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Abstract: Fruit crops under soil conservational management might sequester carbon (C) in soils and
mitigate greenhouse gases emissions. Using grape pomace residues as soil amendment holds promise
for sustainable viticulture. However, its actual capability to increase soil organic carbon (SOC) and
nitrogen (N) is unknown, especially in subtropical climates. This research aims to investigate whether
grape pomace compost and vermicompost can increase SOC, total N (TN), and C and N stocks in
subtropical vineyards. Two vineyards located in Veranópolis, in South Brazil, one cultivated with
‘Isabella’ and the other with ‘Chardonnay’ varieties, were annually amended with these residues for
three years. We quantified SOC and TN in each condition in different soil layers, as well as C and N
content in two different granulometric fractions: mineral-associated organic matter (MAOM) and
particulate organic matter (POM). C and N stocks were also calculated. Despite potential benefits,
neither treatment enhanced SOC, its fractions, or C stocks. In fact, vermicompost was rapidly
mineralized and depleted SOC and its fractions in the 0.0 to 0.05 m layers of the ‘Isabella’ vineyard.
Our findings indicate that the tested grape pomace residues were unable to promote C sequestration
in subtropical vineyards after a three-year period.

Keywords: climate change; fruit crops; grapevine; mineral-associated organic carbon; organic
residues; particulate organic carbon; soil organic matter

1. Introduction

Most soils worldwide present low carbon (C) content, especially in cultivated areas,
mostly due to improper management practices (such as soil tilling, lack of cover crops,
slash-and-burn), and/or tropical and subtropical climates [1]. Consequently, the need
to replenish soil organic matter (SOM) becomes paramount for maintaining soil health
and fertility [2]. Utilizing organic residues, such as compost or vermicompost, presents
a promising approach to enhance soil organic C (SOC) and C stocks, and improve soil
health. This strategy is particularly relevant in vineyard soils, where the cultivation of
grapevines demands long-term and sustainable soil fertility practices. By adopting practices
that promote SOM accumulation, vineyard managers can contribute to mitigating climate
change while ensuring adequate plant nutrition and grape yield. Thus, integrating organic
amendments into vineyards emerges as an important component of sustainable viticulture
in the face of environmental challenges [3].

Studies have reported various benefits in orchards and vineyards resulting from soil
conservation management and fertilization with organic nutrient sources [4–7]. Organic

Agronomy 2024, 14, 2055. https://doi.org/10.3390/agronomy14092055 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14092055
https://doi.org/10.3390/agronomy14092055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-7657-0494
https://orcid.org/0000-0002-1468-5739
https://orcid.org/0000-0002-7240-3728
https://orcid.org/0000-0002-3005-6158
https://orcid.org/0000-0002-3174-9992
https://doi.org/10.3390/agronomy14092055
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14092055?type=check_update&version=3


Agronomy 2024, 14, 2055 2 of 13

nutrient sources vary from fresh residues, compost or vermicompost, made from animal
or plant material, such as animal manure or food industry waste, respectively. Their
benefits include not only being a source of nutrients—such as N, phosphorus (P), sulfur
(S), potassium (K), calcium (Ca), and magnesium (Mg)—but also improving soil health,
enhancing soil water retention capacity, increasing total cation exchange capacity [7,8], and
promoting C fixation [9]. In addition, the benefits provided by organic fertilization can
increase grapevine and cover crops’ shoot and root growth, which leads to higher biomass
production and, thus, higher C fixation by photosynthesis, besides higher grape yield [6].
These practices have become more common in global viticulture, also coinciding with an
increase in the production and commercialization of organic products [10]. Among com-
monly used organic sources of nutrients, composts and vermicomposts stand out, notably
those produced with animal manure or industry residues, which include winemaking
residues (grape pomace). This strategy has yet another positive input on sustainability,
since it guarantees a safe disposal of industry waste [11,12].

The constant input of organic residues in soils may not only lead to an increase in SOM
but also change its nature and persistence [13]. The main divisions, also called fractions, of
SOM consider its recalcitrance [13]. While more labile fractions of the SOM may benefit
plant growth due to nutrient (especially N) release, increasing recalcitrant fractions of SOM,
namely the mineral-associated organic matter (MAOM), is key to elevating and/or main-
taining C stocks [13,14]. Interestingly, the different lability in SOM fractions is correlated
to SOM granulometric physical fractions [13]. Soils amended with organic fertilizers over
time usually have greater SOM and MAOM content [5,15–19], especially via greater plant
growth and biomass production [6,17]. Thus, measuring the MAOM and the stable forms
of SOM in soils is an accessible way to verify changes in C and N pools in soils amended
with organic fertilizers in the long run [20].

In the short term, however, more labile forms of SOM, such as particulate organic
matter (POM), might increase in soils amended with organic residues [21,22]. Additionally,
the particulate fraction of the organic matter is more sensitive to changes in the cultivation
system [21,23]. Thus, evaluating POM is a necessary tool to verify more rapid changes
in the C and N pool in soils amended with residues, especially under conservationist
(no-tillage) management.

Studies examining the effects of grape pomace residues, such as grape pomace compost
and vermicompost, on C and N stocks and their fractions in soils remain insufficient,
especially in subtropical vineyards. We believe that conducting field studies in productive
organic vineyards could address this knowledge gap. Understanding how this type of
residue behaves in subtropical soils is relevant information to quantify the capacity of such
agroecosystems to sequester C. Given this, the study aimed to test the effects of different
grape pomace fertilizers on SOC and TN in subtropical organic vineyards. Additionally, we
examined C and N content in MAOM and POM, as well as C and N stocks. We believe that
vineyard soils amended with grape pomace residues might have higher C and N contents,
especially in their particulate fractions, and C and N stocks after three growing seasons.

2. Materials and Methods
2.1. Experimental Site and Design

Two experiments (henceforth called Vineyard 1 and Vineyard 2) were carried out over
three growing seasons in commercial organic vineyards situated in Veranópolis (28◦47′06′′ S;
51◦30′32′′ W), Rio Grande do Sul, southern Brazil. The region features a humid subtropical
climate with hot summers (Cfa). Spontaneous cover crops were consistently maintained in
both rows and interrows throughout the year, being mowed during the grapevines’ growing
season. Vineyard 1, employing a pergola system, featured ‘Isabella’ (Vitis labrusca × Vitis
vinifera) grapevines grafted onto Paulsen 1103 rootstocks, with spacing of 2.5 m between
rows and 1.5 m between plants (2666 plants per hectare). Vineyard 2 featured ‘Chardonnay’
(V. vinifera) grapevines, grafted onto Paulsen 1103 rootstocks, with spacing of 2.8 m between
rows and 1.5 m between plants (2380 plants per hectare), also in pergola system, under
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polyethylene translucid coverage. The soil profiles in both vineyards were classified as
Leptic Cambisol [24]. In Vineyard 1 and in Vineyard 2, grapevines were 10 to 12 and 3 years
old (since seedling transplantation), respectively. In both areas, soil had been previously
limed before vineyard establishment.

Vineyards 1 and 2 were divided into three rows, and, in each row, three fertilization
treatments were applied: grape pomace compost (CO), grape pomace vermicompost (VC),
and a negative control (C), with no fertilization. The setup was arranged in randomized
blocks, with six replicates (therefore, two replicates per row). Each replicate consisted of
five grapevines, totaling 7.5 m in length.

The organic fertilizers (CO and VC) were applied in amounts equivalent to
40 kg N ha−1, based on previous studies [8] with grapevines in the same region. The
actual CO and VC dose was calculated after analyzing their total N content, which is
displayed in Table 3, and humidity at the time of application. Organic fertilizers were
applied annually, in each growing season’s bud burst, concentrated in rows and under
grapevines’ canopy projection, as suggested by Brunetto et al. [5]. CO was obtained in
an industrial organic composter (Biosolos, Veranópolis, RS, Brazil), which composted raw
winery residues (grape pomace) in open air. The manufacturer stated that the compost was
made with winery residues (mainly grape skin, seeds, and stalks) and that the residues are
composted for 60 days.

VC was made in a closed worm composter, located at the Federal Institute of Education,
Science and Technology, Restinga campus, in Porto Alegre (RS), Brazil. Each year, winery
residues (grape pomace) were composted for 60 days (thermophilic phase), and then
vermicomposted with Eisenia sp. worms for another 120 days (humification phase), with
constant addition of water. Grape pomace mainly comprised grape skin, seeds, and stalks.
Both CO and VC were stored at room temperature after stabilization.

The monthly rainfall and mean temperatures were collected from the experiment
intallment up until February 2023 (end of last growing cycle). These data were obtained
at an automatic meteorological station (National Institute of Meteorology conventional
station) located 150 m from the vineyards. Results are shown in Figure 1.
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Figure 1. Accumulated monthly rainfall (mm), shown in bars, and monthly mean temperatures (◦C),
shown in lines, from January 2020 to February 2023, obtained from an automatic meteorological
station (National Institute of Meteorology conventional station) located 150 m from the vineyards.

2.2. Soil Characterization and Physical and Physicochemical Attribrutes

Prior to beginning the experiment in 2020, soil samples from the 0–0.2 m layer were
collected from Vineyards 1 and 2 for the following physicochemical soil analyses: exchange-
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able Ca and Mg (1:20 1 mol L−1 KCl), exchangeable K (1:10 Melich-1 extractor), available P
(1:10 Melich-1 extractor), pH (1:10 distilled water), SOM, through dry combustion (FlashEA
1112 instrument from Thermo Electron Corp, Milan, Italy), and soil texture [25]. The soil
samples comprised 15 subsamples, taken randomly throughout each vineyard, within the
limits of the experiment. Subsequently, after three growing seasons (2023), soil samples
were collected from each experimental unit, and the aforementioned variables were reana-
lyzed, with the exception of soil texture. Soil sampling was performed using a tubular soil
probe. These results are shown in Table 1.

Table 1. Soil physical and physicochemical analyses in the 0.0–0.20 cm soil layer, in Vineyard 1 and
Vineyard 2, before beginning the experiment (August 2020) and after three years of application (April
2023) of the following treatments: control (C—no organic fertilizers), grape pomace vermicompost
(VC), and grape pomace compost (CO).

Clay (%) pH Exchang. K
(mg dm−3)

Available P
(mg dm−3)

Exchang. Ca
(cmolc dm−3)

Exchang. Mg
(cmolc dm−3)

2020
Vineyard 1 33 6.7 229 26.29 10.85 1.87
Vineyard 2 30 5.3 137 4.48 4.74 1.35

2023
Vineyard 1

C
NA

6.04 87.84 20.52 8.88 1.81 b 2

VC 6.19 93.90 31.93 7.63 1.67 ab
CO 5.93 90.53 19.59 8.40 2.16 a

p-value ¹ 0.46 0.43 0.32 0.40 0.04
Vineyard 2

C
NA

4.71 101.59 10.66 5.91 2.50
VC 5.52 115.59 20.03 4.76 1.92
CO 5.35 100.02 15.74 4.95 1.86

p-value 1 0.82 0.78 0.07 0.83 0.71
1 p-values of ANOVA at α = 5%, 2 different lowercase letters indicate different means among organic fertilizer
applications (Tukey test, α = 5%). NA = not assessed.

Table 1 shows that there was no difference among soil fertilization managements after
three years in Vineyards 1 and 2, with the exception of soil exchangeable Mg. However,
in Vineyard 1, soil exchangeable K in the 0.0 to 0.20 m layer severely decreased (Table 1),
mainly due to percolation from the topsoil. This probably happened because of the high
exchangeable K content at the beginning of the experiment (August 2020), above the soil
capacity to retain it. Also, in Vineyard 2, the same phenomenon might have been prevented
due to the vineyard’s polyethylene coverage, which prevents rainfall in the cultivation
rows. Due to their higher adsorption energy, that did not happen to P, Ca, and Mg. Notably,
available P content increased in Vineyard 2 soil without any fertilization (C) (Table 1).
This probably happened due to the adoption of a full-year coverage of cover crops from
the beginning of the experiment. These species could have solubilized P in the plants’
rhizosphere, via organic acid exudation [18,22], absorbed and assimilated it, and then kept
cycling this nutrient.

2.3. Grape Pomace Residue Composition

After maturation, samples of VC and CO were dried in a forced-air-circulation oven
(MA035/2, Marconi, Piracicaba, Brazil) at ±65 ◦C until constant mass in order to calculate
their humidity (%). The dried materials were then characterized regarding their chemical
composition and properties. Samples of the air-dried CO and VC were digested in H2SO4
and H2O2(2:1) [25] and HNO3 and HClO4 (3:1) [25]. The sulfuric–peroxide digestion
extract was distilled in a micro-Kjeldahl N distiller (Tecnal, TE-0363, São Paulo, Brazil) and
titrated in standardized ±0.025 mol L−1 of H2SO4 to quantify total N content [25]. The
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nitric–perchloric extract was diluted and the concentration of P was quantified using the
molybdate-blue technique, in a UV–visible spectrophotometer (V-5000, Shanghai Metash
Instruments Co, Shanghai, China), at 882 nm [26]; K concentration was quantified in a flame
photometer (910, Analyser, Brazil); and Ca, Mg, copper (Cu), and zinc (Zn) concentrations
were quantified by atomic absorption spectrophotometry (AAnalyst 200, Perkin-Elmer,
Shelton, CT, USA). Total C content was quantified in finely ground CO and VC via dry
combustion followed by gas chromatography, using an elemental analyzer (Flash EA 1112,
Thermo Electron Corporation, Milan, Italy), in triplicates.

CO P and K contents were 2.64 and 2.76 times higher than VC’s (Table 2). Ca content
was 5.61 times higher in VC than in CO (Table 2). The Cu content in compost, however,
was 2.41 times higher in CO than in VC (Table 2). Also, VC had a mean C:N ratio of 15.79,
which is notably lower than the 23.92 ratio found in CO (Table 3).

Table 2. Mean elementary composition of grape pomace vermicompost (VC) and grape pomace
compost (CO) during the three years of treatment application.

Element CO VC

P (g kg−1) 2.59 6.84
K (g kg−1) 8.61 23.73
Ca (g kg−1) 1.74 0.31
Mg (g kg−1) 1.59 1.29

Cu (mg kg−1) 49.88 120.35
Zn (mg kg−1) 47.78 46.70

Table 3. Organic Fertilizer N Content, Doses, and C Input.

Organic Fertilizers 2020/21 2021/22 2022/23

VC

N content 1 (dry base) 0.57% 1.59% 1.48%
Fertilizer dose (dry weight) (Mg ha−1) 7.02 2.52 2.70

C input (Mg ha−1) 1.22 0.58 0.62
C:N 1 ratio 17.38 14.47 15.51

CO

N content 1 (dry base) 1.02% 1.08% 0.92%
Fertilizer dose (dry weight) (Mg ha−1) 3.92 3.70 4.35

C input (Mg ha−1) 0.94 0.89 1.04
C:N 1 ratio 23.51 22.27 25.99

1 Total C and N quantification is detailed in Section 2.3.

2.4. Soil Sampling and Granulometric Fractionation of SOM

After three years of treatment application (April 2023), soil samples were collected
from each replicate of Vineyards 1 and 2. The samples were collected from the 0–0.05,
0.05–0.10, 0.10–0.20, and 0.20–0.40 m soil layers in the vineyards’ rows (under grapevine
canopies) using a tubular soil probe. Each sample comprised three subsamples. Briefly
after sampling, soil samples were left to air-dry until they reached a constant mass. After
that, they were sieved through a 2 mm mesh to remove the stone fractions and root debris.
Finally, they were stored in closed pots.

All the soil samples were fractionated based on their granulometric properties, similar
to a methodology proposed by Poeplau et al. [27]. First, 20 g of the air-dried 2 mm
sieved soil samples was dispersed in 10 mL of NaOH 1 mol L−1 and 40 mL of deionized
water with two 5 mm diameter nylon beads for 4 h on a shaker at 150 rpm. The soil
suspension was then sieved through a 53 µm mesh. The retained fraction (>53 µm) was
re-suspended in distilled water to separate light (floating material) and dense fractions.
However, no material was recovered in the light fraction in this study. Therefore, all the
>53 µm material comprised the sand fraction (>53 µm). The material that passed through
the sieve comprised the silt + clay fraction (≤53 µm). Both fractions were oven-dried at
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50 ◦C in a forced-air-circulation oven (MA035/2, Marconi, Piracicaba, Brazil) and ground
to the consistency of flour in a ball mill. The concentration of C and N was then measured
in each fraction via dry combustion followed by gas chromatography in an elemental
analyzer (Flash EA 1112, Thermo Electron Corporation, Milan, Italy). Organic C present
in the sand fraction was named particulate organic carbon (POC), and organic C present
in the silt + clay fraction was named mineral-associated organic C (MAOC). Similarly, N
content of the sand fraction was named particulate nitrogen (PN), and the N present in the
silt + clay fraction was named mineral-associated nitrogen (MAN).

Additionally, SOC and TN were quantified via dry combustion followed by gas
chromatography in an elemental analyzer (Flash EA 1112, Thermo Electron Corporation,
Milan, Italy), in the air-dried soil samples, after 2 mm sieving and grinding to a flour
consistency in a ball mill.

2.5. Soil C and N Stocks

After three years of treatment application (April 2023), soil bulk density was measured
in Vineyards 1 and 2 in the same layers where samples were collected for C and N analyses
(0–0.05 m; 0.05–0.10 m; 0.1–0.2 m; and 0.2–0.4 m), with methodology of Teixeira et al. [28].
Additionally, each sample was dispersed in a mixture of distilled water and 1 mol L−1

NaOH and then sieved through a 2 mm screen. The retained mineral material was called
the stone fraction and weighed. Soil stoniness (SS) was calculated by the ratio (m:m) of the
stone fraction to the total bulk soil sample. SS was quantified because the C and N content
was quantified in fine soil; C and N stocks, however, concern the bulk soil. Multiplying the
C or N content by the total mass of bulk soil would overestimate C and N stocks, since the
stone fraction possesses virtually no C or N. These results are shown in Table 4.

Table 4. Soil bulk density (Ds) and soil stoniness (SS) in Vineyard 1 and Vineyard 2 after three years
of application (April 2023) of the following treatments: control (C—no organic fertilizers), grape
pomace vermicompost (VC), and grape pomace compost (CO).

Treatments

Soil Layers
0.0–0.05 m 0.05–0.10 m 0.10–0.20 m 0.20–0.40 m

Ds
(Mg m−3)

SS
(g g−1)

Ds
(Mg m−3)

SS
(g g−1)

Ds
(Mg m−3)

SS
(g g−1)

Ds
(Mg m−3)

SS
(g g−1)

Vineyard 1
C 1.15 0.08 1.38 0.11 1.51 0.07 1.51 0.04

VC 1.01 0.07 1.37 0.09 1.50 0.07 1.47 0.03
CO 1.18 0.05 1.41 0.09 1.48 0.07 1.48 0.03

Vineyard 2
C 0.85 0.17 0.97 0.16 1.02 0.13 1.08 0.12

VC 0.82 0.18 0.98 0.17 1.04 0.17 1.07 0.14
CO 0.80 0.17 0.99 0.17 1.05 0.14 1.09 0.14

Soil C and N stocks, as well as their fractions’ stocks, were then calculated as follows:

Stock(Mg ha−1) =
4

∑
i=1

Xi · Vi · Dsi · (1 − SSi) (1)

where:

X: C or N fraction (SOC, POC, MAOC, TN, PN, or MAN) (g kg–1);
V: soil volume (m³), which is each layer thickness multiplied by 1 ha;
Ds: soil bulk density (kg m−3);
SS: soil stoniness (g g−1);
1–4: each of the four analyzed soil layers: 0–0.05, 0.05–0.1, 0.1–0.2, and 0.2–0.4 m.
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As shown in Table 4, Ds in Vineyard 2 was particularly low (Ds < 1.0 Mg m−3) in
the first 0.10 m of the soil profile. This attribute is result of a combination of high SOM
(Table 6)—although not high enough to be characterized as a folic horizon [24]—and high
porosity, due to previous soil plowing at vineyard installment (2017).

2.6. Statistical Analyses

The obtained experimental data were tested for homogeneity with the Shapiro–Wilk
test. The effect of the organic fertilizers upon each response variable was tested with analy-
sis of variance (ANOVA). Whenever the null hypothesis (equal means) was rejected with
alpha equal to 0.05, means were compared via the Tukey test. The “ExpDes” package [29] in
R statistical software (version 4.4.0) [30] was utilized for these analyses. Data visualization
figures were created using the “ggplot2” package [31] in R statistical software [30].

3. Results and Discussion

After three years, SOC stocks did not differ among treatments in the layers below
0.05 m in both Vineyards 1 and 2, with the exception of the 0.2–0.4 m layer in Vineyard
1 (Figure 2). In the 0–0.05 m layer of Vineyard 1, however, the C stock was lower in soils
amended with VC (Figure 2a). On the other hand, in Vineyard 2 the mean SOC stocks
were not different among any treatments (Figure 2b). We highlight that SOC stocks are
higher in the 0.20–0.40 m layer due to its thickness, not SOC content (Tables 5 and 6). SOC
and SOC stock were lower in this layer in Vineyard 1 (Figure 2a) when amended with VC.
Notably, the lack of increase in SOC in any soil layers in Vineyards 1 and 2 might be related
to the high rainfall and high summer temperature, typical of this study site’s climate. These
climatic conditions might intensify residue mineralization to higher rates and prevent C
from being sequestered in more stable forms [17,20,21,32].
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Figure 2. C stocks on 0.0–0.05 m, 0.05–0.10 m, 0.10–0.20 m, and 0.20–0.40 m soil layers, in Vineyard 1
(‘Isabella’) (a) and Vineyard 2 (‘Chardonnay’) (b), after three years of the following treatment appli-
cations: C—control (no organic fertilization), VC—fertilization with grape pomace vermicompost,
and CO—fertilization with grape pomace compost. Darker colors indicate the MAOC fraction and
the lighter colors indicate the POC fraction. p-values of ANOVA test are shown and different letters
indicate different means among treatments (Tukey test, α = 5%).
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Table 5. Soil organic carbon (SOC), mineral-associated organic carbon (MAOC), and particulate
organic carbon (POC) content in different layers (0.0–0.05 m, 0.05–0.1 m, 0.1–0.2 m, and 0.2–0.4 m) in
Vineyard 1 (‘Isabella’) after three years of grape pomace vermicompost (VC) and compost (CO); C
stands for control (no organic fertilization).

SOC (g kg–1) MAOC (g kg–1) POC (g kg–1)

0.
0–

0.
05

m C 53.5 ± 0.54 a 42.3 ± 0.63 a 11.2 ± 0.51 a
VC 37.2 ± 0.89 b 31.7 ± 0.76 b 5.6 ± 0.14 b
CO 48.9 ± 0.88 ab 37.7 ± 0.70 ab 11.2 ± 0.40 a

p-value 0.01 0.04 0.03
0.

05
–0

.1
m C 30.2 ± 0.73 23.5 ± 0.24 0.67 ± 0.58

VC 24.3 ± 0.30 21.3 ± 0.25 0.30 ± 0.09
CO 29.1 ± 0.48 24.5 ± 0.41 0.47 ± 0.21

p-value 0.18 0.22 0.27

0.
1–

0.
2

m C 21.0 ± 0.54 18.9 ± 0.52 2.10 ± 0.07
VC 19.0 ± 0.18 17.6 ± 0.15 1.40 ± 0.05
CO 20.8 ± 0.20 19.3 ± 0.22 1.50 ± 0.03

p-value 0.61 0.14 0.94

0.
2–

0.
4

m C 17.7 ± 0.17 a 16.9 ± 0.18 a 0.80 ± 0.04
VC 13.4 ± 0.43 b 12.7 ± 0.40 b 0.70 ± 0.05
CO 17.2 ± 0.12 ab 16.3 ± 0.10 ab 0.80 ± 0.06

p-value 0.04 0.03 0.89
p-values of ANOVA test are shown and different letters indicate different means among organic fertilizers (Tukey
test, α = 5%).

The mean SOC in different soil fractions was different in the 0.0–0.05 m layer among
different treatments in Vineyard 1 (Table 5). The highest values of SOC, MAOC, and POC
were found in soils without organic fertilizers added, although not being different than
soils amended with CO (Table 5). Notably, soils amended with VC had lower SOC, MAOC,
and POC content than control in the 0–0.05 m layer (Table 5). Interestingly, in this layer,
around 15% of C was in the POC fraction, which is lower when compared to 21 and 23% in
C and CO, respectively (Table 5). POC represents the dynamic fraction of C in soils and
can be mineralized faster than the MAOC, which is protected in organic-matter–mineral
physico-chemical interactions [32–34]. This difference in the C fraction content in the soil
layers was also observed for C stocks in its fractions (Figure 2).

In Vineyard 2, there was no difference in mean SOC, MAOC, or POC content in the
soil among treatments (Table 6). Although not statiscally different, in Vineyard 2, the soil
without any organic fertilizer amendment (C) had higher values for SOC (Table 6), similarly
to Vineyard 1 (Table 5).

Table 6. Soil organic carbon (SOC), mineral-associated organic carbon (MAOC), and particulate
organic carbon (POC) content in different layers (0.0–0.05 m, 0.05–0.1 m, 0.1–0.2 m, and 0.2–0.4 m) in
Vineyard 2 (‘Chardonnay’) after three years of grape pomace vermicompost (VC) and compost (CO);
C stands for control (no organic fertilization).

SOC (g kg–1) MAOC (g kg–1) POC (g kg–1)

0.
0–

0.
05

m C 41.1 ± 0.49 36.8 ± 0.43 4.2 ± 0.16
VC 37.5 ± 0.84 31.6 ± 0.65 5.9 ± 0.32
CO 38.3 ± 0.52 33.6 ± 0.51 4.8 ± 0.10

p-value 0.62 0.28 0.46

0.
05

–0
.1

m C 29.9 ± 0.31 27.2 ± 0.24 2.7 ± 0.16
VC 28.0 ± 0.29 25.4 ± 0.25 2.6 ± 0.14
CO 27.0 ± 0.35 25.0 ± 0.30 1.9 ± 0.07

p-value 0.36 0.38 0.59
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Table 6. Cont.

SOC (g kg–1) MAOC (g kg–1) POC (g kg–1)

0.
1–

0.
2

m C 26.7 ± 0.29 25.7 ± 0.28 0.9 ± 0.02
VC 25.5 ± 0.11 24.6 ± 0.10 0.9 ± 0.02
CO 23.7 ± 0.29 22.7 ± 0.27 0.9 ± 0.03

p-value 0.16 0.14 0.94

0.
2–

0.
4

m C 25.9 ± 0.65 21.7 ± 0.55 0.42 ± 0.23 a
VC 25.6 ± 0.51 23.8 ± 0.48 0.18 ± 0.09 b
CO 25.0 ± 0.41 21.2 ± 0.34 0.38 ± 0.25 ab

p-value 0.96 0.64 0.04
p-values of ANOVA test are shown and different letters indicate different means among organic fertilizers (Tukey
test, α = 5%).

Soil TN, MAN, and PN showed a very similar pattern among layers and treatments
as SOC, MAOC, and POC, respectively, in both Vineyards 1 and 2 (Table 7; Table 8). TN
was the lowest in the 0.0 to 0.05 m layer of soils fertilized with VC in Vineyard 1 (Table 7),
as it was the lowest in SOC (Table 5). Although not different according to ANOVA, soils
fertilized with VC usually showed lower values of TN and MAN than the other conditions
in Vineyard 1 (Table 5). Similarly to SOC, in Vineyard 2 there were no effect of the different
residues in TN, MAN, or PN (Table 8). We observed, however, that POC and PN have a
higher decrease with soil depth than the more stable fractions (MAOC and MAN). Nitrogen
stocks also showed a similar pattern among layers and treatments to C stocks, in both
Vineyards 1 and 2 (Figure 3). In Vineyard 1, total N stocks were lower in soils amended with
VC (Figure 3a), which indicates that the mineralization of SOM also depletes N stocks. In
Vineyard 2, as it was for C stocks, there were no differences among treatments (Figure 3b).

Table 7. Soil total nitrogen (TN), mineral-associated nitrogen (MAN), and particulate nitrogen (PN)
content in different layers (0.0–0.05 m, 0.05–0.1 m, 0.1–0.2 m, and 0.2–0.4 m) in Vineyard 1 (‘Isabella’)
after three years of grape pomace vermicompost (VC) and compost (CO); C stands for control (no
organic fertilization).

TN (g kg–1) MAN (g kg–1) PN (g kg–1)

0.
0–

0.
05

m C 4.65 ± 0.52 a 3.62 ± 0.40 1.03 ± 0.20
VC 3.22 ± 0.80 b 2.29 ± 0.56 0.93 ± 0.20
CO 4.11 ± 0.74 ab 2.97 ± 0.44 1.15 ± 0.31

p-value 0.01 0.08 0.26

0.
05

–0
.1

m C 2.63 ± 0.55 2.05 ± 0.44 0.58 ± 0.09
VC 2.08 ± 0.25 1.48 ± 0.18 0.60 ± 0.05
CO 2.46 ± 0.42 1.77 ± 0.25 0.68 ± 0.05

p-value 0.18 0.49 0.82

0.
1–

0.
2

m C 1.77 ± 0.43 1.38 ± 0.25 0.39 ± 0.07
VC 1.64 ± 0.16 1.17 ± 0.12 0.47 ± 0.06
CO 1.76 ± 0.17 1.27 ± 0.20 0.49 ± 0.05

p-value 0.29 0.25 0.08

0.
2–

0.
4

m C 1.44 ± 0.19 1.12 ± 0.15 0.32 ± 0.04
VC 1.15 ± 0.32 0.82 ± 0.09 0.33 ± 0.02
CO 1.47 ± 0.17 1.06 ± 0.11 0.41 ± 0.05

p-value 0.07 0.43 0.14
p-values of ANOVA test are shown and different letters indicate different means among organic fertilizers (Tukey
test, α = 5%).
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Table 8. Soil total nitrogen (TN), mineral-associated nitrogen (MAN), and particulate nitrogen
(PN) content in different layers (0.0–0.05 m, 0.05–0.1 m, 0.1–0.2 m, and 0.2–0.4 m) in Vineyard 2
(‘Chardonnay’) after three years of grape pomace vermicompost (VC) and compost (CO); C stands
for control (no organic fertilization).

TN (g kg–1) MAN (g kg–1) PN (g kg–1)

0.
0–

0.
05

m C 3.41 ± 0.53 3.04 ± 0.42 0.37 ± 0.06
VC 3.19 ± 0.75 2.69 ± 0.56 0.50 ± 0.13
CO 3.19 ± 0.49 2.80 ± 0.39 0.39 ± 0.08

p-value 0.77 0.61 0.36
0.

05
–0

.1
m C 2.38 ± 0.28 2.17 ± 0.11 0.22 ± 0.05

VC 2.22 ± 0.24 2.02 ± 0.19 0.21 ± 0.02
CO 2.15 ± 0.29 1.99 ± 0.24 0.16 ± 0.02

p-value 0.36 0.53 0.17

0.
1–

0.
2

m C 2.10 ± 0.23 2.03 ± 0.25 0.07 ± 0.04
VC 1.91 ± 0.22 1.84 ± 0.19 0.07 ± 0.02
CO 2.03 ± 0.05 1.95 ± 0.08 0.08 ± 0.02

p-value 0.29 0.60 0.05

0.
2–

0.
4

m C 2.26 ± 0.52 2.23 ± 0.41 0.02 ± 0.02
VC 2.26 ± 0.43 2.24 ± 0.37 0.03 ± 0.01
CO 2.23 ± 0.31 2.19 ± 0.27 0.04 ± 0.01

p-value 0.99 0.67 0.12
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Figure 3. N stocks on 0.0–0.05 m, 0.05–0.10 m, 0.10–0.20 m, and 0.20–0.40 m soil layers, in Vineyard 1
(‘Isabella’) (a) and Vineyard 2 (‘Chardonnay’) (b), after three years of the following treatment appli-
cations: C—control (no organic fertilization), VC—fertilization with grape pomace vermicompost,
and CO—fertilization with grape pomace compost. Darker colors indicate the MAN fraction and
the lighter colors indicate the PN fraction. p-values of ANOVA test are shown and different letters
indicate different means among treatments (Tukey test, α = 5%).
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The annual addition of VC to the soil in vineyard agroecosystems failed to increase
SOC content and SOC stocks after a 3-year period (Table 5 and Figure 2). Conversely, amend-
ing soil with VC resulted in a lower SOC, MAOC, and POC in the topsoil (0.0–0.05 m), being
equivalent to around 30%, 26%, and 50% compared to control (soil without fertilizations) in
Vineyard 1 (Table 5). Vermicomposts tend to have more labile forms of C due to the vermi-
composting phase and the transformation that occurs both inside and outside earthworms’
digestive systems [11,12]. Also, the C:N ratio was lower in every year of application, which
means they can provide sufficient N for the soil microbial biomass to grow substantially.
Probably due to these characteristics, when added to the soil, VC was mineralized and
consumed faster by soil microbiota when compared to CO, which is in accordance with
previous studies [11,35]. The lower POC content in Vineyard 1 soil corroborates that ex-
planation, since this fraction also comprehends sand-size particles of the residues. The
labile C added via VC can foster soil microbiological activity, which speeds up its own
mineralization. Also, studies have shown that vermicomposts have chemical compounds
which can enhance microbiological growth and activity in soils [36–38]. After undergoing
mineralization, the increased presence of soil microbiota, together with VC-mineralized N
(NOx

–) availability, facilitates the mineralization of SOM and leads to a reduction of SOC
and TN contents (and stocks), thereby exemplifying the soil priming effect [39]. However,
no microbiological analyses were performed in our study. Nonetheless, these phenomena
could possibly explain the results observed, for instance, in Vineyard 1 (Table 5).

However, in Vineyard 2, there was no difference in mean SOC, MAOC, POC, TN,
MAN, or PN content in the soil among treatments (Table 6; Table 8). So, the phenomenon
observed for VC in Vineyard 1 was not observed in Vineyard 2.

On the other hand, CO did not deplete, nor increase, SOC and the fractions MAOC and
POC in both vineyards (Table 5; Table 6), as well as their stocks (Figure 2). The same thing
is valid for TN, MAN, PN (Table 7; Table 8), and N stock (Figure 3). Since CO has a higher
mean value of the C ratio (23.92), it is significantly less likely to induce priming effects on
soils and further mineralize SOM [39]. Also, CO does not undergo the vermicomposting
process, and thus has less labile forms of C [11,12].

4. Conclusions

Soil amendment with grape pomace residues (grape pomace compost and vermicom-
post) was unable to increase C or N stocks, SOC, or TN, nor its mineral-associated and
particulate fractions, at the tested amounts, in subtropical vineyards after three years of
treatment application. Grape pomace vermicompost, due to its low C:N ratio, acted as a
primer and further mineralized SOM, reducing C and N stocks in one of the vineyards.
Short-term results prevent stating that the tested residues are an appropriate strategy for
increasing C or N stocks in subtropical vineyard soils. However, we highlight that the
results of this study are time-limited and that the effects of the residues on C stock and
fractions can be distinct in medium- or long-term experiments. The results from these
studies allowed initial understanding of the yet understudied field of organic fertilization
and organic viticulture in subtropical regions. However, some insights are still impossible
to achieve in a three-year experiment. Thus, we highlight and recommend future studies to
test higher doses of grape pomace residues, in order to increase SOC, as well as test the
results after longer-term experiments.
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