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Comment

1.  INTRODUCTION

Cluster-extent-based thresholding is a common approach 
in functional Magnetic Resonance Imaging (fMRI) analy-
sis to explore which parts of the human brain are acti-
vated under some stimuli of interest. This approach 
permits controlling the Type I error at the level of clusters 
of adjacent voxels, gaining power with respect to voxel-
wise inference approaches by exploiting the intrinsic spa-
tial structure of fMRI data (Nichols & Hayasaka, 2003).

However, the method is affected by the so-called spa-
tial specificity paradox. This paradox arises because the 
larger the identified cluster, the less information we obtain 
from classic cluster inference about the signal within it. 

Indeed, the method tests the null hypothesis that none of 
the voxels in the cluster are active. Rejecting this null 
hypothesis only allows to claim the presence of at least 
one active voxel within the cluster. Consequently, larger 
clusters provide less information about the number and 
spatial location of active voxels (Woo et al., 2014). More-
over, conducting follow-up inference within the cluster, or 
“drilling down,” introduces a “double-dipping” problem 
and leads to an inflated Type I error rate (Kriegeskorte 
et al., 2009).

The spatial specificity paradox can be resolved by 
making post-hoc inference on the True Discovery Propor-
tion (TDP), that is, the proportion of false null hypotheses 
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within a subset. In neuroimaging, post-hoc TDP inference 
procedures provide lower confidence bounds on the  
proportion of active voxels within clusters, simultane-
ously over all possible clusters of interest. The simultane-
ity characteristic of the confidence bounds makes them 
valid even under post-hoc selection, allowing for fol-
low-up inference within the cluster, unlike the cluster-
extent-based thresholding approach (Goeman et  al., 
2023; Rosenblatt et al., 2018).

The first approach that proposed simultaneous infer-
ence on TDP in the fMRI context is the “All-Resolution 
Inference” (ARI) method developed by Rosenblatt et al. 
(2018). However, ARI is parametric and can have low 
power in some scenarios, especially if correlated data 
such as fMRI are analyzed. It is well known that statisti-
cal analyses based on the permutation theory are supe-
rior in terms of power and underlying assumptions in 
fMRI data analysis since they adapt to the correlation 
structure of the p-values (Helwig, 2019; Winkler et al., 
2014). Permutation-based approaches to compute 
lower bounds for the TDP were first proposed by 
Meinshausen (2006) and Hemerik et al. (2019). However, 
these methods analyze only clusters consisting of the 
smallest kp-values. The SansSouci method of Blanchard 
et  al. (2020) extended this type of permutation-based 
simultaneous confidence bounds for the TDP to have 
the same flexibility as ARI, that is, for clusters defined in 
different ways, even post-hoc, as many times as the 
researcher wants. An alternative permutation-based TDP 
method was proposed by Vesely et al. (2023).

Two recent approaches have appeared in the literature 
to compute a lower bound for the TDP: Notip by Blain et al. 
(2022) and pARI by Andreella et al. (2023). Both methods 
build upon the work of Blanchard et al. (2020), each pro-
posing a different specific permutation-based TDP 
approach tailored to neuroimaging applications. In the 
work by Blain et  al. (2022), the authors compare their 
methods with ARI and SansSouci; the gain in power and 
reliability of permutation-based approaches over para-
metric methods is apparent. However, due to the parallel 
publication process, Notip and pARI have not yet been 
compared to each other. Blain et al. (2022) have made a 
comparison with pARI, but the settings of the method used 
in the study were not those recommended by Andreella 
et al. (2023). Therefore, a proper comparative analysis is 
still lacking. In this manuscript, we provide such an analysis.

The paper is organized as follows. Section  2 briefly 
revisits inference on the TDP. Subsection 2.1 gives a gen-
eral formulation of the permutation methods cited above 
(i.e., SansSouci, pARI, and Notip) before describing in 
detail the similarities and dissimilarities between Notip 
and pARI in Subsection 2.2. Finally, Section 3 revisits the 
analyses presented in Blain et al. (2022), comparing them 

to pARI as defined in Andreella et al. (2023). In this com-
parison, we follow Blain et al. (2022) exactly in terms of 
the choice of the datasets and evaluation criteria. We 
show that we replicate the results shown in Blain et al. 
(2022) regarding Notip, then add the pARI method under 
the specifications recommended by Andreella et  al. 
(2023). By following exactly the analysis choices made in 
the Notip paper, we make sure not to favor the pARI 
method, with which we are more familiar.

2.  CONTROLLING TRUE DISCOVERY  
PROPORTIONS

Consider the brain B = 1,…,m{ } ⊂ N composed of m vox-
els and, for each voxel i ∈B, a p-value pi corresponding 
to the null hypothesis that it is not active under the con-
dition of interest. We define by A⊆ B the unknown set of 
truly active voxels and by S⊆ B a generic non-empty 
subset of hypotheses of interest (i.e., a cluster of voxels). 
For any choice of S, interest lies in the number of true 
discoveries a S( ) = A∩S  or, equivalently, the TDP 
A∩S / S , where S  stands for the cardinality of the set 
S. For a chosen error rate α ∈ 0,1( ), TDP procedures aim 
to construct lower 1− α( )-confidence bounds for these 
quantities, simultaneously over all possible choices of S. 
The confidence bounds for the number of true discover-
ies, denoted by a S( ), are such that

	 Pr a S( ) ≤ a S( )( ) ≥ 1− α 	 (1)

for all S⊆ B. An analogous formulation holds for the con-
fidence bounds for the TDP, which can be immediately 
derived from a S( ) (Goeman & Solari, 2011).

The simultaneity of the confidence bounds makes them 
valid even under post-hoc selection and so allows the user 
to decide which sets of hypotheses S to analyze in a flexi-
ble and post-hoc manner. Therefore, methods with this 
property give information on the amount of true signal 
inside any set of voxels. The collection of voxels can be 
defined in various ways, allowing researchers to choose 
the method that suits their needs. Examples include clus-
ters based on a searchlight, anatomical regions of interest 
(ROIs), functional ROIs, and data-driven regions (e.g., 
cluster-extent-based thresholding). Users can drill down 
into a region multiple times to more precisely identify the 
location of true active voxels by applying any region selec-
tion rule, whether data-driven or not.

2.1.  TDP based on critical vectors  
and permutations

To bound the TDP, pARI and Notip, like ARI and Sans-
Souci, use a strategy based on critical vectors for 
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ordered p-values. They compute the simultaneous lower 
1− α( )-confidence bound for the number of true discov-

eries in a cluster S as

	
a S( ) = max

1≤ u ≤ |S|
1− u + i ∈S : pi ≤ ℓu{ }

	
(2)

where ℓ = ℓ1,…,ℓm( )∈ 0,1[ ]m is a suitable non-decreasing 
vector called critical vector, or in some cases template 
(Blain et al., 2022; Blanchard et al., 2020). Different criti-
cal vectors have been proposed, but in order to obtain 
valid simultaneous confidence bounds as in Equation (1), 
it must satisfy the following condition:

	
Pr

i=1

N

∩ q i( ) ≥ ℓ i{ }⎛

⎝
⎜

⎞

⎠
⎟ ≥ 1− α,

	
(3)

where N = B \A is the unknown set of inactive voxels, and 
q 1( ) ≤…≤ q N( ) are their sorted p-values. This means that 
the curve of the sorted p-values corresponding to inac-
tive voxels should lie completely above the critical vector 
with probability at least 1− α .

In Figure 1, we give a graphical intuition of the compu-
tation of a S( ), as defined in Equation (2). The solid black 
line is the curve of the sorted p-values in the cluster S of 
interest; the dashed red and dotted blue lines are two 
critical vectors (of pARI and Notip, respectively). If there 
were no signal in S, the black curve would be completely 
to the left of (i.e., above) each critical vector with proba-
bility 1− α. As it happens, the curve is way to the right of 

Fig. 1.  Graphical intuition of Equation (2). The black solid 
line represents the vector of sorted observed p-values 
p 1( ) ≤…≤ p m( ). For each method (red for pARI, blue for 
Notip), the broken line represents the resulting critical 
vector; then, a S( ) is computed as the length of the solid 
segment, which is the largest distance between the curve 
of the observed p-values and the critical vector.

Fig. 2.  λ-calibration step: the grey lines represent the 
vector of sorted p-values given by a random permutation 
of the data randomly sampling 40 permutations. The red 
dashed lines are the candidate critical vectors for pARI 
having different λ values. The solid red line is the optimal 
pARI critical vector having the largest λ across the ones 
that cross the null distribution of the p-values represented 
by the grey lines at most α% of the times.

(i.e., below) the critical vector, indicating the presence of 
much signal. The lower bound a S( ) to the number of active 
voxels, according to (2), is given as the maximal horizon-
tal distance between the curve and the critical vector. It is 
clear from the figure that the shape of the critical vector is 
crucial and that different critical vectors may give very 
different TDP values.

To construct a critical vector that satisfies Equation (3), 
both Notip and pARI rely on a high number w of transfor-
mations of the data, w −1 of which can be random per-
mutations or sign-flipping transformations or any other 
random data transformations that preserve the distribu-
tion of the test statistics under the null hypothesis (Winkler 
et al., 2014), while the remaining one must be the original, 
untransformed data (Hemerik & Goeman, 2018). The  
p-value curves arising from w = 40 such data transfor-
mations are illustrated in Figure  2, with each thin grey 
curve a p-value curve for a permutation. To find the criti-
cal vector, a pre-specified set of candidate critical vec-
tors ℓ λ( ) = ℓ1 λ( ),…,ℓm λ( )( ) , λ ∈Λ, is chosen, such that 
each ℓ i  is non-decreasing in λ. These candidate critical 
vectors are illustrated as the dashed red lines in Figure 2. 
In order to satisfy Equation (3), the final critical vector is 
chosen as the highest curve such that 1− α( )100% of the 
sorted p-value curves lie above it. That is, if p 1( )

j ≤…≤ p m( )
j  

are the sorted p-values obtained for the j -th random per-
mutation, then λ is chosen as the largest value such that

	 | j : p 1( )
j > ℓ1 λ( ),…,p m( )

j > ℓ1 λ( ){ } | ≥ 1− α( )w. 	 (4)

The resulting critical curve is given as the thick red line 
in Figure 2.
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This permutation-based process allows the method to 
incorporate the unknown spatial correlation structure of 
voxels in the calibration of the critical vector, and so to 
gain power compared to parametric methods.

2.2.  Differences between pARI and Notip

The construction just described is common to pARI and 
Notip. However, pARI and Notip differ in their definition of 
the set of candidate vectors from which the optimal criti-
cal vector is selected, which we call a family of critical 
vectors (also called, in some cases, a set of learned tem-
plates as in Blain et al. (2022) and Blanchard et al. (2020)).

For neuroimaging data, Andreella et al. (2023) recom-
mend the shifted Simes family, given by

	
ℓ i λ( ) = i − δ( )λ

m− δ 	 (5)

where δ ∈ 0,1,…,m−1{ }, a shift parameter, is a fixed value 
that must be chosen independently of the data. The 
SansSouci approach used the same Simes-based family 
defined in Equation (5) with δ = 0. Choosing δ larger has 
the result of losing all power for clusters S of size δ or 
less, but in a trade-off, this results in substantially higher 
power for larger clusters. Andreella et al. (2023), there-
fore, recommended δ > 0 in general, following Hemerik 
et al. (2019), and substantially larger than 1 if interest is in 
large clusters. However, δ is not allowed to depend on 
the sizes of clusters found, so a sensible default must be 
fixed. They recommended δ = 33 = 27 when interest is on 
clusters of large size, as is common in neuroimaging, so 
we take this as pARI’s default value.

Blain et al. (2022), in contrast, define the family using 
!w  permutations on external data with !m ≈ m voxels. Let 
!p 1( )
j ≤…≤ !p

!m( )
j  be the sorted vector of p-values for the  

j-th permutation of the external data. In the family of can-
didate critical vectors proposed by Blain et  al. (2022), 

ℓ i λ( ) is the λ-quantile of the vector !p i( )
1 ,…, !p i( )

!w( ) if 

i ≤ kmax, and ℓ i λ( ) = 1 otherwise, where kmax ∈ 1,…,m{ } is 

some fixed bound chosen a priori. Formally,

	

ℓ i λ( ) =
"p i( )

λ "w⎣ ⎦( ) i ≤ kmax

1 otherwise,

⎧
⎨
⎪

⎩⎪ 	

(6)

where !p i( )
j( ) denotes the j-th smallest value among 

!p i( )
1 ,…, !p i( )

!w .
Though seemingly similar in their use of permuted 

data, Equation (6) is markedly different from (4) above 
since (6) uses only the marginal distribution of the ordered 
p-values, whereas (4) uses their joint distribution. The 
relationship between the external data and the data 

under analysis should, therefore, not be seen as the usual 
relationship between a training and a validation set. In 
fact, Meinshausen (2006) proposed using the same data 
in (4) and (6), and though Hemerik et  al. (2019) and 
Blanchard et al. (2020) pointed out that doing so destroys 
the formal validity of the method, the choice of 
Meinshausen (2006) is generally fine in practice.

In Notip, kmax is a tuning parameter, compable to δ in 
pARI, and like δ > 0, use of kmax < m was recommended 
for a different family by Hemerik et al. (2019). Effectively, 
all p-values higher than the kmax-th one are ignored by 
Notip. Like δ , the choice of kmax induces a trade-off: 
small values can lead to a less conservative family of crit-
ical vectors but also to smaller lower bounds for the TDP. 
Blain et al. (2022) describe kmax as the largest size of the 
cluster for which a high proportion of active voxels is 
guaranteed. They suggested to fix kmax = 1,000.

As a further improvement, Andreella et al. (2023) pro-
posed a step-down version of pARI, which outperforms 
the SansSouci method in terms of power even if the 
same critical vector family is used. This improvement 
comes at the price, however, of high computational 
time. In this paper, we use the faster version of pARI 
without the step-down.

3.  COMPARISON ON NEUROVAULT DATA

In this section, we compare the Notip and pARI approaches, 
following exactly the analysis performed originally by Blain 
et  al. (2022). The comparison between pARI and Notip 
methods primarily emphasizes power, as error control has 
been previously established in the respective papers 
(Andreella et al., 2023; Blain et al., 2022). The Neurovault 
database (Varoquaux et al., 2018) contains data from many 
fMRI studies. Here, we analyzed collection 1952 (http://
neurovault​.org​/collections​/1952), consisting of statistical 
maps from 20 different studies. First, the images were pre-
processed following the procedure outlined in Varoquaux 
et al. (2018) (i.e., spatial normalization to MNI space using 
SPM12 software, resampled to a 3 mm isotropic resolu-
tion). Then, the data were preprocessed using the Python 
code made available by Blain et al. (2022) at https://github​
.com​/alexblnn​/Notip, resulting in 36  contrast pairs. Spe-
cifically, we analyzed elementary “versus baseline,” and 
control contrasts from collection 1952, containing data 
from a large number of different cognitive tasks (e.g., 
visual, auditory). For a complete overview of the contrasts 
analyzed, please refer to Table 6 in Blain et al. (2022).

The analysis was carried out using the pARI R pack-
age (https://CRAN​.R​-project​.org​/package​=pARI) for 
applying pARI, and the Python code made available by 
Blain et  al. (2022) for applying Notip. Figures  1 and 2, 
above, have been computed using the first dataset of this 

http://neurovault.org/collections/1952
http://neurovault.org/collections/1952
https://github.com/alexblnn/Notip
https://github.com/alexblnn/Notip
https://CRAN.R-project.org/package=pARI
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collection, that is, “shapes versus baseline” contrast ver-
sus “faces versus baseline” contrast from the HCP study. 
To make Figure 1 clearer, we considered the cluster com-
posed of the smallest 15,000 voxels.

Here, we redo only those analyses from Blain et  al. 
(2022) in which they compare performance between the 
Notip and competing methods. It is not straightforward to 
compare different TDP methods because each method 
gives 2m TDP confidence bounds. A method that per-
forms better for some TDP bounds may be worse for 
other bounds, even within the same data or simulation 
scenario. We follow Blain et al. (2022) in their choice of 
metric for comparing methods, which focuses on the size 
of the largest cluster found at a fixed TDP threshold. 
Other metrics are possible; for example, Andreella et al. 
(2023) used the TDP of clusters defined at a fixed cluster-
defining threshold as their metric. In all the analysis, we 
fix the number of permutations used to compute the 
Notip critical vector !w to 10,000, and the number of per-
mutations used to calculate the null distribution of the  
p-values to 1,000.

The left-hand side of Figure 3 reproduces the results 
of Blain et al. (2022; Figure 4, right-hand side), in which 
they compare Notip to pARI with δ = 0, that is, to Sans-
Souci. The relative number of detections between Notip 
and pARI, defined as

Fig. 3.  Percentage variations detected defined as 
|S|Notip− |S|pARI

|S|pARI
. The left side is the non-recommended 

setting for pARI (i.e., fixing δ = 0), which we show only to 
reproduce the results of Blain et al. (2022). Instead, the right 
side represents the results using the recommended setting 
for pARI as shown by Andreella et al. (2023) when δ = 27. 
Since the comparison is given in terms of variation as defined 
above, values below 0 indicate better performance in pARI 
than in Notip.

Fig. 4.  Size of the largest clusters found by pARI with δ = 27 
( | SpARI| ) and Notip (| SNotip|) with TDP ≥ t ∈ 0.8,  0.9,  0.95{ }.

	

|S |Notip− |S |pARI
|S |pARI

,
	

(7)

where S  is the largest possible region that reaches a 
fixed TDP level, is analyzed. The boxplots presented in 
Figure 3 show the distribution of this metric over 36 con-
trasts maps from Neurovault collection 1952 data and 
TDP thresholds 0.8, 0.9, 0.95 with α fixed at 0.05. The 
results on the left-hand side of Figure 3 reproduce almost 
exactly the results presented in Blain et al. (2022). There 
are minor differences due to the use of random permuta-
tions. In addition, we noticed that the code provided by 
Blain et al. (2022) did not consider the mandatory inclu-
sion of the identity transformation, which we included to 
get exact α control (Hemerik & Goeman, 2018), even 
though due to the high number of permutations (i.e., 
w = 1,000) this makes almost no difference. The right-
hand side of Figure 3 makes the same comparison but 
with pARI’s recommended setting of δ = 27.

Where Notip almost always outperformed pARI with-
out the shift, we note that the reverse is true for the rec-
ommended shifted version of pARI. To investigate further, 
Figure  4 plots the largest cluster sizes found by pARI 
(δ = 27) against those found by Notip. Also, from this plot, 
we see that the size of the largest cluster found is almost 
always greater with pARI than with Notip, and this effect 
is especially pronounced when the largest cluster con-
tains many voxels (i.e., top right part of Figure 4).

Finally, Table 1 reproduces results from Table 2 in Blain 
et  al. (2022), to which we added results for pARI with 
δ = 27. The contrast pair “look negative cue vs look neg-
ative rating” of the Neurovault database is analyzed. The 
clusters are computed by thresholding the statistical map 
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at absolute values greater than 3 and keeping only clus-
ters composed of at least 150 voxels (Woo et al., 2014). 
Again, we can note how imposing δ = 27 significantly 
increases the method’s power; pARI is, in fact, more 
powerful than Notip in all clusters, except the smallest 
one, that is, it returns greater lower bounds for the TDP.

We can conclude that the shifted version of Simes-
based pARI performs remarkably well and, in most cases, 
surpasses the Notip approach, emphasizing the impor-
tance of choosing an appropriate critical vector (and shift 
value) for gaining power.

Please refer to the online Supplementary Materials for 
further analysis.

4.  DISCUSSION

We have seen that pARI outperformed Notip in almost all 
settings considered by Blain et al. (2022) when the shift 
parameter δ of pARI was appropriately set at δ = 27. This 
finding may seem counterintuitive since Notip uses addi-
tional information in the form of external data. It should 
be realized, however, that in this external data, Notip 
looks only marginally at the ordered p-values. The added 
value of this information may be limited in practice, as 
also illustrated by the experience (Blain et  al., 2022; 
Meinshausen, 2006) that double dipping by reusing the 
data under analysis as if they were external does not 
break the validity of the method in practice.

Both Notip and pARI have a tuning parameter (kmax and 
δ, respectively). The presence of an additional parameter 
can be considered a drawback, especially since it has to 
be chosen before seeing the data. Both methods, there-
fore, recommend a default value (kmax = 1,000 and δ = 27) 

Table 1.  Clusters identified with threshold z > 3: clusters 
size and TDP lower bound at risk level α = 0.05 using two 
possible critical vectors (Notip, and Simes-based pARI with 
δ = 27) on contrast pair “look negative cue vs look negative 
rating.”

Cluster ID Cluster size

True discovery proportion

Simes-based pARI

Notip δ = 0 δ = 27

1 7,695 0.26 0.23 0.34
2 14,877 0.45 0.32 0.58
3 14,445 0.50 0.37 0.60
4 5,238 0.29 0.24 0.34
5 4,563 0.30 0.30 0.29
6 12,555 0.35 0.16 0.52
7 6,075 0.17 0.09 0.24
8 25,812 0.66 0.46 0.76
9 6,507 0.17 0.15 0.20

For each cluster, the values in bold indicate the best result, that is, 
TDP (lower limit) higher.

for applications in neuroimaging. It is interesting to note 
that kmax and δ have complementary effects: kmax < m 
focuses power of Notip away from very large clusters, 
while δ > 0 focuses power of pARI away from small ones. 
It could be an interesting avenue of further research to for-
mulate an alternative method that has both a kmax and a δ 
parameter (e.g., as considered in a different context by 
Hemerik et al. (2019)).

It can be argued that Notip has a second tuning 
parameter in the choice of the external data. This can be 
avoided by re-use of the data under analysis, but the 
resulting method has no formal proof of error control. 
Whether data are reused or not, this additional analysis 
step makes the procedure more computationally expen-
sive. For the analyses presented here (i.e., considering 
standard Notip and the single-step version of pARI), 
Notip takes approximately 42 minutes, while pARI takes 
only 1 minute. pARI, on the other hand, becomes compu-
tationally expensive if the step-down version is used.

Various trade-offs characterize both methods and can 
be seen as two out of many possible analysis choices. 
The comparison that we have given here shows that the 
choice of the family matters, but further analyses are 
needed to study each method’s power properties in 
more detail and to determine which method should be 
preferred in which settings. This could also help in find-
ing even better families than those considered by Notip 
and pARI.

DATA AND CODE AVAILABILITY

The data underlying this study are those used in Blain 
et al. (2022), available in the NeuroVault database at http://
neurovault​.org​/collections​/1952. The code to preprocess 
the data and apply the Notip method is available at the 
GitHub repository https://github​.com​/alexblnn​/Notip. The 
code for the pARI method is developed in the R package 
pARI, at https://CRAN​.R​-project​.org​/package​=pARI.
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