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A B S T R A C T

In intensive farming systems the facilities have a central role on both animal welfare and animal production all
this paving the way of researching new housing systems and management strategies for reducing the impacts.
In particular, in the dairy cattle sector, the early detection of irregular productions is fundamental for animal
health and safety. On the other hand, despite the growing interest concerning the modelling and forecasting
daily production data, there is lack of studies devoted to identification of anomalous data. To this regard, in
this work, a data driven approach for detecting milk production and behaviour anomalies is presented and
applied to three farms selected as case study. The DAIRY CHAOS procedure proposed in this paper bases
on two numerical algorithms having the scope of separately detect anomalies daily data for a single cow.
Both the algorithms presented hereinafter have statistical foundations and take in input daily resting time,
milk yield and climate data respectively recorded by pedometer worn by the cow, automatic milking robot
and a thermo-hygrometer data logger installed in each barn. The first algorithm takes into consideration three
indicators, namely Relative Yield Difference, Relative Laying time Difference and Cumulative Discomfort Index.
An anomaly, i.e. a deviation from a normal value, is determined, for a single cow, for a specific day, if the
three conditions assessing a noticeable deviation from the normal values of the three indicators above are
contemporary verified. The second algorithm, by means of a multifit procedure, introduces the concept of
reliability of robust statistics and provides statistically solid, since not affected by outlier values, milk yield
and laying time trends for each animal. The application, in a production context, of the procedure proposed
here can result extremely useful for the identification of animals suffering heat stress and therefore can become
a support to the farmer’s decisions for the mitigation of the heat stress effects and a more efficient management
of the animals.
1. Introduction

In the dairy cattle sector, the cornerstones of sustainability can
be recognised as milk production and milk quality, cow health and
welfare, efficiency in the use of raw resources, and emissions re-
duction (Strpić et al., 2020). Animal welfare is strictly related to
sustainability, due to the consequences in terms of milk quantity and
quality, which affect the efficiency of the use of natural resources. For
this purpose, a crucial point in the dairy cattle sector is the prevention
and the proper management of the heat stress, as it is markedly
jeopardising animal welfare in several countries in the Mediterranean
area. The sudden increase in temperatures coupled with more frequent
occurrences of extreme events observed in the recent years resulting
from climate change, is having serious effects also on livestock pro-
duction (Neves et al., 2022). Heat stress in dairy cows can be defined
as the stress induced to the cattle when they are unable to dissipate
heat without modifying the body thermal balance. Heat stress is usually
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related to environmental conditions, for example, in animals reared
in environment characterised by high temperature, high humidity or
exposed to strong solar radiation (Charlton et al., 2013; Herbut and
Angrecka, 2017; Thornton et al., 2022; West, 2003; Bovo et al., 2022).
In few cases, heat stress can be attributed to an internal heat over-
production by the animal (Bernabucci et al., 2014; Kadzere et al.,
2002). Moreover, as widely described by literature, the heat stress
effects will most likely continue to increase due to ongoing trend of
temperatures (Ji et al., 2020; Burhans et al., 2022; Moore et al., 2023).
In this scenario, several studies have shown how dairy cows subjected
to adverse climatic conditions and heat waves, are often affected by
stress (Cowley et al., 2015), with negative consequences not only on
animals’ health, but also on milk yield and milk quality and animal
behaviour. Currently, heat stress is among the most investigated issues
in the context of dairy cows, and is the subject for continuous analysis
vailable online 9 February 2024
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Fig. 1. Trend of the recent bibliography investigating the effects of the heat stress on
dairy cows.
Source: Scopus (Elsevier, 2023).

and insights. As a further confirmation, Fig. 1 shows how the number
of publications investigating the effects of the heat stress on dairy cows
is constantly increasing in time (the trend covers a 30-year time span
and represents the number of papers extracted by Elsevier (2023) by
filtering for title, keywords and abstract).

On the other hand, the continuous increase and development of
Precision Livestock Farming (PLF) techniques, representing an alterna-
tive approach for the management of the livestock aiming to increase
both farm sustainability and animal welfare by the automatic real-
time monitoring and controlling, is pushing the research towards the
development of more complex numerical models. In fact, PLF paved
the way for the collection and development of heterogeneous dataset.

Moreover, the recent increasingly widespread adoption of Auto-
matic Milking System (AMS) technology and the availability of more
precise climate data have facilitated the calibration of methods aimed
at quantifying and predicting heat stress in a more accurate man-
ner (Bonora et al., 2018; Benni et al., 2020). The availability of large
dataset has provided the conditions for the application of advanced
numerical techniques already applied in other fields of research.

The use of sensors that continuously collect punctual data regarding
animal production, animal behaviour, animal welfare and the thermo-
hygrometric conditions in the barn, allowed development of mathe-
matical models capable on one hand of clustering animals based on
their behaviour and characteristics and on the other, to quantitatively
predict the daily milk yield as a function of the climatic conditions of
the barn (Bovo et al., 2021).

As a matter of fact, several recent papers investigated the relation
between environmental conditions and one or more animal-based indi-
cators with the main objective of modelling short- or long-term effects
of heat stress. In most of these works, the environmental conditions
have been modelled by the Temperature–Humidity Index (THI) in the
barn (Chamberlain et al., 2022) or indices derived by the THI, like the
Heat Load Index (HLI), developed mainly for animals raised outdoors
and considering also air velocity and solar radiation values (Lees et al.,
2018). As far as the animal-based indicators are concerned, a large part
of the research directly focused on milk yield and tried to establish
numerical models for the assessment of the milk yield reduction or
for the evaluation of the time lag between heat stress condition and
production drop (Ekine-Dzivenu et al., 2020). On the other hand, heat
stress is well correlated also to modification of the daily routine of the
animals and the daily laying time, i.e., the number of hours in which
the animal lays down, is a well recognised animal-based feature rather
simple to measure and at the same time strongly influenced by heat
stress. It is worth noticing that despite the growing interest concerning
modelling and forecasting milk yield and animal behaviour data, there
is a lack of studies investigating the identification of days with milk
2

Table 1
Acronyms and labels.

Code Type Unit Brief description

THI Float – Temperature-Humidity Index
Datetime Datetime – Date of report
Farm_id String – Code of the farm
Animal String – Animal ID
Parity Integer – Number of lactations
DIM Integer – Days In Milk
DMY Float kg/day Daily Milk Yield
DLT integer h/day Daily Laying Time
RYD Float – Relative Yield Difference
RLD Float – Relative Laying time Difference
CDI Float – Cumulative Discomfort Index
MYT Float – Multifit Yield Threshold
MLT Float – Multifit Laying time Threshold

yield anomalies. The real time detection of milk yield anomalies could
be of fundamental importance to establish animal health and welfare.
To this regard, the present paper describes a data driven approach for
detecting milk production and behavioural anomalies and applies it to
three farms selected as representative case study. The DAIRY CHAOS
(Data driven Approach Identifying daiRY Cows affected by HeAt lOad
Stress) procedure proposed in the paper is based on two numerical
algorithms, that have the objective of separately detect daily anomalies
data for a dairy cow. Both algorithms use statistical foundations and
take as input Daily Laying Time (DLT), Daily Milk Yield (DMY) and
climate data. Data is recorded respectively by pedometer worn by the
cow, automatic milking robot and a thermo-hygrometer data logger
installed in each barn. The first algorithm takes into consideration three
indicators, namely Relative Yield Difference (RYD), Relative Laying
time Difference (RLD) and Cumulative Discomfort Index (CDI). An
anomaly, i.e. a deviation from an ideal value, is determined, for a
single cow, for a specific day, if the three conditions assessing a
noticeable deviation from the expected values of RYD, RLD and CDY are
simultaneously verified. The second algorithm introduces the concept
of reliability of robust statistics and provides statistically solid trends
of milk yield and laying time for an animal.

The paper is structured in the following way: Section 2, introduces
the concept of ideal lactation curve, the concept of anomaly, the two
algorithms used by the procedure and the main characteristics of the
dataset adopted for the application of the method. Section 3 shows the
main results of the method applied to the selected dataset and provides
insights and details into the usefulness and reliability of the method
in both theoretical and real applications. Section 4 summarises the
main conclusions of the paper, highlights potential and criticality of the
method and provides the indications that should guide future research
and developments. For the sake of clarity, Table 1 shows acronym, type,
unit and description of data and parameters used in the paper.

2. Materials and methods

This section is structured in the following way. First, the description
of the main characteristics of the dataset used in the study is intro-
duced. Then, a focus on the lactation curve model assumed in the work
is reported. Moreover, the methodology used for the establishment of
a cross-correlation analyses between DMY and THI and the concept
of anomaly are described. The last section provides the details of the
two algorithms which constitute the basis for the data-driven anomaly
detection method proposed in this paper.

2.1. Dataset description

The data used in the work were gathered from March 2020 to May
2022 in three farms (named CR04, MN05 and MN07) located in the
Po Valley region, in northern Italy (see Fig. 2). Each farm is equipped
with two AMSs Merlin (Fullwood Packo, England) that collect daily
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Fig. 2. Map of the position of the three barns indicated with three red dots: Italian territory (left) and regional territory (right).
data on milk yield and milk quality for each cow. The size of the
three herds is similar. The three farms have about 120 milking cows
in each farm. The daily laying time, i.e. the number of hours in which
the animal lays down, is collected by a pedometer mounted on each
animal and is automatically transferred, during the milking session of
a single animal, to the software that manage the AMSs. In order to
uniform the dataset length of the different cows, the lactation period
was assume at the maximum of 305 days in milk (DIM). Therefore,
for cows having a long lactation, only the first 305 days have been
considered. Moreover, a lactation has been considered valid for the
analyses only if it contains data at least for 250 days. In the two-
year time span under consideration, CR04 provided data of 209 unique
animals and 412 valid lactations, MN05 had data of 146 unique animals
and 246 valid lactations, MN07 collected data of 291 unique animals
for a total of 472 valid lactations. In total, the number of unique
animals in the dataset is 646 and the number of valid lactations is 1130,
with an average value of 1.75 lactation/cow.

A thermo-hygrometer data logger, PCE-HT71, with an accuracy
of 3% for relative humidity and of 1 ◦C for temperature, has been
positioned inside each barn approximately in the same position at the
centre of the barn surface and at the same height of about 2 m from
the pavement. The three thermo-hygrometer data loggers covered the
same time span period from March 2020 to May 2022. The THI values
adopted in the analyses was calculated as indicated by the National
Research Council in Kelly and Bond (1971), from the data collected by
the thermo-hygrometer:

𝑇𝐻𝐼 = 1.8 ⋅ 𝑇 + 32 − [0.55 − 0.0055 ⋅ 𝑟𝐻 ⋅ (1.8 ⋅ 𝑇 − 26)] (1)

where 𝑇 is the air dry bulb temperature (◦C) and 𝑟𝐻 is the air relative
humidity (%). The daily average THI has been computed as the mean
in 24 h.

A statistical description of the dataset is provided in Table 2 for
each farm. The most common statistical parameters are reported for
the features of interest for the analyses (DMY, parity number and
DLT). Statistics for DIM are not reported since its value is uniformly
distributed between 1 and 305 days for all the three herds.

2.2. Lactation curve modelling

The lactation curve, i.e. the relation between DMY and DIM is
assumed in accordance with the Wood’s model (Wood, 1967):

𝐷𝑀𝑌 (𝐷𝐼𝑀) = 𝑎 ⋅ 𝑒−𝑏⋅𝐷𝐼𝑀 ⋅𝐷𝐼𝑀𝑐 (2)
3

Table 2
Statistical summary of the features DMY, parity number and DLT for the three farms.

Min 25% 50% 75% Max Mean Std

DMY ( kg
day )

CR04 0.9 30.5 36.7 43.8 76 37.0 9.7
MN05 0.9 35.4 41 48.7 79.2 41.8 10.6
MN07 1.5 33.6 40 48.3 82 41.1 11.1

Parity (–)
CR04 1.0 1.0 2.0 4.0 8.0 2.7 1.6
MN05 1.0 1.0 2.0 3.0 8.0 2.0 1.2
MN07 1.0 1.0 2.0 3.0 8.0 2.3 1.4

DLT ( h
day )

CR04 0.0 8.0 10.0 11.0 19.0 9.9 2.2
MN05 0.0 10.0 12.0 14.0 23.0 11.7 2.8
MN07 0.0 8.0 10.0 11.0 19.0 9.6 2.4

where DMY is the daily milk yield at a lactation stage equal to the DIM
value and 𝑎, 𝑏 and 𝑐 are three parameters that control the shape of
the lactation curve: 𝑎 is the scaling factor, that controls the production
at beginning of lactation and peak production, 𝑏 and 𝑐 influence re-
spectively the post peak behaviour and the final slope of the lactation
curve (Silvestre et al., 2006). Data was stratified by parity and the
model in Eq. (2) was fitted. As shown in Fig. 3, the main difference in
lactation curves is between the model of primiparous and the models of
multiparous cows. Primiparous cows (i.e. the red line) generally present
a lower peak production with a more flat post-peak behaviour. All the
other parities show a similar behaviour with a more evident production
peak at about 50–60 days in milk.

Indeed, first parity cows show lower peak in production, but main-
tain an almost constant DMY until the end of the lactation period
(i.e. 305 days). On the other hand, the curves of cows with parity
greater than 1, have an higher peak DMY but a steeper decrease in
the second stage of lactation (for DIM value between 50 and 200
days). In general, the total milk yield for a lactation increases after the
first one. For these reasons, in order to obtain suitable characteristic
lactation curves for the study, the dataset has been divided in two
subset, analysed independently. A first subset with data of lactations
with parity = 1 and a second subset containing data with parities ≥ 2.
The parameters𝑎, 𝑏 and 𝑐 are obtained by a non-linear least square
minimisation, using the lmfit (Newville et al., 2014) library for Python.
The results are shown in Fig. 4.
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Fig. 3. Best fitting curves for the different parity numbers.

The final equations of the two best fit curves are:

𝐷𝑀𝑌1(𝐷𝐼𝑀) = 14.9 ⋅ 𝑒−0.0025⋅𝐷𝐼𝑀 ⋅𝐷𝐼𝑀0.255 (3)

𝐷𝑀𝑌2(𝐷𝐼𝑀) = 23.9 ⋅ 𝑒−0.0039⋅𝐷𝐼𝑀 ⋅𝐷𝐼𝑀0.247 (4)

respectively, for primiparous cows Eq. (3) and for multiparous cows
Eq. (4).

2.3. Cross-correlation analysis

A further preliminary analysis has been carried out by implementing
a cross-correlation was carried out between the time series of median
DMY and median THI, in order to identify and quantify in an aggre-
gated way the relationship between indoor climatic conditions in the
barn (synthesised by the THI) and DMY of the herd. Indeed, a reduction
of the milk production is one of the most recurring and evident effects
induced by heat stress conditions (Wildridge et al., 2018). By means
of the cross-correlation analysis, it is possible to quantify the herd’s
response time (in days) between high THI values and drop in DMY.

The time series of median DMY and median THI have been con-
sidered in the cross-correlation evaluation. Fig. 5 shows the trend of
the time series of median DMY (black line) and median THI (green
and red lines) for the whole dataset, which gather the three farms. The
cross-correlation analysis has been computed between the time series
of median THI with a forward-lagged version of median DMY, shifted
by an increasing number of days 𝑠 ∈ [0, 100]. The correlation has been
estimated with the Pearson’s correlation coefficient reported in (5):

𝜌𝑠(𝐷𝑀𝑌𝑠, 𝑇𝐻𝐼) =
𝑐𝑜𝑣(𝐷𝑀𝑌𝑠, 𝑇𝐻𝐼)
𝜎𝐷𝑀𝑌 ⋅ 𝜎𝑇𝐻𝐼

(5)

where 𝜌𝑠 is computed with a forward-lag of 𝑠 days for median 𝐷𝑀𝑌𝑠,
𝑐𝑜𝑣 is the covariance function and 𝜎𝑥 is the variance of the respective
variable.

As reported in literature, THI can influence production with effects
on milk yield on both long term and short term (Wildridge et al.,
2018; Tao et al., 2018; M’Hamdi et al., 2021). To capture these effects,
multiple cross-correlations were carried out with different thresholds
for THI, starting from 𝑇𝐻𝐼 ≥ 30 (i.e. including all data) to 𝑇𝐻𝐼 ≥
70, with a step of 1 THI. In Fig. 6 is shown the difference between
two cross-correlation functions, i.e. 𝜌𝑠(𝐷𝑀𝑌𝑠, 𝑇𝐻𝐼), obtained by using
dataset filtered by THI. In the two cases the data considered were those
higher than THI thresholds of 30 and 65, respectively. In the figure, the
minimum correlation value and the corresponding time lag �̄� have been
reported.

On the one hand, the first function shows the long time effects
of heat stress, which result in a lagged response of about 50 days.
On the other hand, filtering by high THI values, highlights the short
time response to heat stress, since the maximum negative correlation
occurs 3–5 days after a day characterised by high THI. By collecting
for each THI threshold the minimum correlation coefficients and the
corresponding time lag �̄�, it is possible to find the relationship between
time lag and THI and response time of DMY, which is plotted in Fig. 7.
4

The time lag shows a progressively declining trend starting from 40–
45 days up to a THI equal to 57, where the trend become rather flat
around values of 4–5 days. From this analysis it is possible to conclude
that maximum milk yield drop occurs about 4–5 days after the presence
of high THI values in the barn, where high THI values are those higher
than 57.

2.4. The DAIRY CHAOS approach

The DAIRY CHAOS procedure proposed in this work has the main
goal to detect the arising of anomalous data in the production and
behaviour trends of a dairy cow and induced by heat stress. The
identification of the anomalous days follows the flowchart shown in
Fig. 8.

Two different algorithms identify the potential anomalous daily
data by following two independent paths. If both the algorithms iden-
tify the presence of an anomaly the proposed method classifies the day
as anomalous for that cow. In the following, the two algorithms are
deeply illustrated and commented.

2.4.1. Indicator-based algorithm
The first indicator-based algorithm used in the method, takes into

consideration the three indicators listed below and already cited in the
introduction section:

• Relative Yield Difference (RYD)
• Relative Laying time Difference (RLD)
• Cumulative Discomfort Index (CDI)

The RYD can be defined as the difference between relative differences
in milk yield between the DMY of a single cow and the baseline model
obtained for the whole herd. The baselines adopted in the study are
the two best fit curves obtained in Section 2.2, for primiparous cows
Eq. (3) and for multiparous cows Eq. (4). The RYD is then defined as:

𝑅𝑌𝐷 =
𝛥𝐷𝑀𝑌𝑡
𝐷𝑀𝑌𝑡−1

−
𝛥𝐷𝑀𝑌𝐵𝑡
𝐷𝑀𝑌𝐵𝑡−1

(6)

where 𝛥𝐷𝑀𝑌𝑡 = 𝐷𝑀𝑌𝑡−1 −𝐷𝑀𝑌𝑡 is the milk yield difference between
day 𝑡 and day 𝑡−1 for the specific animal, while 𝛥𝐷𝑀𝑌𝐵𝑡 = 𝐷𝑀𝑌𝐵𝑡−1−
𝐷𝑀𝑌𝐵𝑡 is the equivalent difference but calculated on the baseline
curve (i.e. the best fit curve). RYD is a parameter measuring how
different is the local trend of production curve of a specific animal
compared with the baseline production curve.

The DLT parameter is conceptually similar to RYD but it is calcu-
lated on the data of daily laying time of cows. This measure is known to
be related with heat stress (Hut et al., 2022) and is a reliable indicator
of modification of the animal behaviour as a response to heat stress
presence. In particular, a decrease in DLT is associated with increase in
level of stress. The RLD parameter is defined as:

𝑅𝐿𝐷 =
𝛥𝐷𝐿𝑇𝑡
𝐷𝐿𝑇𝑡−1

−
𝛥𝐷𝐿𝑇𝐵𝑡
𝐷𝐿𝑇𝐵𝑡−1

(7)

where: 𝛥𝐷𝐿𝑇𝑡 = 𝐷𝐿𝑇𝑡−1 − 𝐷𝐿𝑇𝑡 is the daily laying time difference
between day 𝑡 and day 𝑡 − 1 for the specific animal, while 𝛥𝐷𝐿𝑇𝐵𝑡 =
𝐷𝐿𝑇𝐵𝑡−1 − 𝐷𝐿𝑇𝐵𝑡 is the equivalent difference but calculated on a
baseline curve for laying time. In this case the best fit curve providing
the relation between laying time and DIM has an almost linear trend.
The following general equation has been assumed:

𝐷𝐿𝑇 (𝐷𝐼𝑀) = 𝑑 + 𝑒 ⋅𝐷𝐼𝑀 (8)

where: DLT (in hours) is the daily laying time, i.e. the time spent by
a cow laying down, at a lactation stage equal to the DIM value and d
and e are the two coefficients of the regression curve. The equations of
the two best fit curves, obtained respectively for the primiparous and
multiparous cows in the dataset, are:

𝐷𝐿𝑇 (𝐷𝐼𝑀) = 8.83 + 0.0121 ⋅𝐷𝐼𝑀 (9)
1
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Fig. 4. Best fit curves (red) for (a) primiparous and (b) multiparous cows. The blue dots represent the milk yield data collected by the AMS of the three farms.
Fig. 5. Trends of the median DMY (black line) and median THI (green and red lines) for the whole dataset.
Fig. 6. Cross-correlation performed with data filtered by THI. On the left, the whole dataset is considered (𝑇𝐻𝐼 ≥ 30). On the right, only data with 𝑇𝐻𝐼 ≥ 65 are considered.
𝐷𝐿𝑇2(𝐷𝐼𝑀) = 9.12 + 0.0133 ⋅𝐷𝐼𝑀 (10)

Finally, the CDI at time 𝑡 (𝐶𝐷𝐼𝑡) is obtained as the sum of the positive
contributions in a moving window of 𝑁 days of the terms (𝑇𝐻𝐼𝑖 − 72)
for 𝑖 = {𝑡 −𝑁, 𝑡 − (𝑁 − 1),… , 𝑡 − 1}. The formal definition is:

𝐶𝐷𝐼𝑡 =
𝑖

∑

𝑗=𝑡−𝑁
𝑇𝐻𝐼𝑗 − 72 ∀

(

𝑇𝐻𝐼𝑗 > 72
)

(11)

In this way, the CDI is a measure of the cumulative heat load in the
barn at the day 𝑡 and resulting as a sum of a defined period of 𝑁 days.
5

In this work 𝑁 was assumed equal to 5, in agreement with the results
in Section 2.3.

For the indicator-based algorithm, an anomaly (or deviation by a
typical trend) is identified, for a single cow and for a specific day
(𝑡) measured by the DIM value, if the following three conditions are
respected:

• 𝑅𝑌𝐷𝑡 < 𝛼, with 𝛼 < 0 to spot a decrease of the milk yield
• 𝑅𝐿𝐷𝑡 < 𝛽, with 𝛽 < 0 to spot a decrease of the laying time
• 𝐶𝐷𝐼 > 0
𝑡
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Fig. 7. Trend of the time-lag (shift) corresponding to the minimal correlation as a
function of the THI threshold.

The parameters 𝛼 and 𝛽 can be assumed or tailored by the user,
e.g. farmers, vets, technicians etc., adopting the detection method.

The occurrence of an anomaly for the generic animal is considered
as a day in which the animal suffered from heat stress.

2.4.2. Multifit-based algorithm
The second algorithm implemented by the method make use of a

multifit procedure (Fischler and Bolles, 1981) that identifies, for the
single cow, robust baselines for DMY and DLT as a function of DIM. In
fact, the multifit procedure is in general able to identify a more precise
solution in a fitting-related problem. Moreover, by the procedure it is
possible also to estimate the variance of the two parameters DMY and
DLT along the lactation curve. The second algorithm is based on the
concept of robust statistics and it uses the same information as the
first algorithm. If the daily data do not respect conditions imposed on
Multifit Yield Threshold (MYT), Multifit Laying time Threshold (MLT)
and CDI, the algorithm recognises the presence of anomaly data.

In order to define the Eq. (2), the three parameters 𝑎, 𝑏, and 𝑐 must
be defined. In order to consider the Wood function that best fit the
available data of a generic lactation of a specific animal, a least square
regression procedure can be adopted. A more robust statistics can be
obtained by randomly sampling the original dataset and producing a
series of different fitting curves, one for each sample. In this way, a
collection of Wood curves is obtained as:

𝐷𝑀𝑌𝑘(𝐷𝐼𝑀) = 𝑎𝑘 ⋅ 𝑒
−𝑏𝑘⋅𝐷𝐼𝑀 ⋅𝐷𝐼𝑀𝑐𝑘 (12)

where: 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 are the parameters of the 𝑘th curve. The sampling
and fitting process can be repeated N times, selecting each time a fixed
fraction f of the original data. In the work the values 𝑁 = 500 and
f = 20% were assumed. The obtained group of curves can be used to
select a reference curve and to define a measure of scattering of the
parameters 𝑎, 𝑏 and 𝑐 among curve and curve.

In some cases, physically unacceptable curves were obtained, e.g.,
curves with negative or infinite values or unrealistic trends. For this
reason, it was necessary to operate a selection of the meaningful curves
characterised by an initial positive derivative. An example of the main
results of the multifit process is shown in Fig. 9 for a representative
lactation of a generic cow. In the figure, the grey lines represent the
Wood curves obtained by the multifit procedure, the black line identify
the Wood curve obtained by the fit procedure on the whole dataset
represented by the red dots. Among the curves generated by the multifit
procedure, the one selected because considered more reliable for the
scope is the one that maximises the following quantity:

𝐸𝑌 ,𝑘 = (𝑌𝑘 − 𝑌 )∕𝑌 (13)

where: 𝐸𝑌 ,𝑘 is the relative difference on the total milk yield, i.e. the
milk yield of the lactation duration, 𝑌𝑘 is the total milk yield of the 𝑘th
curve and 𝑌 is the real total milk yield of the lactation as obtained by
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the sum of the real daily milk yield data recorded by the AMS.
In addition to the reference curve to use in the subsequent detection
procedure, using the milk yield values obtained from the various multi-
fit curves, it is possible to calculate the standard deviation 𝜎𝐷𝑀𝑌 (DIM)
of the DMY, for each DIM of the lactation. In this way the algorithm
provides for each DIM a reference value for daily milk yield, named
𝐷𝑀𝑌 , and the associated standard deviation, i.e. the couple of values
[𝐷𝑀𝑌 (𝐷𝐼𝑀); 𝜎𝐷𝑀𝑌 (𝐷𝐼𝑀)].

The same method was applied to the daily laying time, i.e. DLT.
In this case, the multifit procedure provides the collection of N linear
functions in the form:

𝐷𝐿𝑇𝑗 (𝐷𝐼𝑀) = 𝑑𝑗 + 𝑒𝑗 ⋅𝐷𝐼𝑀 (14)

where: 𝑑𝑗 and 𝑒𝑗 are the parameters of the 𝑗th curve. Among the
curves generated by the multifit procedure, the one selected because
considered the most reliable for the scope is the one that maximises
the following quantity:

𝐸𝐿,𝑗 = (𝐿𝑗 − 𝐿)∕𝐿 (15)

where: 𝐸𝐿,𝑗 is the relative difference on the total laying time, i.e. the
laying time in hours calculated along the lactation duration, 𝐿𝑗 is the
total laying time of the 𝑗th curve and 𝐿 is the real total laying time
during the lactation as obtained by the sum of the real daily laying
time data recorded by the pedometers. So, at the end, the algorithm
provides for each DIM a reference value for daily laying time, named
𝐷𝐿𝑇 , and the associated standard deviation, i.e. the couple of values
[𝐷𝐿𝑇 (𝐷𝐼𝑀); 𝜎𝐷𝐿𝑇 (𝐷𝐼𝑀)].

Fig. 10 shows the application of the multifit-based algorithm to
the daily laying time. In the figure, the grey lines represent the trend
obtained by the multifit procedure, the black line identify the trend
obtained by the fit procedure on the whole dataset represented by the
red dots.

For the multifit-based algorithm, an anomaly is identified, for a
single cow and for a specific day (𝑡) measured by the DIM value, if
the following three conditions are respected:

• 𝐷𝑀𝑌𝑡 < 𝐷𝑀𝑌𝑡 − 𝛾 ⋅ 𝜎𝐷𝑀𝑌 ,𝑡, with 𝛾 > 0
• 𝐷𝐿𝑇𝑡 < 𝐷𝐿𝑇𝑡 − 𝛿 ⋅ 𝜎𝐷𝐿𝑇 ,𝑡, with 𝛿 > 0
• 𝐶𝐷𝐼𝑡 > 0

Also in this case, the algorithm parameters 𝛾 and 𝛿 can be properly
assumed by the user and can be personalised for the single cow as a
function of the scatter and variability of its trends of milk yield and
laying time along the lactation.

Finally, by following the two separate paths it is possible to eval-
uate, for every DIM, if the generic animal is suffering heat stress
condition. This situation correspond to the case in which both the
algorithms detected an anomaly for the animal. The two algorithms,
based on completely different pipelines, are in this way combined in
order to obtain a more robust and stable procedure for the detection of
dairy cows affected by heat stress.

3. Results and discussion

3.1. Application of the multifit-based algorithm to three test-bed cases

The multifit procedure adopted by the multifit-based algorithm
and presented in the previous section follows a pipeline derived by a
fully robust statistics approach. The reader may wonder whether the
application of this procedure is robust even in the case of applications
to lactation curve data. In fact, to the knowledge of the authors, this
is the first work ever that applied this statistical procedure to the
daily milk yield data of dairy cows. Thus, in order to confirm the
opportunity of applying the multifit procedure also to this type of data,
this paragraph reports the main results obtained from the application
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Fig. 8. Flowchart of the DAIRY CHAOS approach.
Fig. 9. Example of DMY curves obtained by the multifit procedure (grey curves) and comparison with the curve obtained by a fit procedure (black line) on the whole dataset
(red dots) for a representative lactation.
of the multifit procedure to three examples believed significant because
representative of the possible real cases that may arise.

(a) Short period anomaly In the first test-bed, the multifit procedure
is applied to the case of a lactation curve affected by a production
anomaly involving few days. This case could simulate the scenario in
which the milk production of an animal has a sudden drop due to a few
intense days characterised by high temperature and humidity values
that induce evident heat stress effects. The objective of the test is to
show how the adoption of a multifit procedure can improve the accu-
racy of the prediction of the reference curve if compared to a standard
fitting procedure. For this, Fig. 11 shows the results of the multifit
procedure applied to a Wood’s curve with a short period anomaly.
The figure shows with the red circles the original data affected by an
anomaly of 5 days (between day and on the lactation period of 305 days
in total), in grey the curves provided by the multifit procedure with
in blue the selected one (obtained following the procedure described
in Section 2.4.2) and, for comparison, in green the curve obtained by
standard fit procedure on the whole dataset. By assuming the total milk
yield provided by the red dots as reference value, the relative error
7

calculated with the Eq. (13) is −0.018 and −0.001 respectively for
standard fit and multifit procedure, so practically nullifying the error.
The values reported above have been obtained adopting, in the multifit
algorithm, the value of 500 as random samplings and a value equal to
20% for the sampling fraction. These values have been selected after
a preliminary sensitivity analyses performed on the original dataset by
considering for the number of samplings a range going from 50 to 1000
and for the sampling fraction a range going from 10% to 80%. The
Fig. 12 reports the results of the sensitivity analyses and shows as the
two selected values of 500 and 20% guarantee to obtain the highest
value of 𝐸𝑌 for this type of anomaly.

(b) Long period anomaly
The second test-bed, similarly to the previous one, applies the

multifit procedure to an ideal Wood’s curve affected by a longer pe-
riod of production anomaly. This case should simulate the scenario
in which the milk production of an animal has a less marked drop
but which lasts for a longer period due to several days at medium-
high temperature and humidity values inducing long exposure to heat
stress. For this case, the results are reported in Fig. 13. As before, by
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Fig. 10. Example of DLT curves obtained by the multifit procedure (grey lines) and comparison with the line obtained by a fit procedure (black line) on the whole dataset (red
dots) for a representative lactation.

Fig. 11. Results obtained for the test-bed case with short period anomaly. Comparison between curves obtained by the multifit procedure (grey and cyan curves), the curve
obtained by a standard fit procedure (green line) on the whole dataset (red dots) for a representative lactation.

Fig. 12. Sensitivity analyses for short period anomaly case. Trend of 𝐸𝑌 as a function of (a) number of samplings and (b) sampling fraction.
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Fig. 13. Results obtained for the test-bed case long period anomaly. Comparison between curves obtained by the multifit procedure (grey and cyan curves), the curve obtained
by a standard fit procedure (green line) on the whole dataset (red dots) for a representative lactation.
Fig. 14. Sensitivity analyses for long period anomaly case. Trend of 𝐸𝑌 as a function of (a) number of samplings and (b) sampling fraction.
assuming the total milk yield provided by the red dots as reference
value, the relative error calculated with the Eq. (13) is −0.029 and
−0.015 respectively for standard fit and multifit procedure, so halving
the error and confirming also for this case the expected capabilities of
the multifit procedure. Also for this case, the values reported above
have been obtained adopting, in the multifit algorithm, the value of
500 as random samplings and a value equal to 20% for the sampling
fraction. The results of the sensitivity analyses performed on this type
of anomaly are summarised in Fig. 14 where it is showed that the two
selected values of 500 and 20% guarantee to obtain highest value of
𝐸𝑌 also for this type of anomaly.

(c) Absence of anomaly
The last test-bed case considers an ideal production scenario not

affected by anomaly but including the typical daily variations that
normally occur during the whole lactation of a dairy cow. The results of
this scenario are reported in Fig. 15. In this case multifit and standard
fit procedures are expected to return a similar relative error value.
And indeed it is, since the two relative errors are equal to −0.016 and
+0.018 respectively for standard fit and multifit procedure. The results
of this last case is not to be overlooked nor is it of little importance. In
fact, a positive, rigorous and complete judgement on the robustness of
the multifit procedure requires that it is reliable even in applications
where anomalies are not present. Again, the results reported above
have been obtained adopting, in the multifit algorithm, the value of
9

500 as random samplings and a value equal to 20% for the sampling
fraction. The results of the sensitivity analyses performed for the case
of absence of anomaly are summarised in Fig. 16. The outcomes of the
sensitivity analyses shows that the value of 𝐸𝑌 is rather fluctuating
and irregular with modification of the number of samplings and a
clear trend is not identifiable. On the other hand, the analyses shows
a more clear trend in the figure sampling fraction Vs. 𝐸𝑌 where, on
the opposite respect the two previous cases, the 𝐸𝑌 value decreases by
augmenting the sampling fraction value.

3.2. Application of the DAIRY chaos procedure to real data

In the present section, the application of the DAIRY CHAOS pro-
cedure to the real data collected in the three farms described in Sec-
tion 2.1 is reported. The procedure, adopting the two different al-
gorithms, has the scope of detecting the anomalous days for each
milked cow for the monitored period. Then, in order to provide useful
indication to the farmers, it is possible to obtain the number of animals
that every day present production drop and behaviour deviating by the
expected trend, effects that if in presence of high THI values can be
attributed to heat stress condition. In Fig. 17 is showed an example
of outcomes of the application of the indicator-based algorithm to the
milk yield data of a representative cow. In this work 𝛼 and 𝛽 have been
assumed equal to −0.05. The figure shows as every day the algorithm
classifies the data as a normal milk yield data or an anomalous milk
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Fig. 15. Results obtained for the test-bed case with absence of anomaly. Comparison between curves obtained by the multifit procedure (grey and cyan curves), the curve obtained
by a standard fit procedure (green line) on the whole dataset (red dots) for a representative lactation.
Fig. 16. Sensitivity analyses for the absence of anomaly case. Trend of 𝐸𝑌 as a function of (a) number of samplings and (b) sampling fraction.
yield data. A similar procedure is followed for the DLT of the cow
and moreover, the calculation of the CDI is performed. Finally, the
suspected anomalous days are identified if the three indicators 𝑅𝑌𝐷𝑡,
𝑅𝐿𝐷𝑡 and 𝐶𝐷𝐼𝑡, respect, for the day 𝑡, the three conditions described
in Section 2.4.1. Then, the DAIRY CHAOS procedure moves to the
analysis of the dataset but approaching with the pipeline of the multifit-
based algorithm. Fig. 18 shows the outcomes of the anomaly detection
process for the multifit-based algorithm on the milk yield data of a
representative lactation. The anomalous data are represented by the
dark red coloured dots, whereas the normal ones are in light blue. The
dashed line, represents the bounding curve and is obtained starting
from the boundary condition reported in Section 2.4.2 using a value for
𝛾 equal to 3.0. Instead, Fig. 19 shows the identification of the anomalies
in the time history of the DLT data of the same representative lactation
above cited. Also for this case, the anomalous data are represented by
the dark red coloured dots, whereas the normal ones are in light blue.
For the definition of the bounding curve (see the grey dashed line)
the value of 𝛿 equal to 3.0 has been adopted. After, the calculation
of the daily CDI values, the anomalous days are identified when the
three indicators 𝐷𝑀𝑌𝑡, 𝐷𝐿𝑇𝑡 and 𝐶𝐷𝐼𝑡, respect, for the day 𝑡, the three
conditions described in Section 2.4.2.

Finally, after that the two algorithms have been applied separately
to the daily data, the last step of the DAIRY CHAOS procedure crosses
the two judgements on the single cow and if both algorithms have
labelled the data of the generic day of the cow as anomalous, the day
10
is identified as a day on which the animal suffered heat stress. This last
step is reported in Fig. 20. The figure includes for the whole monitored
period (from March 2020 to May 2022) the daily average THI values,
the percentage of animals with anomalous data as resulting from the
two algorithms applied separately (see green line for the indicator-
based algorithm assessment and the orange line for the multifit-based
algorithm) and moreover the percentage of cows identified as suffering
heat stress when both the algorithms labelled the data of a cow as
anomalous for the particular day (see blue line in the same figure). As
can be seen in the figure, as expected, in correspondence of the periods
with the highest THI values, both the algorithms anomalous data,
with number of anomalies having peak values around 25% for both
the algorithms. Then, only a restricted percentage of these cows are
simultaneously detected by both algorithms as anomalous. So, the trend
of the percentage of animals in heat stress has peak values ranging
around 10% in the hottest days of the two years. Obviously, data on the
cows labelled as suffering heat stress can be used as useful information
for the daily management of the herd by the farmers. In fact, in this
way, the farmer can take the most effective decisions in order to ensure
the welfare and health of the animals by implementing targeted, timely
and customisable actions up to the scale of the individual animal. For
example, the farmer can operate regrouping the animals most sensitive
to heat stress and treat them with more intense soaking and ventilation
treatments. At the same time, this can make it possible to minimise
production losses with the lowest resource needs, thus increasing the
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Fig. 17. Example of application of the indicator-based algorithm to the milk yield data of a representative cow. In blue the recorded DMY data are reported. The orange line
represents the ideal trend whereas the red dots represent the day of production classified as anomalies by the algorithm.

Fig. 18. Identification of the DMY anomalies with the multifit-based algorithm.

Fig. 19. Identification of the DLT anomalies with the multifit-based algorithm.
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Fig. 20. Final response of the DAIRY CHAOS procedure.
profitability and the sustainability of the company. The present method
could be easily integrated in a decision-support system since it needs
of few data classes usually available in real time to the farmer.

4. Conclusions

In this paper a data driven approach for the identification of cows
affected by heat stress is presented. The procedure, called DAIRY
CHAOS, is based on two numerical algorithms, that separately detect
daily anomalies that can be attribute to heat stress. Each one of the two
algorithms take into consideration three indicators, two respectively
related to milk yield and lying time and one based on climatic data in
the barn. Following the procedure, an anomaly in the daily indicators
identified by both the algorithms for a specific cow, labels the cow
as suffering, for that specific day, heat stress. The originality of the
approach mainly consists in the cross-use of two numerical strategies
that start by different statistical approaches, are based on completely
different pipelines but provide results that are then combined in order
to obtain a more robust and stable procedure for the heat stress
detection and at the level of single animal. Thanks to the available
information, the farmers can take timely the most effective actions
for example moving the animals most sensitive to heat stress in the
most cool zones of the barn, treating them with more long soaking
cycles and activating for them more intense ventilation treatments. The
present data driven approach can be easily integrated in a decision-
support system since it needs of few data classes usually available in
real time to the farmer. The proposed approach represents one of the
first attempt in this field and of consequence requires further studies,
validation and application steps. These following steps will be mainly
devoted to the calibration of the operating coefficients of the algorithms
by comparison with recognised and already validated gold standard
features or indicators of heat stress condition for the single animal.
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