation and optimization. Int J Refrig Oct. 2019;106:133–43.
https://doi.org/10.1016/j.ijrefrig.2019.06.013.

[48] ‘ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 34-2019’.
[49] Bell IH, Domanski PA, McLinden MO, Linteris GT. The hunt for nonflammable

refrigerant blends to replace R-134a. Int J Refrig Aug. 2019;104:484–95. https://
doi.org/10.1016/j.ijrefrig.2019.05.035.

[50] Linteris G, Babushok V. Laminar burning velocity predictions for C1 and C2
hydrofluorocarbon refrigerants with air. J Fluor Chem Feb. 2020;230:109324.
https://doi.org/10.1016/j.jfluchem.2019.05.002.

[51] Needham CD, Westmoreland PR. Combustion and flammability chemistry for the
refrigerant HFO-1234yf (2,3,3,3-tetrafluroropropene). Combust Flame Oct. 2017;
184:176–85. https://doi.org/10.1016/j.combustflame.2017.06.004.

[52] Babushok VI, Linteris GT. Kinetic mechanism of 2,3,3,3-tetrafluoropropene (HFO-
1234yf) combustion. J Fluor Chem Sep. 2017;201:15–8. https://doi.org/10.1016/
j.jfluchem.2017.07.005.

[53] ‘pocketORC | Martin White’. Accessed: Sep. 23, 2024. [Online]. Available: https://
martintwhite.github.io/pocketORC/.

[54] Dorao CA, Fernandino M. On the heat transfer deterioration during condensation
of binary mixtures. Appl Phys Lett May 2019;114(17):171902. https://doi.org/
10.1063/1.5086738.

[55] Krempus D, Bahamonde S, van der Stelt TP, Klink W, Colonna P, De Servi CM. On
mixtures as working fluids of air-cooled ORC bottoming power plants of gas
turbines. Appl Therm Eng Jan. 2024;236:121730. https://doi.org/10.1016/j.
applthermaleng.2023.121730.

V. Mariani et al. Energy Conversion and Management: X 24 (2024) 100733 

19 

https://doi.org/10.1016/j.applthermaleng.2021.117888
https://doi.org/10.12795/9788447227457_41
https://doi.org/10.12795/9788447227457_41
https://doi.org/10.1016/0009-2509(72)80096-4
https://doi.org/10.1016/0009-2509(72)80096-4
https://doi.org/10.1016/j.enconman.2022.116415
https://doi.org/10.1016/j.enconman.2022.116415
https://doi.org/10.1016/j.applthermaleng.2014.06.004
https://doi.org/10.1016/j.energy.2020.118174
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.5040/9781782258674
https://doi.org/10.1016/j.egyr.2022.01.222
https://doi.org/10.1016/j.rser.2013.01.028
https://doi.org/10.1016/j.ijrefrig.2019.06.013
https://doi.org/10.1016/j.ijrefrig.2019.05.035
https://doi.org/10.1016/j.ijrefrig.2019.05.035
https://doi.org/10.1016/j.jfluchem.2019.05.002
https://doi.org/10.1016/j.combustflame.2017.06.004
https://doi.org/10.1016/j.jfluchem.2017.07.005
https://doi.org/10.1016/j.jfluchem.2017.07.005
https://doi.org/10.1063/1.5086738
https://doi.org/10.1063/1.5086738
https://doi.org/10.1016/j.applthermaleng.2023.121730
https://doi.org/10.1016/j.applthermaleng.2023.121730

	Optimal mixture design for organic Rankine cycle using machine learning algorithm
	1 Introduction
	1.1 Aim and contribution

	2 Materials and methods
	2.1 Blend model
	2.2 ORC model
	2.3 Optimizer
	2.4 Algorithm set-up and convergence

	3 Case study results
	3.1 Algorithm performance
	3.2 Mixture analysis
	3.1.1 High-scoring mixtures (F80%)
	3.1.2 Individual optimal mixtures

	3.3 Environmental and safety performance
	3.4 Off-design performance

	4 Applications and limitations of the proposed method
	5 Conclusion
	Declaration of Generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix Acknowledgements
	References


