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Abstract
We introduce the notion of induced birational transfor-
mations of irreducible holomorphic symplectic sixfolds
of the sporadic deformation type discovered by O’Grady.
We give a criterion to determinewhen amanifold ofOG6

type is birational to K̃𝑣(A, 𝜃), a moduli space of sheaves
on an abelian surface. Then we determine when a bira-
tional transformation of K̃𝑣(A, 𝜃) is induced by an auto-
morphism ofA. Referring to theMongardi–Rapagnetta–
Saccá birationalmodel ofmanifolds ofOG6 type, we give
a result to determinewhen a birational transformation is
induced at the quotient. We give an application of these
criteria in the non-symplectic case.
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1 INTRODUCTION

This paper deals with induced birational transformations of irreducible holomorphic symplectic
sixfolds of O’Grady’s deformation type. Throughout the paper wewill refer to sixfolds of O’Grady’s
type asmanifolds ofOG6 type. Irreducible holomorphic symplecticmanifolds arise from symplec-
tic surfaces, and in many cases are constructed as moduli spaces of sheaves on them. When we
consider automorphisms, or more in general, birational transformations of irreducible holomor-
phic symplectic manifolds are then natural to ask whether they are induced by an automorphism
of the K3 surface involved in the construction of the moduli space.
Hilbert schemes of 𝑛 points on a K3 surface [4] allow Beauville [3] to extend several classi-

cal results of Nikulin and Boissiere [5] to introduce the notion of natural automorphism simply
by taking a non-trivial automorphism of the K3 and considering the induced action on its Hilbert
scheme. A generalization of the notion of natural automorphisms for moduli spaces of sheaves on
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symplectic surfaces appeared for the first time in a work of Ohashi–Wandel [26], which is inspired
by a construction due to Oguiso–Schröer [25]. This notion was adapted to more general cases by
Mongardi–Wandel [18], using recent developments in stability condition theory due to Bridge-
land [6], Bayer-Macrì [1],[2] and Yoshioka [33]. Moreover, in [18], Mongardi–Wandel conjecture
the possibility to extend the notion of induced automorphisms also in the case of manifolds of
O’Grady’s deformation type.
In this paper we give a notion of induced automorphisms and, more in general, of induced bira-

tional transformations of irreducible holomorphic symplectic manifolds ofOG6 type, considering
two birational models of them. The first birational model is the resolution of the Albanese fibre of
amoduli space of sheaves on an abelian surface. The secondmodel due toMongardi–Rapagnetta–
Saccà is the resolution of the quotient of the Hilbert scheme of three points on a K3 surface by
a birationl symplectic involution. We introduce the notions of induced birational transformation
and birational transformation induced at the quotient. The first notion refers to the first birational
model and itmeans essentially that a birational transformation of themanifold ofOG6 type comes
from an automorphism of the abelian surface. In the second case the notion refers to the second
birational model, and it means that a birational transformation of the manifold of OG6 type can
be lifted to a birational transformation of the Hilbert scheme involved in the construction.

1.1 Contents of the paper

In Section 2 we introduce basic tools of lattice theory for irreducible holomorphic symplectic
manifolds, and we recall the construction of O’Grady’s sixfolds, due to the contribution of many
authors: O’Grady [24], Kaledin–Lehn–Sorger [13], Lehn–Sorger [14] and Perego–Rapagnetta [27].
O’Grady [24] introduces the sporadic example in dimension six as the symplectic resolution of the
fibre of an isotrivial fibration defined on a moduli space of sheaves on an abelian surface A, with
respect to a non-primitiveMukai vector 𝑣 and a 𝑣-generic polarization 𝜃, and denotes this fibre by
K̃𝑣(A, 𝜃). Later Perego–Rapagnetta [27] generalize this construction. They introduce the notion of
O’Grady, M. Lehn and Sorger (OLS)-triple and they find that also with more general assumptions
on 𝑣, A and 𝜃, the O’Grady’s construction holds true and the manifold K̃𝑣(A, 𝜃) is deformation
equivalent to the O’Grady’s six-dimensional example.
In Section 3 we give a lattice-theoretic criterion to determine when a manifold of OG6 type is

birational to K̃𝑣(A, 𝜃). It is a general fact that the second integral cohomology group of irreducible
holomorphic symplectic manifolds is endowed with a lattice structure. We introduce the notion
of numerical moduli space (see Definition 3.2) for a manifold 𝑋 of OG6 type, which concerns in
some conditions on the second integral cohomology lattice of𝑋. Amarked pair (𝑋, 𝜂) ofOG6 type
is a pair where 𝑋 is a manifold of OG6 type, and 𝜂∶ H2(𝑋, ℤ) → 𝐋 is a fixed isometry of lattices.
More precisely, we give the following characterization.

Theorem 1.1. If (𝑋, 𝜂) is a marked pair of OG6 type, then there exists an abelian surface A, a
non-primitive Mukai vector 𝑣 = 2𝑤 and a 𝑣-generic polarization 𝜃 on A such that 𝑋 is birational to
K̃𝑣(A, 𝜃) if and only if 𝑋 is a numerical moduli space.

See Section 3.1 for the proof. Then we give the definition of numerically induced group of bira-
tional transformations (see Definition 3.4), and we prove the following theorem to determine
when a birational transformation of a manifold of OG6 type is induced by an automorphism of
the abelian surface. We denote by Bir(𝑋) the group of birational transformations of 𝑋.
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Theorem 1.2. Let (𝑋, 𝜂) be a smoothmarked pair ofOG6 type. LetG ⊂ Bir(𝑋) be a finite subgroup.
IfG is a numerically induced group of birational transformations, then there exists an abelian surface
AwithG ⊂ Aut(A) × A∨[2], aG-invariant Mukai vector 𝑣 and a 𝑣-generic polarization 𝜃 onA such
that 𝑋 is birational to K̃𝑣(A, 𝜃) and G ⊂ Bir(𝑋) is an induced group of birational transformations.

See Section 3.2 for the proof.
Mongardi–Rapagnetta–Saccà [16] prove that there exist manifolds of OG6 type that admit a

birational model obtained as a quotient of a manifold of K3[3] type by a birational symplectic
involution. In Section 4 we recall the construction of Mongardi–Rapagnetta–Saccà and we give
a lattice-theoretic criterion to determine when a birational transformation of a manifold of OG6

type lifts to a birational transformation of the manifold of K3[3] type involved in the construction.
In such a case we call the birational transformation induced at the quotient (see Definition 4.2).

Theorem 1.3. Let 𝑋 be a manifold of OG6 type which is a numerical moduli space and let
𝜑 ∈ Bir(𝑋) be a birational transformation of 𝑋. If there exists a class 𝐸 ∈ NS(𝑋) of square −2 and
divisibility 2which is fixed by the induced action of𝜑 in cohomology, then𝜑 is induced at the quotient.

See Section 4.2 for the proof. In Section 4.3 we prove Theorem 4.7 which states a sufficient
condition to extend the birational transformation to an automorphism of the manifold of K3[3]
type. The condition that we state is geometric and it is related to the action of the induced action
on the singular locus of the 2∶ 1 cover of the singular moduli space K𝑣(A, 𝜃).
Finally in Section 5 we apply our techniques to non-symplectic automorphisms (automor-

phisms that do not preserve the symplectic form) of manifolds ofOG6 type. Using a classification
of non-symplectic automorphisms of prime order of manifolds of OG6 type contained in [10], we
prove the following theorem.

Theorem 1.4. Let (𝑋, 𝜂) be a marked pair ofOG6 type. Assume that𝑋 is a numerical moduli space
and let 𝜑 ∈ Aut(𝑋) be a non-symplectic automorphism of 𝑋 of prime order. Then 𝜑 is induced and
induced at the quotient in cases that are listed in Table 1.

A complete proof of it is given in Section 5.1. In Proposition 5.1 we show that if a birational trans-
formation is induced, then it is induced at the quotient, and in Table 1 we denote by ♣ the involu-
tions that are induced at the quotient but not induced. By Corollary 3.10 non-symplectic automor-
phisms of prime order that can be induced at the quotient but not induced are among involutions.

2 PRELIMINARIES

In this section we fix the notation and the conventions that we will use throughout the paper.
Moreover we recall basic results for irreducible holomorphic symplectic manifolds of OG6 type,
and we present them in a more suited form to the purposes of this work.
In Section 2.1 we recall some definitions and results of lattice theory for irreducible holomor-

phic symplectic manifolds and, in particular, formanifolds ofOG6 type, andwe collect some basic
results about primitive embeddings of lattices. In Section 2.2 we summarize the original construc-
tion of O’Grady’s sixfolds [24] and the more general one due to Perego–Rapagnetta [27], which
construct manifolds of OG6 type as moduli spaces of sheaves on abelian surfaces. Moreover we
recall how it is possible to endow the second integral cohomology of these moduli spaces with a
pure weight-two Hodge structure.
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TABLE 1 Induced and induced at the quotient groups of non-symplectic automorphisms of prime order on
manifolds of OG6 type

No. |𝐆| 𝐋𝑮 𝐋𝑮 Induced Induced at the quotient
1 2 𝐔⊕2 ⊕ [−2]⊕3 [2] No No
2 2 𝐔⊕ [2] ⊕ [−2]⊕3 [2] ⊕ [−2] No No
3 2 𝐔⊕2 ⊕ [−2]⊕2 𝐔 No No
4 2 𝐔⊕2 ⊕ [−2]⊕2 [2] ⊕ [−2] No No
5 2 𝐔⊕2 ⊕ [−2]⊕2 𝐔(2) No No
6 2 [2]⊕2 ⊕ [−2]⊕3 [2] ⊕ [−2]⊕2 No No
7 2 𝐔⊕ [−2]⊕2 ⊕ [2] 𝐔 ⊕ [−2] No No
8 2 𝐔⊕ [−2]⊕2 ⊕ [2] [2] ⊕ [−2]⊕2 No No
9 2 𝐔⊕2 ⊕ [−2] [−2]⊕2 ⊕ [2] No Yes ♣

10 2 𝐔⊕2 ⊕ [−2] 𝐔⊕ [−2] No Yes ♣

11 2 [2]⊕2 ⊕ [−2]⊕2 𝐔⊕ [−2]⊕2 No No
12 2 [2] ⊕ [−2] 𝐔⊕ [2] ⊕ [−2]⊕3 Yes Yes
13 2 𝐔(2)⊕2 𝐔(2) ⊕ [−2]⊕2 No No
14 2 𝐔⊕ [2] ⊕ [−2] [2] ⊕ [−2]⊕3 Yes Yes
15 2 𝐔⊕ [2] ⊕ [−2] 𝐔⊕ [−2]⊕2 Yes Yes
16 2 𝐔⊕𝐔(2) 𝐔(2) ⊕ [−2]⊕2 Yes Yes
17 2 𝐔⊕𝐔(2) 𝐔⊕ [−2]⊕2 Yes Yes
18 2 𝐔⊕2 𝐔⊕ [−2]⊕2 Yes Yes
19 2 [2]⊕2 ⊕ [−2] [−2]⊕4 ⊕ [2] No Yes ♣

20 2 [2]⊕2 ⊕ [−2] 𝐔⊕ [−2]⊕3 No Yes ♣

21 2 𝐔⊕ [2] 𝐔⊕ [−2]⊕3 No Yes ♣

22 2 [2]⊕2 𝐔⊕ [−2]⊕4 Yes Yes
23 2 [2]⊕2 𝐔 ⊕𝐃4(−1) No No
24 2 [2]⊕2 𝐔(2) ⊕ 𝐃4(−1) No No
1 3 𝐔⊕2 ⊕ 𝐀2(−1) [−2] ⊕ [6] No No
2 3 𝐀2 𝐔⊕𝐀2(−1) ⊕ [−2]⊕2 Yes Yes
1 5 𝐔⊕𝐇5 [−2] ⊕ [−10] ⊕ 𝐔 Yes Yes
1 7 𝐔⊕2 ⊕ 𝐊7 [−2] ⊕ [14] No No

2.1 Lattice theory for irreducible holomorphic symplectic manifolds

2.1.1 Lattices

A lattice 𝐿 is a free ℤ-module of finite rank endowed with a non-degenerate symmetric bilinear
form

𝐿 × 𝐿 → ℤ,

(𝑒, 𝑓) ↦ 𝑒 ⋅ 𝑓.
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We denote 𝑒 ⋅ 𝑒 by 𝑒2. The lattice 𝐿 is even if 𝑒2 ∈ 2ℤ. Every lattice has a determinant, a signature
and a rank denoted by det(𝐿), sign(𝐿) and rank(𝐿), respectively. The dual of a lattice 𝐿 is 𝐿∨ =

Homℤ(𝐿, ℤ), which admits the following equivalent description:

𝐿∨ = {𝑥 ∈ 𝐿 ⊗ ℚ | 𝑥 ⋅ 𝑦 ∈ ℤ for each 𝑦 ∈ 𝐿}.

To every lattice 𝐿 we can associate a finite group 𝐿♯ = 𝐿∨∕𝐿, which is called discriminant group of
𝐿. The order of 𝐿♯ is |det(𝐿)|. The length of the discriminant group 𝐿♯ is the minimal number of
generators of it and it is denoted by 𝑙(𝐿♯). A lattice 𝐿 is said to be unimodular if 𝐿♯ = {id} and p-
elementary if 𝐿♯ = (ℤ∕𝑝ℤ)⊕𝑎 for a prime number 𝑝 and 𝑎 ∈ ℤ⩾0. In this case 𝑙(𝐿♯) = 𝑎. To avoid
any ambiguity for 𝑎 = 0 we include here the case of unimodular lattices that are considered 𝑝-
elementary for any 𝑝.
The pairing on an even lattice 𝐿 induces a pairing on 𝐿♯ with values in ℚ∕ℤ and the associated

ℚ∕2ℤ-valued quadratic form is

𝑞𝐿 ∶ 𝐿
♯ → ℚ∕2ℤ,

𝑞𝐿(𝑒 + 𝐿) = (𝑒, 𝑒) mod 2ℤ,

which is called discriminant form of L. There exists a natural homomorphism O(𝐿) → O(𝐿♯). We
denote by 𝐺♯ the image in O(𝐿♯) of a subgroup of isometries 𝐺 ⊂ O(𝐿). The divisibility of a vector
𝑣 ∈ 𝐿 is defined as (𝑣, 𝐿) = gcd{𝑣 ⋅ 𝑣′ | 𝑣′ ∈ 𝐿} and 𝑣∕(𝑣, 𝐿) is an element of 𝐿∨, hence of 𝐿♯. In
this paper we will refer to the unique even unimodular indefinite lattice of rank 2 by𝐔. Moreover
𝐀𝑛, 𝐃𝑛 and 𝐄𝑛 denote the negative definite ADE lattices. The notation [𝑚] with 𝑚 ∈ ℤ refers to
a lattice of rank 1 generated by a vector of square𝑚. If 𝐿 is a lattice, we denote by 𝐿(𝑛) the lattice
with the same structure as ℤ-module, but with quadratic form multiplied by 𝑛.
Two lattices have the same genus if they have the same signature and isomorphic quadratic

forms. Due to Nikulin’s criteria [22, Theorem 3.6.2], [22, Theorem 1.14.2] for indefinite lattices and
due to the Smith–Minkowski–Siegel formula for definite lattices [7], we know that the lattices that
appear in this paper are unique in their genus.
If 𝐿 is a lattice which is endowed with a pure weight-two Hodge structure and if we denote

𝐿 ⊗ℤ ℂ by 𝐿ℂ, then

𝐿ℂ = 𝐿2,0
ℂ

⊕ 𝐿1,1
ℂ

⊕ 𝐿0,2
ℂ
.

Moreover it holds that 𝐿2,0
ℂ

= 𝐿0,2
ℂ
, 𝐿1,1

ℂ
= 𝐿1,1

ℂ
and dimℂ(𝐿

2,0
ℂ
) = 1. In this paper we use the nota-

tion

𝐿1,1 = 𝐿1,1
ℂ

∩ 𝐿,

to refer to the integral (1, 1)-part of the lattice 𝐿.

2.1.2 Primitive embeddings and isometries

An embedding of lattices𝑀 ⊂ 𝐿 is called primitive if the group 𝐿∕𝑀 is torsion-free. In this setting
we denote the embedding by𝑀 ↪ 𝐿 and we denote by𝑁 = 𝑀⟂ the orthogonal complement of𝑀
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in 𝐿. To compute the possible primitive embeddings of𝑀 in 𝐿, we refer to [22, Proposition 1.5.1].
The definitions and the notations that we recall here refer to [11, Section 2.2].
If there exists a primitive embedding of even lattices𝑀 ↪ 𝐿, then there exists a subgroup, called

a gluing subgroup 𝐻 ⊂ 𝑀♯ and a gluing isometry 𝛾∶ 𝐻 → 𝐻′ ⊂ 𝑁(−1)♯. If Γ denotes the gluing
graph of 𝛾 in𝑀♯ ⊕𝑁♯, the following identification between quadratic forms holds:

𝐿♯ = Γ⟂∕Γ,

where the quadratic form on the right-hand side is the quadratic form induced by𝑀♯ ⊕𝑁♯. We
recall that two primitive embeddings𝑀 ↪ 𝐿 are equivalent under the action of O(𝐿) if and only
if the corresponding groups 𝐻 and 𝐻′ are conjugate under the action of O(𝑀) and O(𝑁(−1)) =
O(𝑁) in a way that commutes with the gluing isometries.
In an equivalent way, assuming that 𝐿 is unique in its genus, we can give a primitive embed-

ding 𝑀 ↪ 𝐿 giving a so-called embedding subgroup 𝐾 ⊂ 𝐿♯, and an isometry 𝜉 ∶ 𝐾 → 𝐾′ ⊂ 𝑀♯.
We denote by Σ the graph of the isometry 𝜉 in 𝐿♯ ⊕𝑀(−1)♯. In this notation, the following identi-
fication between finite quadratic forms holds (similarly to what it is done for the gluing subgroup,
the quadratic form on the right-hand side is the one induced by 𝐿♯ ⊕𝑀(−1)♯):

𝑁♯ = Σ⟂∕Σ.

Moreover if 𝐻 is the gluing subgroup and if 𝐾 is the embedding subgroup, the orders of these
subgroups are called gluing index and embedding index, respectively. These equalities hold:

ℎ2 ⋅ | det(𝐿)| = | det(𝑀) ⋅ det(𝑁)|,
𝑘2 ⋅ | det(𝑁)| = | det(𝐿) ⋅ det(𝑀)|. (1)

In this paper, given a primitive embedding 𝑀 ↪ 𝐿 and given a vector 𝑣 ∈ 𝑀, we will need to
compute the divisibility (𝑣, 𝐿) of the vector 𝑣 in the whole lattice 𝐿.

Remark 2.1. If𝑀 ↪ 𝐿 is a primitive embedding and 𝑣 ∈ 𝑀, then it holds (𝑣, 𝐿) | (𝑣,𝑀).

We recall here two results that will be useful in Section 5.

Proposition 2.2 [11, Lemma 2.1]. If a primitive embedding of two lattices𝑀 ↪ 𝐿 is defined by the
gluing subgroup𝐻 ⊂ 𝑀♯, then it holds

(𝑣, 𝐿) = max{ 𝑑 ∈ ℕ | (𝑣∕𝑑) ∈ 𝐻⟂}

for every 𝑣 ∈ 𝑀.

Proposition 2.3 [11, Corollary 2.2]. If𝑀 ↪ 𝐿 is a primitive embedding and if | det(𝑀⟂)| = | det(𝐿) ⋅
det(𝑀)|, then (𝑣, 𝐿) = 1 for every 𝑣 ∈ 𝑀.

Proposition 2.4. If𝑀 ↪ 𝐿 is a primitive embedding and 𝐿 is a unimodular lattice and if we denote
by𝑁 = 𝑀⟂ the orthogonal complement of𝑀 in 𝐿, then𝑀♯ = 𝑁♯ as groups.
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Proof. By (1) it holds that |𝐻|2 ⋅ |𝐿♯| = |𝑀♯| ⋅ |𝑁♯|. Since 𝐿 is unimodular, then
|𝐻|2 = |𝑀♯| ⋅ |𝑁♯|. (2)

There exists a gluing isometry 𝛾∶ 𝐻 → 𝐻′ where 𝐻 ⊆ 𝑀♯ and 𝐻′ ⊆ 𝑁(−1)♯ hence |𝐻| = |𝐻′|
and, in particular, |𝐻| ⩽ |𝑀♯| and |𝐻′| = |𝐻| ⩽ |𝑁♯|. By (2) it holds that |𝐻| = |𝑀♯| = |𝑁♯| and
there exists an isometry of finite quadratic forms 𝛾∶ 𝑀♯ → 𝑁(−1)♯ hence, in particular,𝑀♯ = 𝑁♯

as groups. □

Whenever we have a lattice 𝐿, we can consider a subgroup 𝐺 ⊂ O(𝐿) of isometries of 𝐿. We
denote by 𝐿𝐺 the invariant lattice and its orthogonal complement 𝐿𝐺 = (𝐿𝐺)⟂ ⊂ 𝐿 is called coin-
variant lattice.

2.1.3 The lattice structure of irreducible holomorphic symplectic manifolds

If 𝑋 is an irreducible holomorphic symplectic manifold, then the second integral cohomology is
a torsion-free ℤ-module of finite rank. Moreover there exists an integral symmetric bilinear form
on H2(𝑋, ℤ) that endow the latter with a lattice structure. More precisely it holds the following
theorem due to Beauville [4] and Fujiki [9].

Theorem2.5. Let𝑋 be a 2𝑛-dimensional irreducible holomorphic symplecticmanifold. There exists
a unique bilinear integral symmetric form (−,−)𝑋 defined on H2(𝑋, ℤ), the Beauville–Bogomolov–
Fujiki form, and a unique positive constant 𝑐𝑋 , the Fujiki constant, such that for any 𝛼 ∈ H2(𝑋, ℤ),
the following equality holds:

∫𝑋 𝛼
2𝑛 = 𝑐𝑋(𝛼, 𝛼)

𝑛
𝑋,

and for 0 ≠ 𝜔 ∈ H0(𝑋,Ω2
𝑋
)

(𝜔 + 𝜔, 𝜔 + 𝜔) > 0.

Remark 2.6. The Beauville–Bogomolow–Fujiki form (−,−)𝑋 and the Fujiki constant 𝑐𝑋 are invari-
ant up to deformation.

If𝑋 is an irreducible holomorphic symplectic manifold ofOG6 type, we denote by 𝐋 the isome-
try class ofH2(𝑋, ℤ), which depends only on the deformation type of𝑋. Rapagnetta [29, Corollary
3.5.13] proves that

𝐋 = 𝐔⊕3 ⊕ [−2]⊕2.

The second integral cohomology lattice H2(𝑋, ℤ) of an irreducible holomorphic symplectic
manifold 𝑋 is endowed with a pure weight-two Hodge structure. According to Section 2.1.1, if
(𝑋, 𝜂) is a marked pair where 𝑋 is an irreducible holomorphic symplectic manifold of OG6 type,
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then

𝐋1,1 = 𝐋1,1
ℂ

∩ 𝐋.

The integral lattice 𝐋1,1 is the Néron–Severi lattice of the marked pair (𝑋, 𝜂) of OG6 type.

2.2 O’Grady’s sixfolds

So far three deformation families of irreducible holomorphic symplectic manifolds in dimension
6 are known: manifolds of K3[3] type, manifolds of Kum𝑛(A) type andmanifolds ofOG6 type. The
latter class was discovered by O’Grady [24] as a resolution of singularities of a moduli space of
sheaves on an abelian surface A.

2.2.1 The Mukai lattice

If A is an abelian surface, we denote by H̃(A, ℤ) the even integral cohomology of A that is,

H̃(A, ℤ) = H2∗(A, ℤ) = H0(A, ℤ) ⊕ H2(A, ℤ) ⊕ H4(A, ℤ).

The ℤ-module H̃(A, ℤ) has a lattice structure due to a pairing defined on it, the Mukai’s pairing
given by:

(𝑟1, 𝑙1, 𝑠1)(𝑟2, 𝑙2, 𝑠2) = 𝑙1𝑙2 − 𝑟1𝑠2 − 𝑟2𝑠1,

where 𝑟𝑖 ∈ H0, 𝑙𝑖 ∈ H2 and 𝑠𝑖 ∈ H4. This lattice is referred to as the Mukai lattice of A and it is
isometric to 𝐔⊕4. An element 𝑣 ∈ H̃(A, ℤ) will be written as (𝑣0, 𝑣1, 𝑣2), and if 𝑣0 ⩾ 0 and 𝑣1 ∈
NS(A), then 𝑣 is calledMukai vector.
Moreover H̃(A, ℤ)has a pureweight-twoHodge structure such that the (2, 0)-part and the (0, 2)-

part of H̃(A, ℂ) areH2,0(A) andH0,2(A), respectively, and the (1, 1)-part concerns of the following
contributes:

H̃1,1(A) = H0(A, ℂ) ⊕ H1,1(A) ⊕ H4(A, ℂ).

If 𝑣 ∈ H̃(A, ℤ) is a Mukai vector, then the sublattice with respect to the Mukai pairing

𝑣⟂ = {𝛼 ∈ H̃(A, ℤ) | (𝛼, 𝑣) = 0} ⊆ H̃(A, ℤ) (3)

inherits a pure weight-twoHodge structure from the one on H̃(A, ℤ). More precisely it holds that

(𝑣⟂)0,2 = (𝑣⟂ ⊗ ℂ) ∩ H̃0,2(A),

(𝑣⟂)2,0 = (𝑣⟂ ⊗ ℂ) ∩ H̃2,0(A),

(𝑣⟂)1,1 = (𝑣⟂ ⊗ ℂ) ∩ H̃1,1(A).

(4)
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If F is a coherent sheaf on A, itsMukai vector is defined as follows:

𝑣(F ) = Ch(F )
√
𝑡𝑑(𝐴) = (rank(F ), 𝑐1(F ), 𝑐ℎ2(F )) ∈ H̃(A, ℤ).

By construction for any coherent sheaf F its Mukai vector is of (1, 1)-type and it satisfies one of
the following relations:

∙ 𝑟 > 0,
∙ 𝑟 = 0 and 𝑙 ≠ 0 with 𝑙 effective,
∙ 𝑟 = 𝑙 = 0, and 𝑠 > 0.

By [19, Definition 2.27] we have the following definition.

Definition 2.7. A vector 𝑣 ∈ H̃(A, ℤ), 𝑣 ≠ 0 satisfying 𝑣2 ⩾ 2 and the conditions above is called
a positive Mukai vector.

2.2.2 Moduli spaces of sheaves of OG6 type

Let 𝜃 be a 𝑣-generic polarization and 𝑣 a Mukai vector on A. We write 𝑀𝑣(A, 𝜃) (respectively,
𝑀𝑠

𝑣(A, 𝜃)) for the moduli space of 𝜃-semistable (respectively, 𝜃-stable) sheaves on the abelian
surface A, with Mukai vector 𝑣. We consider a Mukai vector 𝑣 = 𝑚𝑤 where 𝑚 ∈ ℕ and 𝑤 is a
primitive Mukai vector on A. It is well known that if 𝑀𝑠

𝑣(A, 𝜃) ≠ ∅, then 𝑀𝑠
𝑣(A, 𝜃) is smooth of

dimension 𝑣2 + 2 and carries a symplectic form (see Mukai [20] for more details). Since we are
taking into consideration a moduli space on an abelian surface, a further construction is neces-
sary: choose F0 ∈ 𝑀𝑣(A, 𝜃), and define the following map [31]:

𝑎𝑣 ∶ 𝑀𝑣(A, 𝜃)⟶ A× A∨ (5)

𝑎𝑣(F ) ∶= (𝑑𝑒𝑡(𝑝A∨!((F −F0) ⊗ (P − OA×A∨)), 𝑑𝑒𝑡(F ) ⊗ det(F0)
−1),

where 𝑝A∨ ∶ A × A∨ ⟶ A∨ is the projection and P is the Poincaré bundle on 𝐴 × 𝐴∨.
We define

K𝑣(A, 𝜃) = 𝑎−1𝑣 (0A,OA),

where 0A is the zero of A. We recall that the following crucial result in the case 𝑣 is a primitive
Mukai vector:

Theorem 2.8 [32, Theorem 0.2]. Let A be an abelian surface and let 𝑣 be a primitive Mukai vec-
tor, and let 𝜃 be a 𝑣-generic polarization. Then𝑀𝑣(A, 𝜃) = 𝑀𝑠

𝑣(A, 𝜃). If 𝑣
2 ⩾ 6, then K𝑣(A, 𝜃) is an

irreducible holomorphic symplectic manifold of dimension 2𝑛 = 𝑣2 − 2, which is deformation equiv-
alent to 𝐾𝑢𝑚𝑛(A), the generalized Kummer variety of A, and there is a Hodge isometry between 𝑣⟂
(see (3)) andH2(K𝑣(A, 𝜃), ℤ).

If the Mukai vector 𝑣 is not primitive, then𝑀𝑣(A, 𝜃) can be singular. O’Grady started from this
consideration to find a new deformation class of irreducible holomorphic symplectic manifolds.
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It is natural to ask if there is a symplectic resolution of singularities 𝜋𝑣 ∶ 𝑀𝑣(A, 𝜃) → 𝑀𝑣(A, 𝜃),
such that on𝑀𝑣(A, 𝜃) there is a symplectic form extending the one on𝑀𝑠

𝑣(A, 𝜃). The first result
appearing in literature is the one of O’Grady. For more details, see [24].

Theorem 2.9 [24, Theorem 1.4]. LetA be an abelian surface, 𝑣 = (2, 0, −2) and 𝜃 a 𝑣-generic polar-
ization. Then K6 = K𝑣(A, 𝜃) admits a symplectic resolution 𝜋 ∶ K̃6 → K6 and K̃6 is an irreducible
symplectic variety of dimension 6 and second Betti number 8. Manifolds deformation equivalent to
K̃6 are called manifolds of OG6 type.

Moreover what is done by O’Grady for a specific Mukai vector was generalized by Perego–
Rapagnetta for a more general class of surfaces, Mukai vectors and polarizations. More precisely,
Perego–Rapagnetta introduce the OLS-triple, after the work of O’Grady[23][24], and Lehn–Sorger
[14](see [27, Definition 1.5] for the definition of OLS-triple), to find the more general setting of
Mukai vectors and polarizations that admit an analogue result of the one of O’Grady. If (A, 𝑣, 𝜃) is
an OLS-triple, then𝑀𝑣(A, 𝜃) admits a symplectic resolution �̃�𝑣(A, 𝜃) obtained as the blow-up of
𝑀𝑣(A, 𝜃) along the singular locus Σ𝑣 = 𝑀𝑣(A, 𝜃) ⧵ 𝑀

𝑠
𝑣(A, 𝜃) with reduced structure. Moreover

K̃𝑣(A, 𝜃) = K̃𝑣(A, 𝜃) = 𝜋−1𝑣 (K𝑣(A, 𝜃)),

and we still write 𝜋𝑣 ∶ K̃𝑣(A, 𝜃) → K𝑣(A, 𝜃) for the symplectic resolution. They give the following
result.

Theorem 2.10 [27, Theorem 1.6]. Let (A, 𝑣,𝐻) be an OLS-triple where A is an abelian surface.
The moduli space K̃𝑣(A, 𝜃) is an irreducible holomorphic symplectic manifold which is deformation
equivalent to K̃6.

Moreover Perego–Rapagnetta gives a result about theweight-twoHodge structure of the second
integral cohomology of K̃𝑣(A, 𝜃).

Theorem 2.11 [27, Theorem 1.7]. Let A be an abelian surface and let (A, 𝑣, 𝜃) be an OLS-
triple. The pullback 𝜋∗ ∶ H2(K𝑣(A, 𝜃), ℤ) → H2(K̃𝑣(A, 𝜃), ℤ) is injective, and the restrictions to
H2(K𝑣(A, 𝜃), ℤ) of the pure weight-twoHodge structure and of the Beauville–Bogomolov–Fujiki form
onH2(K̃𝑣(A, 𝜃), ℤ) give a pure weight-twoHodge structure onH2(K𝑣(A, 𝜃), ℤ) and a lattice structure
onH2(K𝑣(A, 𝜃), ℤ). Moreover, there is an isometry of weight-two Hodge structures

𝜈𝑣 ∶ H2(K𝑣(A, 𝜃), ℤ)
∼
�→ 𝑣⟂ ⊂ H̃(A, ℤ).

Moreover Perego–Rapagnetta [28] computed the lattice andHodge structure ofH2(K̃𝑣(A, 𝜃), ℤ)

in terms of the Hodge structure of 𝑣⟂ as a sublattice of the Mukai lattice H̃(A, ℤ) introduced in
Section 2.2.1. They consider the ℤ-module 𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎 with the symmetric bilinear form on 𝑣⟂

induced by the Mukai pairing and defining (𝜎, 𝜎) = −2. The ℤ–module 𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎 is a lattice
and carries a pure weight-two Hodge structure in the following way:

(𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎)2,0 = (𝑣⟂)2,0 = H̃2,0(A) = H2,0(A),

(𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎)0,2 = (𝑣⟂)0,2 = H̃0,2(A) = H0,2(A),

(𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎)1,1 = (𝑣⟂)1,1 ⊕ ℂ ⋅ 𝜎 = H0(A) ⊕ H1,1(A) ⊕ H4(A) ⊕ ℤ ⋅ 𝜎.
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Note that 𝜎⟂ ⊂ (𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎) ≅ 𝑣⟂ ⊂ H̃(A, ℤ). Note that the Hodge structure on 𝑣⟂ is the one
recalled in Section 2.2.1. Moreover note that the divisibility of 𝜎 in the lattice (𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎) is 2.

Theorem 2.12 [28, Theorem 3.4]. There is a Hodge isometry of pure weight-two Hodge structures

𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎 ≅ H2(K̃𝑣(A, 𝜃), ℤ),

where the lattice structure on the right-hand side is given by the Beauville–Bogomolov–Fujiki
quadratic form.

3 INDUCED GROUPS OF AUTOMORPHISMS

An example of irreducible holomorphic symplectic manifolds that arise from symplectic surfaces
are the Hilbert schemes of 𝑛 points on K3 surfaces, constructed by Beauville in [4]. This kind
of construction allows to produce several examples of automorphisms of irreducible symplectic
manifolds of K3[𝑛] type, simply by taking a K3 surface with a non-trivial automorphism group and
considering the induced action on its Hilbert scheme. These kinds of automorphisms are called
natural and were studied by Beauville [3], Boissière [5] and many others. A natural question is
to ask when a birational transformation of a manifold of OG6 type, which is a moduli space of
sheaves on an abelian surface, is induced by an automorphismof the abelian surface. In Section 3.1
we prove a result to determine when a manifold 𝑋 of OG6 type is birational to a moduli space,
and in Section 3.2 we prove a numerical criterion to determine when a birational transformation
is induced.

3.1 Proof of Theorem 1.1

This section is devoted to determinewhen amanifold𝑋 ofOG6 type is birational to K̃𝑣(A, 𝜃)where
(A, 𝑣, 𝜃) is an OLS-triple and whose construction is recalled in Section 2.2.2. We state a necessary
and sufficient criterion entirely in terms of the lattice structure of the second integral cohomology
of 𝑋. In the following 𝚲8 = 𝐔⊕4 and 𝚲10 = 𝐔⊕5.

Definition 3.1. Let 𝐿 be a lattice endowed with a pure weight-two Hodge structure and consider
the following primitive embedding in a lattice Λ:

𝑖 ∶ 𝐿 ↪ Λ.

We call the embedding 𝑖 aHodge embedding ifΛ is endowed with a pure weight-two Hodge struc-
ture inherited by 𝐿, defined as follows:

Λ2,0 = 𝐿2,0,

Λ0,2 = 𝐿0,2,

Λ1,1 = 𝐿1,1 ⊕ 𝐿⟂Λ.
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If (𝑋, 𝜂) is a marked pair of OG6 type and if there exists a class 𝜎 ∈ 𝐋1,1 such that 𝜎2 = −2

and (𝜎, 𝐋) = 2, then there is a unique [22, Proposition 1.5.1] (up to isometry) primitive embedding
𝜎 ↪ 𝐋 and 𝜎⟂ inherits a pure weight-two Hodge structure in the following way:

(𝜎⟂)2,0 = 𝐋2,0,

(𝜎⟂)0,2 = 𝐋0,2,

(𝜎⟂)1,1 = 𝐋1,1 ∩ 𝜎⟂,

(6)

where the isometry class of 𝜎⟂ is𝐔⊕3 ⊕ [−2].

Definition 3.2. Let (𝑋, 𝜂) be a projective marked pair of OG6 type, where 𝜂 ∶ H2(𝑋, ℤ) → 𝐋 is a
fixedmarking.We call𝑋 a numericalmoduli space if there exists a class𝜎 ∈ 𝐋1,1 such that𝜎2 = −2

and (𝜎, 𝐋) = 2 and through the Hodge embedding 𝜎⟂ ↪ 𝚲8, the lattice 𝚲
1,1
8

contains a copy of𝐔
as a direct summand.

Proposition 3.3. Let (𝑋, 𝜂) be a projective marked pair of OG6 type. If 𝑋 is a numerical moduli
space, then

sign(𝚲1,1
8
) = sign(𝐋1,1) + (1, −1).

Proof. By assumption there exists a negative class 𝜎 ∈ 𝐋1,1. We denote by [𝜎] the lattice of rank 1
and signature (0, 1) generated by 𝜎. By construction it holds that

sign(𝐋1,1) = sign((𝜎⟂)1,1) + sign([𝜎]).

The orthogonal complement of 𝜎⟂ ≅ 𝐔⊕3 ⊕ [−2] in 𝚲8 is a rank 1 lattice of signature (1, 0) that
we denote by [𝑤]. The class 𝑤 ∈ 𝚲1,1

8
is of (1, 1) type by definition of Hodge embedding; hence, it

holds the following equality:

sign(𝚲1,1
8
) = sign((𝜎⟂)1,1) + sign([𝑤]).

From the two previous relations we have

sign(𝚲1,1
8
) = sign(𝐋1,1) − sign([𝜎]) + sign([𝑤]) = sign(𝐋1,1) + (1, −1). □

In the followingwe denote by K̃𝑣(A, 𝜃) an irreducible holomorphic symplecticmanifold ofOG6

type obtained starting from an OLS-triple (A, 𝑣, 𝜃), as recalled in Section 2.2.2.

Proof of Theorem 1.1. If Φ∶ 𝑋 ⤏ K̃𝑣(A, 𝜃) is a birational morphism, then the induced isometry
Φ∗ ∶ H2(K̃𝑣(A, 𝜃), ℤ) → H2(𝑋, ℤ) is an isometry of Hodge structures. The manifold K̃𝑣(A, 𝜃) is
obtained as a resolution of the singular moduli spaceK𝑣(A, 𝜃). The class of the exceptional divisor
𝐸 ∈ H2(K̃𝑣, ℤ) is of (1, 1) type, of square −2 and divisibility 2, and 𝐸⟂ ≅ H2(K𝑣, ℤ) [28, Theorem
3.4(2)]. Moreover there exists a Hodge embedding (see Definition 3.1)H2(K𝑣, ℤ) ↪ H̃(A, ℤ) ≅ 𝚲8.
By construction, the induced weight-two Hodge structure on H̃(A, ℤ) is the one defined in
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Section 2.2.1 on the Mukai lattice. The vectors (1, 0, 0) and (0, 0, 1) generate a copy of 𝐔 in the
lattice H̃1,1(A, ℤ) = 𝚲1,1

8
; hence, 𝑋 is a numerical moduli space.

For the other direction, let H2(𝑋, ℤ) → 𝐋 be a fixed isometry, by assumption there exists a
class 𝜎 ∈ 𝐋1,1 such that 𝜎2 = −2, (𝜎, 𝐋) = 2, and a Hodge embedding 𝜎⟂ ↪ 𝚲8 such that 𝚲1,1

8
contains 𝐔 as a direct summand. Denote by 𝑤 the orthogonal complement of 𝜎⟂ in 𝚲8, then
it holds that 𝑤2 = 2 and 𝑤⟂(⊂ 𝚲8) ≅ 𝐔⊕3 ⊕ [−2]. The lattice 𝑤⟂ is a sublattice of 𝚲8; hence,
it inherits a weight-two Hodge structure. Note that 𝑤⟂(⊂ 𝚲8) ≅ 𝜎⟂(⊂ 𝐋). Moreover the signa-
ture of 𝜎⟂ is equal to (3, 4) and since 𝑋 is a numerical moduli space, 𝑋 is projective; hence,
the positive part of the signature of NS(𝑋) = 𝐋1,1 is equal to 1. The class 𝜎 has negative square;
hence, the positive part of the signature of (𝜎⟂)1,1 is equal to the positive part of the signature
of 𝐋1,1. Thus we get (𝚲8)

1,1 = (𝜎⟂)1,1 ⊕ [𝑤]; hence, the positive part of the signature of (𝚲8)
1,1 is

equal to 2. Moreover the Hodge structure induced on 𝚲8 is the one inherited from 𝜎⟂ ⊂ 𝐋 hence
𝐋2,0 = (𝚲8)

2,0, 𝐋0,2 = (𝚲8)
0,2, and consequently, the signature of (𝚲8)

1,1 is equal to (2, 4). We have
(𝚲8)

1,1 = 𝐔⊕ Twhere T is an even lattice of signature (1, 3). By [17, Theorem 2.4] there exists an
abelian surface A such that T = NS(A) and we call 𝜃 the generator of the positive part of T. We
define the Mukai vector 𝑣 = 2𝑤 and we can choose a 𝑣-generic polarization 𝜃 on A. Now by [18,
Lemma 2.28] since𝑤2 = 2 then𝑤 or−𝑤 is a positive Mukai vector (see Definition 2.7); hence, we
may assume that the (A, 𝑣, 𝜃) is anOLS-triple. Thenwe consider themap 𝑎𝑣 ∶ 𝑀𝑣(A, 𝜃) → A × A∨

and we define K𝑣(A, 𝜃) = 𝑎−1𝑣 (0,A). By [27, Theorem 1.7] there exists a Hodge isometry

H2(K𝑣(A, 𝜃), ℤ)
∼
�→ 𝑣⟂ ⊂ H̃(A, ℤ) ≅ 𝚲8, (7)

where the orthogonal complement of 𝑣 ∈ H̃(A, ℤ) is computed with respect to the Mukai pair-
ing. The singular moduli space K𝑣(A, 𝜃) admits a symplectic crepant resolution K̃𝑣(A, 𝜃) and the
exceptional divisor 𝐸 is such that 𝐸2 = −2 [29, Corollary 3.5.13]. It holds the following Hodge
isometry H2(K̃𝑣(A, 𝜃), ℤ) ≅ H2(K𝑣(A, 𝜃), ℤ) ⊕ ℤ ⋅ 𝐸. Finally we obtain the Hodge isometry

𝜎⟂ ⊕ 𝜎
∼
�→ 𝑤⟂ ⊕ ℤ ⋅ 𝐸,

which means that there exists a Hodge isometry between 𝐋 = 𝜎⟂ ⊕ 𝜎 andH2(K̃𝑣(A, 𝜃), ℤ) hence
between H2(𝑋, ℤ) and H2(K̃𝑣(A, 𝜃), ℤ). By [15, Theorem 5.2(2)] 𝑋 is birational to K̃𝑣(A, 𝜃). □

3.2 Induced birational transformations and proof of Theorem 1.2

In this section we give a lattice-theoretic criterion to determine when a birational transformation
of a manifold 𝑋 of OG6 type is induced by an automorphism of the abelian surface A, in the case
in which 𝑋 is birational to the moduli space K̃𝑣(A, 𝜃).
Consider an automorphism of the abelian surface A. It induces an isometry of H̃(A, ℤ). More-

over if the automorphism fixes the Mukai vector 𝑣, then we obtain an isometry ofH2(K̃𝑣(A, 𝜃), ℤ)

asking that 𝜎 is fixed.
In the following we give all the statements assuming that G ⊂ Bir(𝑋) is a group of birational

transformations of𝑋. If the statements hold true forG ⊂ Aut(𝑋), thenGwill be called an induced
group of automorphisms or a numerically induced group of automorphisms.



14 GROSSI

Definition 3.4. Let 𝑋 be a smooth projective irreducible holomorphic symplectic manifold of
OG6 type and let 𝜂 ∶ H2(𝑋, ℤ) → 𝐋 be a marking. Let G ⊂ Bir(𝑋) be a finite group of birational
transformations. Assume that there exists a class 𝜎 of (1, 1) type on 𝑋 such that 𝜎2 = −2 and
(𝜎, 𝐋) = 2, and consider the primitive Hodge embedding 𝑖 ∶ 𝜎⟂ ↪ 𝚲8. The group G ⊂ Bir(𝑋) is
called a numerically induced group of birational transformations if the following hold:

(1) the class 𝜎 ∈ NS(𝑋) is G-invariant;
(2) the induced action ofG on𝚲8 is such that the (1, 1) part of the invariant lattice (𝚲8)

G contains
𝐔 as a direct summand;

(3) for all g ∈ G, det(g∗) = 1.

Proposition 3.5. If 𝜑 ∈ Aut(A) is an automorphism of the abelian surface A, 𝑣 ∈ H̃(A, ℤ) is a
𝜑-invariant Mukai vector on A, and 𝜃 is a 𝜑-invariant polarization on A, then 𝜑 induces an auto-
morphism on the fibre K̃𝑣(A, 𝜃). Moreover the automorphism is numerically induced.

Proof. To prove that the automorphism 𝜑 of A induces an automorphism of the moduli space
𝑀𝑣(A, 𝜃), we need to check that the pullback along 𝜑 induces an automorphism of the mod-
uli functor. From the definition of stability, if a sheaf F is 𝜃-stable, then 𝜑∗F is 𝜃-stable, see
[18, Proposition 2.32]. Moreover if 𝜑 ∈ Aut(A) is an automorphism, then by definition it pre-
serves the origin; hence, the induced automorphism respects the fibre K𝑣(A, 𝜃) over (0,A)

of the map 𝑎𝑣 ∶ 𝑀𝑣(A, 𝜃) → A × A∨ and we call �̂� the induced action on it. Furthermore, the
singular locus Σ is certainly �̂�-invariant, and we have a well-defined induced action on the
normal bundle  = Σ|K𝑣(A,𝜃)

. In fact the fibre 1,2 of  over 1 ⊕ 2 is isomorphic to
Ext1(1,2) ⊕ Ext1(2,1) and we have that the map1,2 → 𝜑∗1,𝜑∗2 is the pullback map.
Hence we get the induced action 𝜑 on the blow-up of the fibre K̃𝑣(A, 𝜃). We call 𝜎 the class of the
exceptional divisor which is obviously fixed by the induced action. Moreover, due to the primitive
embedding 𝜎⟂ ⊂ H2(K̃𝑣(A), ℤ) ↪ H̃(A, ℤ) ≅ 𝚲8, the induced action of 𝜑 on 𝜎⟂ induces an action
on H̃(A, ℤ) ≅ 𝚲8 which is the same action induced by 𝜑 on H̃(A, ℤ). By assumption the sublat-
tice H0(A, ℤ) ⊕ H4(A, ℤ) is contained in the (1, 1) part of the lattice 𝚲8. The class of the surface,
that is, the generator ofH4(A, ℤ), and the class of the points, that is, the generator ofH0(A, ℤ) are
preserved by 𝜑; hence, a copy of𝐔 is contained in the (1, 1) part of the lattice (𝚲8)

𝜑. Finally, since
𝜑 is an automorphism of A, the induced isometry on H2(A, ℤ) is, in particular, a monodromy
operator; hence, by [15, Section 3] it belongs to SO+(H2(A, ℤ)), that is, its determinant is equal
to 1. □

Remark 3.6. In the assumptions of Proposition 3.5 we ask that the polarization 𝜃 ∈ NS(A) is 𝜑-
invariant, then the automorphism of the abelian surface induces an automorphism of the desin-
gularized moduli space K̃𝑣(A, 𝜃). This condition is never verified for a symplectic automorphism
of A except in the case in which the automorphism of A is trivial. If 𝜃 is not 𝜑-invariant, then we
get at least a birational self-map of K̃𝑣(A, 𝜃).

Definition 3.7. Let 𝑋 be a manifold of OG6 type which is a numerical moduli space, and let
G ⊂ Bir(𝑋) be a finite subgroup of birational transformations of𝑋. The groupG ⊂ Bir(𝑋) is called
an induced group of birational transformations if there exists a group G ⊂ Aut(A), there exists a
Mukai vector 𝑣 ∈ H̃(A, ℤ)G and a 𝑣-generic polarization 𝜃 and the action induced byG on K̃𝑣(A, 𝜃)

coincides with the given action of G on 𝑋 (up to automorphisms of Ker(𝜂∗)).
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Corollary 3.8. Let𝑋 be a manifold ofOG6 type which is a numerical moduli space. LetG ⊂ Bir(𝑋)

be a finite subgroup. IfG is an induced group of birational transformations, thenG is a numerically
induced group of birational transformations.

Proof. For the proof we refer to Proposition 3.5. □

Proof of Theorem 1.2. First of all let us consider the case in which the groupG is symplectic. Then
we have T(𝑋) ⊆ 𝐋G. Since G is numerically induced, then the class 𝜎 ∈ NS(𝑋) such that 𝜎2 = −2

and (𝜎, 𝐋) = 2 is fixed by G, and we have the primitive Hodge embedding

𝜎⟂ ↪ 𝚲8. (8)

We call 𝑤 the generator of the orthogonal complement of 𝜎⟂ in 𝚲8 and we note that by con-
struction 𝑤 is fixed by the induced action of G on 𝚲8. Since G is numerically induced, then
(𝚲8)

G = 𝐔⊕ T and 𝐔 is in the (1, 1) part of the Hodge structure of (𝚲8)
G. Due to the fact that

𝜎 is G-invariant, then 𝐋G = (𝜎⟂)G = (𝚲8)G. We then have that 𝐋G embeds in the abelian lattice
and its orthogonal is T, where the action of G is trivial. We give to this abelian lattice the induced
Hodge structure from 𝚲8 and we let A the corresponding abelian surface [30, Theorem 2]. We
can take 𝑣 = 2𝑤 ∈ H̃(A, ℤ) ≅ 𝚲8 as Mukai vector on A. By construction 𝑣 is fixed by the induced
action of G on 𝚲8 and by Theorem 1.1 𝑋 is birational to the moduli space K̃𝑣(A, 𝜃). We have the
two following isometries of Hodge structures:

H2(𝑋, ℤ) → H2(K̃𝑣(A, 𝜃), ℤ),

H2(K̃𝑣(A, 𝜃), ℤ) → 𝑣⟂ ⊕⟂ ℤ ⋅ 𝜎,
(9)

where the second one holds true by Theorem 2.12. In Section 2.2.2 we have described the pure
weight-twoHodge structure on 𝑣⟂ ⊕ ℤ ⋅ 𝜎 and the relation with theHodge structure onH2(A, ℤ).
An element of G induces an isometry of Hodge structures on H2(𝑋, ℤ); hence, composing the
previous isometries of Hodge structures we have an isometry of Hodge structure on 𝑣⟂ hence also
on H2(A, ℤ). By construction the group G is a group of Hodge isometries on A, moreover G is
numerically induced; hence, the isometries are orientation preserving and of determinant 1 and
hence by [15, Section 3] they are in the monodromy group ofA. Therefore by [17, Theorem 2.1] the
group G ⊂ Aut(A) is a group of automorphism of A and since by construction the Mukai vector
𝑣 is preserved by G, by Proposition 3.5 and Remark 3.6 we have an induced group of birational
transformations on K̃𝑣(A, 𝜃). The induced action on the second integral cohomology of K̃𝑣(A, 𝜃)

is the action we started with, up to isomorphisms of the kernel of the representation map

𝜂∗ ∶ Bir(𝑋) → O(𝐋),

which is isomorphic to A[2] × A∨[2] [19, Theorem 5.2].
Nowwe assume that every non-trivial element ofG has a non-symplectic action. In this hypoth-

esis we can assume that 𝐋G = NS(𝑋). As in the previous case we have (𝚲8)
G = 𝐔⊕ T and we can

consider the abelian surface A associated to the Hodge structure induced on 𝐔⟂ ⊂ 𝚲8. Again by
Theorem 1.1 𝑋 is birational to a moduli space of sheaves on A. The group G is a group of Hodge
isometries of A preserving T = NS(A) and we can conclude as in the symplectic case.
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Finally, ifG𝑠 is the symplectic part of the groupG, then we obtain an abelian surfaceA as in the
first step withG𝑠 ⊂ Aut(A). We can extend the action of the groupG onA by applying the second
step to the quotient group Ĝ = G∕G𝑠. □

Remark 3.9. There exist automorphisms of manifolds of OG6 type that act trivially on the second
integral cohomology [19, Theorem 5.2] and this explains the factor A∨[2] in the theorem above.

Corollary 3.10. Let (𝑋, 𝜂) be a marked irreducible holomorphic symplectic manifold of OG6 type
and let 𝜂∶ H2(𝑋, ℤ) → 𝐋 be a marking. If the group G ⊂ Bir(𝑋) is an induced group of birational
transformations and |G| = 2, then rank(𝐋G) is even.

Proof. If G ⊂ Bir(𝑋) is induced, then by Corollary 3.8 it is numerically induced; hence by Defini-
tion 3.4 every element in G has an induced action in cohomology with determinant 1. If |G| = 2

and 𝜑 is a generator of G, then det(𝜑) = (−1)rank(𝐋G) and this implies that rank(𝐋G) is even. □

4 AUTOMORPHISMS INDUCED AT THE QUOTIENT

In this section we refer to the construction of the birational model of manifolds of OG6 type
described byMongardi–Rapagnetta–Saccà [16] (brieflyMRS construction). In Section 4.1 we recall
the main steps of the MRS construction which provides a birational model of manifolds of OG6

type as the quotient of amanifold of K3[3] type by a birational symplectic involution. In Section 4.2
we consider a manifold 𝑋 of OG6 type that is birational to a moduli space K̃𝑣(A, 𝜃), and we prove
a result to determine when a birational transformation of 𝑋 lifts to a birational transformation of
the manifold of K3[3] type involved in the MRS construction. Finally in Section 4.3 we prove The-
orem 4.7 to determine when the birational transformation of 𝑋 lifts to a regular automorphism of
the manifold of K3[3] type.

4.1 The Mongardi–Rapagnetta–Saccà model

Mongardi–Rapagnetta-Saccà show that for any abelian surface A, for an effective Mukai vec-
tor (the Mukai vector of a coherent sheaf on A) 𝑣 = 2𝑣0 with 𝑣2

0
= 2 on A, and for a 𝑣-generic

principal polarization 𝜃 on A, the irreducible holomorphic symplectic manifold of dimension six
K̃𝑣(A, 𝜃) admits a rational double cover from a normal projective variety which is birational to
an irreducible holomorphic symplectic manifold 𝑌𝑣(A, 𝜃) of K3

[3] type. More precisely, the sin-
gular locus Σ𝑣 ⊂ K𝑣(A, 𝜃) has codimension 2. The inverse image Σ̃𝑣 of Σ𝑣 in K̃𝑣(A, 𝜃) is an irre-
ducible divisor, which is divisible by two in the integral cohomology by a result of Rapagnetta [29,
Theorem 3.3.1]. The Picard group of an irreducible holomorphic symplectic manifold is torsion-
free; hence there exists a unique normal projective variety 𝑌𝑣(A, 𝜃) with a finite 2∶ 1morphism
�̃�𝑣 ∶ 𝑌𝑣(A, 𝜃) → K̃𝑣(A, 𝜃) ramified on Σ̃𝑣. Moreover there exists a unique normal projective variety
𝑌𝑣(A, 𝜃) equipped with a finite 2∶ 1 morphism 𝜀𝑣 ∶ 𝑌𝑣(A, 𝜃) → K𝑣(A, 𝜃) whose branch locus is
Σ𝑣 [16, Theorem 4.2]. The finite morphism 𝜀𝑣 induces a regular involution 𝑖 on𝑌𝑣(A, 𝜃); hence the
morphism 𝜀𝑣 can be identified with the quotient map of the involution 𝑖. In [16, Proposition 5.3]
it is shown that 𝑌𝑣(A, 𝜃) is always birational to an irreducible holomorphic symplectic manifold
of K3[3] type and a resolution of the indeterminacy of the birational map is explicitly described.
We will recall the construction omitting the dependence to the Mukai vector 𝑣 and to the abelian
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surfaceA, to avoid cumbersome notation.We denote by Γ the singular locus of𝑌which consists of
256 points, and by Γ the exceptional divisor of 𝐵𝑙Γ(𝑌)which concerns in the disjoint union of 256
copies of the incidence variety; every incidence variety is denoted by 𝐼𝑖 , and 𝐼𝑖 ⊂ ℙ(𝑉) × ℙ(𝑉)∨.
Here 𝑉 is a four-dimensional vector space, as we can find in [16, Section 2]. The incidence variety
𝐼𝑖 ⊂ ℙ(𝑉) × ℙ(𝑉)∨ has two natural ℙ2 fibrations given by the projections onto ℙ(𝑉) and ℙ(𝑉)∨.
Let 𝑝𝑖 ∶ 𝐼𝑖 ⟶ ℙ(𝑉) be the two projections. We know that the normal bundle of 𝐼𝑖 in 𝐵𝑙Γ𝑌 has
degree −1 on the fibres of 𝑝𝑖 . Using Nakano’s contraction Theorem, [21], there exists a complex
manifold 𝑌 and a morphism of complex manifolds ℎ∶ 𝐵𝑙Γ𝑌 ⟶ 𝑌, whose exceptional locus is Γ
and such that the image 𝐽𝑖 = ℎ(𝐼𝑖) of any component of Γ is isomorphic to ℙ3. If we consider the
restriction of ℎ to 𝐼𝑖 , this is equal to 𝑝𝑖 , and ℎ realizes 𝐵𝑙Γ𝑌 as the blow-up of 𝑌 along the disjoint
union 𝐽 = ℎ(Γ) of all the 𝐽𝑖 . Moreover by [16, Proposition 5.3] the manifold 𝑌 is an irreducible
holomorphic symplectic manifold of K3[3] type. By construction 𝑌 has a natural and regular mor-
phism to 𝑌 that contracts 𝐽 to Γ. Moreover the regular involution 𝑖 on 𝑌 is lifted to a birational
symplectic involution 𝑖 on 𝑌 which cannot be extended to a regular involution [16, Remark 5.4].
More precisely the birational symplectic involution 𝑖 on𝑌 is regular on the complement of the 256
functions of ℙ3. In the following K̃ is the manifold of OG6 type obtained as resolution of singu-
larities of K, which is a singular moduli space of sheaves on A, 𝑌 is the normal projective variety
which is singular in 256 points and 𝑌 is the irreducible holomorphic symplectic manifold of K3[3]
type birational to 𝑌. Following the original notation of [16] we call Δ ⊂ 𝑌 the ramification locus
(with the reduced induced structure) of 𝜀 ∶ 𝑌 → K. The double cover 𝜀 induces an isomorphism
Δ ≅ Σ between the ramification locus and the singular locus Σ of K. There exists the following
commutative diagram.

(10)

Remark 4.1. The codimension of the family of manifolds of OG6 type that are moduli space of
sheaves on an abelian surface is 3 in the moduli space of marked manifolds of OG6 type, denoted
by OG6

. In fact the Néron–Severi group of a generic element in this family is at least three-
dimensional, since it contains the class of the exceptional divisor, the class of the locus of non-
locally free sheaves and the class arising from the ample divisor 𝜃 on the abelian surface A. A
natural question is what is the dimension of the family of manifolds of OG6 type that admit a
Mongardi–Rapagnetta–Saccá model. The moduli space 𝐾3[3] is the marked moduli space of
manifolds of 𝐾3[3] type which has dimension 21 = ℎ1,1(𝐾3[3]). The manifold 𝑌 is a manifold of
K3[3] type and 𝑖 is a birational involution defined on it. This involution 𝑖 is symplectic; hence, if
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𝜎𝑌 is the symplectic form, then 𝑖∗𝜎𝑌 = 𝜎𝑌 which means that 𝜎𝑌 ∈ ℙ(H2(𝑌, ℂ)𝑖) which is a six-
dimensional complex space. Since 𝜎𝑌 is a symplectic form, 𝜎𝑌𝜎𝑌 = 0, hence it verifies a quadratic
equation in a space of dimension six, which means that

{𝑋 of OG6 type that admit a MRS model} ⊆ OG6

is a five-dimensional subspace of the six-dimensional marked moduli space of OG6 type mani-
folds. Due to this fact it would be possible to generalize the MRS construction for manifolds of
OG6 type in a codimension 1 subspace ofOG6

.

4.2 Proof of Theorem 1.3 and more remarks

We introduce the notion of automorphisms or birational transformations induced at the quotient
in order to find a criterion to determine when an automorphism or a birational transformation
of K̃ lifts to a birational transformation of the manifold of K3[3] type involved in the construction
recalled in Section 4.1.

Definition 4.2. If K̃ is an irreducible holomorphic symplectic manifold of OG6 type obtained as
a resolution of moduli space of sheaves on an abelian surface, and if 𝜑 ∈ Aut(K̃) (or 𝜑 ∈ Bir(K̃)) is
an automorphisms (or a birational transformation) of K̃, then 𝜑 is induced at the quotient if 𝜑 lifts
to a birational transformation of 𝑌, where 𝑌 is the smooth irreducible holomorphic symplectic
manifold of K3[3] type of diagram 10.

Proposition 4.3. If K̃ is a manifold ofOG6 type as in diagram 10, and if 𝜑 ∈ Bir(K̃) is a birational
transformation of finite order of K̃ such that there exists a class 𝐸 ∈ NS(K̃) of (1, 1)-type, of square
−2 and divisibility 2 which is fixed by the induced action of 𝜑 in cohomology, then 𝜑 is induced at
the quotient.

Proof. Since 𝐸 ∈ NS(K̃) is fixed by the induced action of 𝜑 and since the class 𝐸 represent the
cohomology class of the exceptional divisor of the resolution K̃ → K, then the automorphism 𝜑

is well defined on K. From [16, Remark 3.2, Theorem 4.2], we have that if 𝜀 ∶ 𝑌 ⟶ K is the étale
double cover, then 𝜀−1(K ∖ Σ) = 𝑌 ∖ Δ. Since the real codimension ofΔ is 2, see [16], then themap
𝜋1(𝑌 ∖ Δ) ↠ 𝜋1(𝑌) is surjective. We have that 𝜋1(𝑌 ∖ Δ) = 0 and 𝜀 ∶ 𝑌 ∖ Δ⟶ K ∖ Σ is an étale
cover. We can consider the following diagram:

By [12, Proposition 1.33] we know that if

𝜑(𝜀(𝜋1(𝑌 ∖ Δ))) ⊆ 𝜀(𝜋1(𝑌 ∖ Δ)), (11)

then 𝜑 lifts to an automorphism 𝜓∶ 𝑌 ∖ Δ⟶ 𝑌 ∖ Δ. In our case 𝜋1(𝑌 ⧵ Δ) = 0 hence (11) is
verified. The set𝑌 ⧵ Δ is an open subset of𝑌, hence𝜓 is a birational transformation of𝑌.Moreover
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the manifold 𝑌 is birational to the irreducible holomorphic symplectic manifold of 𝐾3[3] type 𝑌
hence 𝜑 is induced at the quotient. □

Proof of Theorem 1.3. If 𝑋 is a numerical moduli space, then by Theorem 1.1 there exists an
abelian surface A, a Mukai vector 𝑣, and a polarization 𝜃 on A, such that there exists a bira-
tional map 𝛼 ∶ 𝑋 ⤏ K̃𝑣(A, 𝜃), where K̃𝑣(A, 𝜃) denotes the resolution of the fibre of the moduli
space of sheaves on the abelian surface A. We denote K̃𝑣(A, 𝜃) shortly by K̃. Since 𝜑 ∈ Bir(𝑋) is
a birational transformation of 𝑋, then 𝜑 = 𝛼◦𝜑◦𝛼−1 ∈ Bir(K̃) is a birational transformation of
the moduli space K̃. By assumption there exists a class 𝐸 ∈ NS(𝑋) of square −2 and divisibility 2
which is preserved by the action of 𝜑 hence the same holds true for 𝜑. By Proposition 4.3 we get
the result. □

In the next proposition we prove that actually we can extend 𝜓∶ 𝑌 ∖ Δ⟶ 𝑌 ∖ Δ to an auto-
morphism of 𝑌.

Lemma 4.4. In the previous notations, let 𝜀 ∶ 𝑌 ⟶ K be the 2∶ 1 cover described above, and let
𝜑 ∈ Aut(K) be an automorphism of K. Suppose that there exists an open subset 𝑈 of K such that
𝜑|𝑈 ∶ 𝑈 → 𝑈 lifts to 𝜓∶ 𝜀−1(𝑈) → 𝜀−1(𝑈), then 𝜓 extends to a regular morphism 𝜓 ∶ 𝜀−1(K)⟶

𝜀−1(K) such that 𝜓|𝜀−1(𝑈) = 𝜓.

Proof. From hypothesis we know that 𝜑∶ K⟶ K is regular. If we denote Γ𝜑 ⊂ K × K the graph

of the morphism, then it is well known that 𝑝1 ∶ Γ𝜑
≅
�→ K is an isomorphism. For the same reason

we have the graph

Γ𝜓 ⊂ 𝜀−1(𝑈) × 𝜀−1(𝑈),

and the isomorphism 𝑝1 ∶ Γ𝜓
≅
�→ 𝜀−1(𝑈). We have that

Γ𝜓 ⊂ 𝜀−1(𝑈) × 𝜀−1(𝑈) ⊆ 𝑌 × 𝑌,

where the last is an inclusion in a compact set. We can consider the Zariski closure of the graph,
that we denote with Γ𝜓. The closure Γ𝜓 lies in a closed subset of 𝑌 × 𝑌, which is the fibre product
over K. To be more precise the fibre product is 𝑌 ×𝜀,𝜑◦𝜀 𝑌 ⊂ 𝑌 × 𝑌. In the following diagram we
denote 𝑌 ×𝜀,𝜑◦𝜀 𝑌 with 𝑌 × 𝑌.

In this commutative diagram 𝜀 is generically finite, Γ𝜓 is a subset of 𝑌 ×𝜀,𝜑◦𝜀 𝑌 and

𝑌 ×𝜀,𝜑◦𝜀 𝑌
≅
�→ Γ𝜑
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is an isomorphism by construction. For this reason 𝜉 ∶ Γ𝜓 ⟶ K is a finite morphism and con-
sequently Γ𝜓 ⟶ 𝑌 is a finite morphism. Now by hypothesis we have that the previous map
is injective on an open subset. Since 𝑌 is a normal variety, we can conclude that Γ𝜓 ⟶ 𝑌 is
an isomorphism, which implies that 𝜓∶ 𝑌 ⟶ 𝑌 is a regular morphism, where 𝜓 is such that
𝜓|𝜀−1(𝑈) = 𝜓. □

Proposition 4.5. If K̃ is amanifold ofOG6 type as in diagram 10, and if 𝜑 ∈ Aut(K̃) is an automor-
phism of finite order of K̃ such that there exists a class 𝐸 of (1, 1)-type, of square−2 and divisibility 2
which is fixed by the induced action of 𝜑 in cohomology, then 𝜑 lifts to an automorphism of 𝑌.

Proof. Consider 𝜑 ∈ Aut(K̃) an automorphism of the O’Grady’s sixfold K̃, then by Proposition 4.3
we know that𝜑 lifts to a birational transformation of𝑌. Moreover taking𝑈 = K ⧵ Σ by Lemma 4.4
we know that 𝜑 lifts to an automorphism of 𝑌. □

In the following diagram we denote with the usual notation the automorphisms and the vari-
eties involved in the construction.

4.3 A sufficient condition to have a regular morphism on the Hilbert
scheme

Nowwe want to find a criterion to determine when a birational transformation of𝑌 extends to an
automorphism of𝑌. Equivalently wewant to determine when an automorphism 𝜓 of the singular
normal projective variety 𝑌 lifts to an automorphism 𝜓 of the smooth irreducible holomorphic
symplectic manifold 𝑌 of K3[3] type. In diagram at the end of Section 4.2 Γ is the singular locus
of 𝑌 and it consists of 256 points. We have that 𝜓(Γ) = Γ. The automorphism 𝜓 of 𝑌 preserves the
singular locus but can permute the singular points. If we assume that the 256 singular points of Γ
are pointwise fixed, then the automorphism 𝜓 ∶ 𝑌 ⟶ 𝑌 extends in a direct way on the blow-up
of these singular points, which means that 𝜓 ∶ 𝐵𝑙Γ𝑌 ⟶ 𝐵𝑙Γ𝑌 is a well-defined automorphism.
What we need to find is a sufficient condition to extend this automorphism on 𝑌. As we know by
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[16], the preimage g−1(Γ) = Γ is the exceptional divisor of 𝐵𝑙Γ(𝑌), and consists of 256 copies of the
incidence variety 𝐼𝑖 .
The exceptional locus of ℎ1 ∶ 𝐵𝑙Γ𝑌 ⟶ 𝑌 is Γ and the image 𝐽𝑖 = ℎ1(𝐼𝑖) of any component of

Γ is isomorphic to ℙ3. The automorphism 𝜓 on 𝐵𝑙Γ(𝑌) descends to a birational map that is well
defined outside 𝐽, that is, outside the disjoint union of 256 copies of ℙ3. We want to find sufficient
conditions to extend this map on these functions of ℙ3 and to obtain an automorphism of 𝑌. The
preimage with respect to g ∶ 𝐵𝑙Γ𝑌 → 𝑌 of a singular point 𝑝 is an incidence variety 𝐼𝑖 , which is a
divisor of 𝐵𝑙Γ𝑌. By [16] we know that on every incidence variety is defined a fibration with basis
ℙ3 and fibre isomorphic to ℙ2 and there exists the following diagram, see [16].

We call the incidence variety 𝐼. Since 𝐵𝑙Γ𝑌 ≅ 𝐵𝑙𝐽𝑌, we have the following result.

Proposition 4.6. The incidence variety 𝐼 is isomorphic to ℙ(Ωℙ3) and

Pic(𝐼) ≅ Pic(ℙ3 × (ℙ3)∨) ≅ ⟨𝐻1,𝐻2⟩
where𝐻1 = 𝑝∗

1
(ℙ3(1)) and𝐻2 = 𝑝∗

2
((ℙ3)∨(1)).

Proof. The variety 𝑌 is an irreducible holomorphic symplectic manifold of dimension 6 and ℙ3

is a lagrangian subspace of 𝑌. The symplectic form 𝜎𝑌 gives a duality between ℙ3 and Ωℙ3 ,
but 𝜎𝑌 on the tangent bundle is zero; this duality is the one that sends ℙ3 to Ωℙ3 which
are isomorphic. We know that the exceptional locus of this blow-up is 𝐼 ≅ ℙ(ℙ3) ≅ ℙ(Ωℙ3).
We define ℙ3(1) ⊠ ℙ3(1) ∶= 𝑝∗

1
(ℙ3(1)) ⊗ 𝑝∗

2
(ℙ3(1)). Since on 𝐼 two ℙ2 fibrations are well

defined, if we call 𝐻1 = 𝑝∗
1
(ℙ3(1)) and 𝐻2 = 𝑝∗

2
(ℙ3(1)), we can say that Pic(ℙ3 × ℙ3) is gen-

erated by ℙ3(1) ⊠ ℙ3(1). By Lefschetz’s theorem for the Picard group, we know that Pic(𝐼) =
Pic(ℙ3 × ℙ3) = ⟨𝐻1,𝐻2⟩, where𝐻1 comes from the first fibration and𝐻2 comes from the second
fibration. □

In the next theorem we show that a sufficient condition for an automorphism 𝜓 of 𝐵𝑙Γ𝑌 to
descend to an automorphism of 𝑌 is to not exchange the fibres of the two ℙ2 fibrations.

Theorem 4.7. Let K̃ be a manifold ofOG6 type obtained as a resolution of a moduli space. Let 𝜑 ∈

Aut(K̃) be an automorphism of prime order𝑝,𝑝 ≠ 2, and suppose that there exists a class𝐸 ∈ NS(K̃)

with 𝐸2 = −2 and divisibility 2 which is preserved by the induced action of 𝜑, then 𝜑 is induced at
the quotient. Denote by 𝜓 the lifted action on 𝑌 and assume that the 256 singular points of 𝑌 are
pointwise fixed by 𝜓, then 𝜓 lifts to an automorphism 𝜓 of 𝑌.
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To give a proof of Theorem 4.7 we need the following lemma.

Lemma4.8. Let𝑓 be an automorphism of𝐵𝑙Γ𝑌 that leaves invariant the exceptional divisor, and𝑓∗
the induced action on Pic(𝐼) = ⟨𝐻1,𝐻2⟩. Then 𝑓∗ is the identity or 𝑓∗(𝐻1) = 𝐻2 and 𝑓∗(𝐻2) = 𝐻1.

Proof. In the proof we denote ℙ3(1) by 𝐻 and (ℙ3)∨(1) by 𝐻∨. By assumption 𝐻1 = 𝑝∗
1
(𝐻) and

𝐻2 = 𝑝∗
2
(𝐻∨) are the generators of the hyperplane sections of 𝑝1 and 𝑝2. Note that𝐻1 corresponds

to the cycle [(𝐻 × (ℙ3)∨) ∩ 𝐼] and 𝐻2 corresponds to the cycle [(ℙ3 × 𝐻∨) ∩ 𝐼] where the class is
in the Chow group. Moreover 𝐻2

1
is the class corresponding to the cycle [(𝑙 × (ℙ3)∗) ∩ 𝐼], where

the class is in the Chow group. Moreover, for 𝐻2 it holds the same: 𝐻3
2
is the class corresponding

to the cycle [(ℙ3 × 𝑝) ∩ 𝐼]. This is the fibre of the closed point 𝑝 and this is isomorphic to ℙ2. The
product 𝐻2

1
𝐻3
2
is equal to 1, since this is an intersection of a line and a ℙ2 in a generic position.

With the same argument, but exchanging the role of𝐻1 and𝐻2 we obtain that𝐻3
1
𝐻2
2
is equal to 1.

The pullback commutes with the intersection product, hence for dimensional reasons the product
𝐻𝑘
1
is equal to zero when 𝑘 ⩾ 4 and the same holds true for 𝐻2. Moreover, since the pullback

operation commutes with the intersection form, we have that 𝑓∗(𝐻1)
5 = 𝑓∗(𝐻5

1
) = 0. The action

of 𝑓∗ preserves the Picard group of 𝐼; hence, we can denote 𝑓∗(𝐻1) = 𝛼𝐻1 + 𝛽𝐻2 and 𝑓∗(𝐻2) =

𝛾𝐻1 + 𝛿𝐻2. With this notation we have:

(𝑓∗𝐻1)
5 =

5∑
𝑖=0

(
5

𝑖

)
𝛼𝑖𝛽5−𝑖𝐻𝑖

1𝐻
5−𝑖
2 = 10𝛼2𝛽3𝐻2

1𝐻
3
2 + 10𝛼3𝛽2𝐻3

1𝐻
2
2 = 10𝛼2𝛽3 + 10𝛼3𝛽2.

Furthermore we have

𝛼2𝛽2(𝛼 + 𝛽) = 0.

In the same way for𝐻2 we obtain:

𝛾2𝛿2(𝛾 + 𝛿) = 0.

After some straightforward computation we obtain the following six cases:{
𝑓∗(𝐻1) = 𝐻1

𝑓∗(𝐻2) = 𝐻2

{
𝑓∗(𝐻1) = ±(𝐻1 − 𝐻2)

𝑓∗(𝐻2) = 𝐻2

{
𝑓∗(𝐻1) = 𝐻1

𝑓∗(𝐻2) = ±(𝐻1 − 𝐻2){
𝑓∗(𝐻1) = 𝐻2

𝑓∗(𝐻2) = ±(𝐻1 − 𝐻2)

{
𝑓∗(𝐻1) = 𝐻2

𝑓∗(𝐻2) = 𝐻1

{
𝑓∗(𝐻1) = ±(𝐻1 − 𝐻2)

𝑓∗(𝐻2) = 𝐻1.

We can notice that 𝑓∗(𝐻1) = ±(𝐻1 − 𝐻2) is not allowed. In fact, let 𝑙1 ⊂ 𝑝−1
1
(𝑝) ≃ ℙ2 and let 𝑙2 ⊂

𝑝−1
2
(𝑞) ≃ ℙ2 be two lines which lie in the two different fibrations. Since 𝑓∗𝐻1.𝑙1 = 𝑓∗(𝑓

∗𝐻1.𝑙1) =

𝐻1.𝑓∗𝑙1, we notice that 𝑓∗𝑙1 is a line which means 𝑓∗𝑙1 ≅ ℙ1 since 𝑓 is an automorphism and for
this reason𝐻1.𝑓∗𝑙1 could be 1 or 0. Assume that𝐻1.𝑓∗𝑙1 = 1 and that 𝑓∗(𝐻1) = 𝐻1 − 𝐻2. Wewant
to compute the intersection (𝐻1 − 𝐻2) ⋅ 𝑙1 = 𝐻1 ⋅ 𝑙1 − 𝐻2 ⋅ 𝑙1. It holds that 𝐻1 = [(𝐻 × (ℙ3)∨) ∩

𝐼] and 𝑙1 = [(𝑝 × 𝑙∨
1
) ∩ 𝐼] where 𝑙1 = 𝑝−1

1
(𝑝). The point 𝑝 and the hyperplane 𝐻 are generically

disjoint in ℙ3, hence 𝐻1 ⋅ 𝑙1 = 0. On the other hand 𝐻2 = [(ℙ3 × 𝐻∨) ∩ 𝐼] hence 𝐻2 ⋅ 𝑙1 = 1 by
the generic position of the hyperplane 𝐻∨ and the line 𝑙∨

1
in (ℙ3)∨. We deduce that (𝐻1 − 𝐻2) ⋅
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𝑙1 = 𝐻1 ⋅ 𝑙1 − 𝐻2 ⋅ 𝑙1 = −1 which is absurd. This holds true also in the other similar cases using
properly 𝑙1 or 𝑙2 and 𝐻1 or 𝐻2. We can conclude that the two possible actions of 𝑓∗ on Pic(𝐼) are
the identity and the automorphism that exchanges𝐻1 and𝐻2. □

Proof of Theorem 4.7. By Proposition 4.5we know that𝜑 ∈ Aut(K̃) lifts to an automorphism𝜓 on𝑌
hence 𝜑 lifts to a birational transformation of𝑌, and this implies that 𝜑 is induced at the quotient.
By assumption the singular points of 𝑌 are pointwise fixed hence 𝜓 lifts to 𝜓. By Lemma 4.8 we
know the action of 𝜓 on Pic(𝐼), hence we deduce that if the order of the automorphism is prime 𝑝,
with 𝑝 > 2, the action is the identity on Pic(𝐼). As a consequence the fibres of the twoℙ2 fibrations
are not exchanged and we can define an automorphism 𝜓 on 𝑌. □

5 APPLICATIONS

In this section we give an application of the two criteria for induced automorphisms described
in Sections 3 and 4. The lattice-theoretic criterion in Section 3 allows to determine if an auto-
morphism or a birational transformation of a manifold of OG6 type which is at least birational to
K̃𝑣(A, 𝜃) is induced by an automorphism of the abelian surface A.
Similarly to determine if an automorphismor a birational transformation of amanifold K̃𝑣(A, 𝜃)

lifts to a birational transformation of the manifold of K3[3] type involved in theMRS construction,
it is enough to know its induced action on the second integral cohomology lattice.

Proposition 5.1. Let 𝑋 be a manifold of OG6 type which is a numerical moduli space, and let
G ∈ Bir(𝑋) be a finite group of induced birational transformations, then G ⊂ Bir(𝑋) is a group of
birational transformations induced at the quotient.

Proof. If 𝑋 is a numerical moduli space, then by Theorem 1.1 𝑋 is birational to the moduli space
K̃𝑣(A, 𝜃). If the group G is induced, then by Corollary 3.8 it is numerically induced, hence there
exists a class of (1, 1)-type, of square −2 and divisibility 2, invariant with respect to the action of
G. By Theorem 1.3 G is induced at the quotient. □

Weconsider the classification of non-symplectic automorphisms of prime order onmanifolds of
OG6 type given in [10, Table 1], where the author considers amanifold ofOG6 type, a fixedmarking
𝜂 ∶ H2(𝑋, ℤ) → 𝐋 of𝑋, and classifies the invariant and the coinvariant sublattices, denoted by 𝐋G
and 𝐋G, respectively, with respect to the induced action on the second integral cohomology lattice
by a non-symplectic automorphism of prime order. More precisely, the images of non-symplectic
automorphisms of prime order of the representation map

𝜂∗ ∶ Aut(𝑋) → O(𝐋)

𝑓 ↦ 𝜂◦𝑓∗◦𝜂−1

are classified. We use the lattice-theoretic criterion of Theorem 1.2 to determine if a non-
symplectic automorphism of a manifold of OG6 type is induced. Similarly we use the lattice-
theoretic criterion of Theorem 1.3 to determine if an automorphism is induced at the quotient.
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Remark 5.2. If𝜑 ∈ Aut(𝑋) is a non-symplectic automorphismof prime order𝑝, by [10, Proposition
3.3] we know that 𝑝 ∈ {2, 3, 5, 7}. Moreover if we denote by G the cyclic group of prime order
generated by 𝜑, then by [10, Remark 3.2] we can assume that 𝐋G = NS(𝑋) and 𝐋G = T(𝑋) is the
transcendental lattice.

Remark 5.3. In Table 1 there is a classification of invariant and coinvariant sublattices with respect
to a non-symplectic automorphism of prime order on a manifold of OG6 type [10, Table 1]. If|G♯| = 2, then G♯ exchanges the two generators of 𝐋♯, hence there are no vectors 𝑣 ∈ 𝐋 such that
𝑣2 = −2 and (𝑣, 𝐋) = 2 and that are fixed by G. In this case 𝑋 is not a numerical moduli space.

5.1 Proof of Theorem 1.4

Proof. In Table 1 we have a classification of 𝐋G. We know by Remark 5.2 that 𝐋G = 𝐋1,1 hence by
Theorem 1.1, checking the numerical conditions, we determine if 𝑋 is a numerical moduli space.
If |G| = 2 by Proposition 2.3, we know that for every 𝑣 ∈ 𝐋G it holds that (𝑣, 𝐋) = 1. In this way

we exclude cases 1, 2, 3, 6, 7, 11. Furthermore in cases 4 and 5, the manifold 𝑋 is not a numerical
moduli space because by Proposition 3.3 the signature of𝚲1,1

8
is (2, 0); hence it does not contain𝐔

as a direct summand. Moreover in cases 23 and 24 if 𝑣 is a vector in 𝐋G = 𝐔⊕𝐃4(−1) or in 𝐋G =

𝐔(2) ⊕ 𝐃4(−1) with 𝑣2 = −2, then (𝑣, 𝐋G) = 1. By Remark 2.1 (𝑣, 𝐋) = 1 hence in these cases 𝑋
is not a numerical moduli space. In case 8 by Proposition 3.3 the signature of 𝚲1,1

8
is (2, 1). In the

non-symplectic setting 𝐋G = T(𝑋) and𝚲1,1
8
are orthogonal complement in the unimodular lattice

𝚲8 hence by Proposition 2.4 𝑙(𝐋
♯
G
) = 𝑙((𝚲1,1

8
)♯) = 3. The lattice 𝚲1,1

8
is a 2-elementary lattice, its

signature is (2, 1) and the length of its discriminant group is 3, hence it does not contain any copy
of 𝐔 as a direct summand. We can conclude similarly in case 13, since the signature of 𝚲1,1

8
is

(2, 2) and the length of its discriminant group is 4. In cases 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22
we know the signature, the quadratic form and the length of the discriminant group of the 2-
elementary lattice𝚲1,1

8
, hence we check by [8, Theorem 1.5.2] that there exists a copy of𝐔 in𝚲1,1

8
.

Moreover we can compute the gluing subgroup since we know that 𝐋♯ = (ℤ∕2ℤ)⊕2. Then, by
Proposition 2.2 we find that there exists a vector of square −2 and divisibility 2 in 𝐋G = NS(𝑋),
hence the manifold 𝑋 is a numerical moduli space, so by Theorem 1.3 the automorphisms are
induced at the quotient. Between automorphisms that are induced at the quotient we can detect
which ones are induced by Theorem 1.2 only checking that the third condition of Definition 3.4 is
verified (the other two are already verified). Since we are taking anti-symplectic involutions, we
only need to check that the rank of 𝐋G is even and we deduce that in cases 12, 14, 15, 16, 17, 18 the
automorphisms are also induced.
If |G| = 3 in case 1, the manifold 𝑋 is not a numerical moduli space because by Proposition 3.3

the signature of𝚲1,1
8
is (2, 0) hence we cannot find any copy of𝐔 in it as a direct summand. In case

2 of |G| = 3 and for |G| = 5 there is a copy of𝐔 in 𝐋G hence in𝚲1,1
8
which is absurd. Moreover we

can compute the gluing subgroup sincewe know that𝐋♯ = (ℤ∕2ℤ)⊕2. Then, by Proposition 2.2we
find that there exists a vector of square−2 and divisibility 2 in𝐋G = NS(𝑋), hence𝑋 is a numerical
moduli space and the automorphism is induced at the quotient. Moreover in the latter two cases
the third condition of Definition 3.4 is verified; hence the automorphisms are also induced.
If |G| = 7, the manifold 𝑋 is not a numerical moduli space because by Proposition 3.3 the sig-

nature of 𝚲1,1
8

is (2, 0); hence it does not contain any copy of𝐔 as direct summand. □
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