
Citation: Grossi, M.; Alfonsi, F.;

Prandini, M.; Gabrielli, A. Increasing

the Security of Network Data

Transmission with a Configurable

Hardware Firewall Based on Field

Programmable Gate Arrays. Future

Internet 2024, 16, 303. https://

doi.org/10.3390/fi16090303

Academic Editors: Massimo Cafaro,

Italo Epicoco and Marco Pulimeno

Received: 19 July 2024

Revised: 17 August 2024

Accepted: 21 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Increasing the Security of Network Data Transmission with a
Configurable Hardware Firewall Based on Field Programmable
Gate Arrays
Marco Grossi 1,* , Fabrizio Alfonsi 2, Marco Prandini 3 and Alessandro Gabrielli 2,4

1 Department of Electrical Energy and Information Engineering “Guglielmo Marconi” (DEI), Alma Mater
Studiorum, Università di Bologna, 40136 Bologna, Italy

2 Istituto Nazionale di Fisica Nucleare (INFN) Bologna, 40127 Bologna, Italy; fabrizio.alfonsi@bo.infn.it (F.A.);
alessandro.gabrielli@unibo.it (A.G.)

3 Department of Computer Science and Engineering, Alma Mater Studiorum, Università di Bologna,
40126 Bologna, Italy; marco.prandini@unibo.it

4 Department of Physics and Astronomy “Augusto Righi” (DIFA), Alma Mater Studiorum, Università di
Bologna, 40127 Bologna, Italy

* Correspondence: marco.grossi8@unibo.it; Tel.: +39-051-2093038

Abstract: One of the most common mitigations against network-borne security threats is the de-
ployment of firewalls, i.e., systems that can observe traffic and apply rules to let it through if it is
benign or drop packets that are recognized as malicious. Cheap and open-source (a feature that is
greatly appreciated in the security world) software solutions are available but may be too slow for
high-rate channels. Hardware appliances are efficient but opaque and they are often very expensive.
In this paper, an open-hardware approach is proposed for the design of a firewall, implemented on
off-the-shelf components such as an FPGA (the Xilinx KC705 development board), and it is tested
using controlled Ethernet traffic created with a packet generator as well as with real internet traffic.
The proposed system can filter packets based on a set of rules that can use the whitelist or blacklist
approach. It generates a set of statistics, such as the number of received/transmitted packets and the
amount of received/transmitted data, which can be used to detect potential anomalies in the network
traffic. The firewall has been experimentally validated in the case of a network data throughput
of 1 Gb/s, and preliminary simulations have shown that the system can be upgraded with minor
modifications to work at 10 Gb/s. Test results have shown that the proposed firewall features a
latency of 627 ns and a maximum data throughput of 0.982 Gb/s.

Keywords: network security; firewall; FPGA; Ethernet; packet classification; embedded systems

1. Introduction

Network activity has increased significantly in the last two decades. From wired
communication, networking data has evolved towards wireless communication thanks to
the widespread diffusion of smart mobile devices [1]. Web applications have continued
to increase in number and cover a large number of applications, such as healthcare [2],
smart mobility [3], e-commerce [4] and social networks [5]. Similarly, in recent years,
the interconnection of sensors and actuators with high-performance computing devices
and wireless communication has led to the deployment of cyber–physical systems in
the paradigm of the Internet-of-Things [6–8]. The high volume of exchanged data traffic
has resulted in increased security threats due to cyber-attacks that exploit the system’s
vulnerabilities for unauthorized access to the system, stealing personal information and/or
creating damage to the system [9,10].

Several techniques have been adopted to mitigate the risks of cyber-attacks, such as
authentication procedures to prevent unauthorized access to the system [11,12], crypto-
graphic data obfuscation to make the information useless to malicious users listening to

Future Internet 2024, 16, 303. https://doi.org/10.3390/fi16090303 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090303
https://doi.org/10.3390/fi16090303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1316-9035
https://orcid.org/0000-0002-3962-5513
https://orcid.org/0000-0001-5346-7841
https://doi.org/10.3390/fi16090303
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090303?type=check_update&version=2


Future Internet 2024, 16, 303 2 of 22

private communications [13,14], as well as firewalls [15,16] and packet sniffers [17,18] for
the control and monitoring of network traffic. In the case of identity authentication and data
obfuscation, the procedure is carried out by using passwords and cryptographic keys that
are usually stored in a non-volatile memory. This poses significant security threats since
the non-volatile memory can be hacked to disclose confidential information. A technique
to mitigate this issue is to replace the non-volatile memory with a physical unclonable
function (PUF), a device that generates a unique fingerprint by exploiting the random
variations in its parameters generated during the production process [19–21].

Firewalls and packet sniffers are the basic building blocks for intrusion detection/
prevention systems (IDSs, IPSs). They are used to control and monitor the network traffic
and mitigate the security risks resulting from malicious data that exploit the network to
reach and compromise vulnerable systems. Firewalls are devices working in active mode,
featuring two full duplex ports, which can block the passage of network data if security
threats are detected. Packet sniffers, on the other hand, are devices working in passive
mode, analyzing the network traffic and sending an alarm message to a remote server if
security threats are detected. Firewalls and packet sniffers are usually implemented as
software running on a PC. Many software firewalls have been proposed in the literature for
the GNU/Linux operating system, exploiting the Iptables kernel feature (now superseded
by nftables) to set the rules for the discrimination between safe and potentially dangerous
data [22–24]. Similarly, many packet sniffers implemented in software exist, where the
most popular are Wireshark [25] and TCPdump [26]. Firewalls and packet sniffers imple-
mented in software can reliably detect network security issues as long as the network data
throughput is not too high. On the contrary, when the network data throughput exceeds a
certain threshold, the software implementation can lose effectiveness, mainly due to the
CPU being unable to keep up with the full network data speed.

In the case of high network data throughput, a hardware implementation is preferable.
The hardware implementation of firewalls and packet sniffers is usually realized using
Application Specific Integrated Circuits (ASICs) since this approach provides the best per-
formance and the minimization of power consumption. However, the ASIC implementation
of firewalls and packet sniffers also has significant drawbacks, such as high non-recurring
engineering costs and long times for the system design. As a consequence, ASIC-based
commercial firewalls are usually expensive and their design is a highly protected intellec-
tual property, hindering the possibility of users knowing what a security-critical device,
placed in their network, is doing. From this point of view, a Field Programmable Gate
Array (FPGA) implementation has significant advantages in terms of faster design, lower
costs, in particular for the realization of a small number of prototypes, and openness.

The objective of our research is the development of a hardware firewall on an FPGA to
check the safety of Ethernet traffic among universities and research centers. The protection
of scientific data is an essential aspect of ensuring data security since cyber-attacks and data
breaches are increasing in number in higher education institutions and universities [27].
The designed firewall should be able to support high data rates (at least 1 Gb/s) and must
feature a high configurability, where the single user is able to define the features of the data
that must be allowed or blocked. In the current stage of development, our research group
has focused on the design of a stateless firewall, but future works on this research project
will be aimed at the integration of stateful packet inspection and/or machine-learning
algorithms for security threat detection.

In this paper, a hardware firewall based on an FPGA is presented. The firewall is
implemented on a Xilinx KC705 development board that integrates the Kintex-7 XC7K325T-
2FFG900C FPGA. It is designed to work at a maximum data throughput of 1 Gb/s, but
preliminary simulations have shown that the system performance can be extended to a
higher data throughput of 10 Gb/s. The system features a highly configurable set of rules to
discriminate between safe and potentially dangerous data that can be defined according to
a whitelist or blacklist approach. It also calculates a set of statistics (such as the number of
received/transmitted packets, the packet length, etc.) that can be downloaded to a PC using



Future Internet 2024, 16, 303 3 of 22

the USB-UART interface for further data analysis. Experimental results have shown that the
designed firewall can achieve a data throughput of 0.982 Gb/s with a latency of 627 ns, and
the percent of packet loss due to memory resource exhaustion is negligible (3.29·10−5%).
The results of the paper represent the continuation of the research line presented in [17]
and [18], where a packet sniffer was designed on an FPGA for network data throughputs
of 1 Gb/s and 10 Gb/s, respectively.

The paper is organized as follows. In Section 2, a short review of the related works
of hardware firewalls implemented on an FPGA is presented. In Section 3, the design
of the proposed hardware firewall and its main features are presented. In Section 4,
the experimental results achieved with the proposed firewall are presented along with
preliminary simulations to extend the device data throughput to 10 Gb/s. In Section 5, the
performance of the designed firewall is compared with other firewalls from the literature.
Finally, concluding remarks are presented in Section 6.

2. Related Work

Different firewalls have been implemented in hardware on FPGAs and the results
have been presented in the literature. The most common type of firewall is the one often
referred to as the stateless firewall. This device does not store the status of the network
connection, but every packet is analyzed as it is, by comparing against a set of rules the
information contained in the header of the network and transport layers.

Mohammed and Ueno, in 2018, proposed a network firewall based on an FPGA to
monitor Ethernet traffic [28]. The system was implemented on the NetFPGA-1G hardware
accelerator that integrates a Xilinx Kintex-7 325T FPGA. The verification of the firewall
rules was implemented using a content addressable memory (CAM) for high-speed data
search. The firewall was designed with both software and hardware components and
its performance was tested on a network with four different Ethernet ports. The results
showed that the firewall latency was 402 µs and the maximum data throughput was about
800 Mb/s, over two times the data throughput achieved with a Linux-Iptables software
firewall.

Lin et al., in 2017, presented the design of an Ethernet firewall based on an FPGA [29].
The proposed system was implemented on an Altera EP4CE115F29 FPGA, exploiting a
microcontroller (NXP Semiconductor MK60DN512VLQ10) to test the firewall rules based
on a whitelist approach and two external devices (Marvell Technology 88E1111) to handle
the physical layer of the Ethernet protocol. Tests were carried out with two PCs exchanging
Ethernet data through the firewall, and the results showed that a maximum data throughput
of 950 Mb/s and a latency of 61.266 µs could be achieved.

Maloji Keni and Mande, in 2018, presented the design and implementation of a
hardware firewall using FPGA [30]. The proposed firewall, implemented on a Xilinx
Spartan 6 FPGA development board, features logic to compare the packet IP addresses
with a set of addresses stored on non-volatile memory to decide if the packet must be
transmitted or discarded. The authors reported that the proposed hardware firewall is
faster than a conventional software firewall. However, the system was tested only with
packets generated on the same FPGA board and with a fixed size of 512 bits.

Ajami and Dinh, in 2011, proposed a hardware network firewall on an FPGA [31].
The proposed system was implemented on an Altera Stratix II EP2S60F672C5 FPGA and
was designed using a NIOS II soft-core 32-bit microprocessor implemented in the FPGA
programmable logic, an Ethernet module LAN91C111 (Microchip Technology) to handle
the physical and medium access control layers of the Ethernet protocol, two RAM modules
to store the firewall rules and a CAM for low packet processing latency. The system was
tested by interfacing the firewall with two PCs used to generate packets. The measured
packet processing time was 1.24 µs for ARP packets and 1.76 µs for ICMP packets.

Antonov et al., in 2016, presented an FPGA-based firewall for enhancing the security
of IP networks [32]. The proposed firewall architecture features packet filtering algorithms
realized with circuits implemented in the FPGA programmable logic, two cores of an



Future Internet 2024, 16, 303 4 of 22

ARM Cortex A9 microprocessor, 1 GB of dynamic RAM (DDR3) and an SD card reader to
store the microprocessor OS and statistical data generated by the firewall. The proposed
architecture was simulated for both Xilinx and Altera FPGAs, and a maximum working
clock frequency of 300 MHz was estimated.

Ricart-Sanchez et al., in 2019, presented a fully functional FPGA firewall for the
detection of cyber-attacks in 5G networks [33]. The firewall was implemented on a P4-
NetFPGA development board and was designed using a pipeline to minimize the latency.
Tests were carried out by connecting the firewall between two PCs, and the results showed
how the firewall latency was only marginally affected by the number of firewall rules. The
system was designed for a 10 Gb/s network but a maximum data throughput of 3.67 Gb/s
was reported. The percent of packet loss was reported to be about 2.5% in the worst-case
scenario.

Salopek and Mikuc, in 2023, proposed a hybrid hardware/software firewall based on
an FPGA for the mitigation of distributed denial of service (DDoS) attacks [34]. The system
was implemented on a NetFPGA SUME development board that features a Xilinx Virtex-7
690T FPGA, four 10 Gb/s SFP+ interfaces, static and dynamic RAM and other peripherals.
The packet processing is implemented in hardware with the FPGA programmable logic and
the packet data are forwarded to a software filter after some metadata have been appended.
The results showed how the proposed architecture that distributes the workload between
hardware and software components can achieve a very good performance and is effective
in the mitigation of DDoS attacks.

A more advanced type of firewall is the one referred to as a stateful firewall, which
checks the network packets, tracking the state of connections based on knowledge of the
protocols used in the network connection.

Bianchi et al., in 2016, proposed Open Packet Processor, a programmable architecture
for platform-independent stateful in-network processing [35]. The system was imple-
mented on the development board NetFPGA SUME, with a clock of 156.25 MHz and a
64-bit data path from the Ethernet ports, corresponding to a 10 Gb/s data throughput for
each port. The authors reported a data throughput between 107 and 8·107 packets/s.

Pontarelli et al., in 2019, presented FlowBlaze, a firewall based on Extended Finite
State Machines (EFSMs) that can support a wide range of complex network functions and
can make stateful packet inspection [36]. The proposed device was implemented on the
NetFPGA SUME SmartNIC, an x8 Gen3 PCIe adapter card containing a Xilinx Virtex-7 690T
FPGA and four SFP+ transceivers providing four 10 Gb/s Ethernet links. Experimental
measurements of the FlowBlaze performance showed that the device is characterized by a
latency of a few microseconds and a maximum data throughput of 14.88·106 packets/s in
the case of packet sizes of 64 bytes, but the authors state that, in principle, a maximum data
throughput of 40 Gb/s is possible.

Research activities were recently carried out on the exploitation of machine-learning
algorithms to detect potential security threats in network communication.

Tran et al., in 2017, designed a heterogeneous anomaly-based intrusion detection
system (HA-IDS) which is built on an FPGA and a Graphics Processing Unit (GPU) [37].
The system uses the FPGA (Xilinx Virtex-5 XC5VTX240T) to collect the network data and
extract the packets’ information, while the GPU (Gigabyte GeForce GTX 1080) is used to
implement a back-propagation neural network to detect anomalies in the network data.
Experimental results from studies carried out on a 2 GB dataset (consisting of regular
packets as well as DDoS attack packets) show that the system can achieve an accuracy of
80.42% with a data throughput of 200 Mb/s.

Le Jeune et al., in 2021, presented an intrusion detection system on an FPGA based on
deep learning [38]. The system was implemented on a PYNQ-Z2 development board with
a Xilinx ZYNQ XC7Z020-1CLG400C FPGA on board and achieved an accuracy of 99.41%
with a data throughput of 90 Mb/s.

Murovič and Trost, in 2021, proposed a binary neural network (BNN) on an FPGA
to design an intrusion detection system [39]. Different single hidden layer BNNs were



Future Internet 2024, 16, 303 5 of 22

implemented on a Xilinx Kintex Ultrascale+ FPGA (XCKU3P) and trained with two different
datasets (NSL-KDD and UNSW-NB15). The results showed that the designed system can
achieve an accuracy between 77.77% and 98.96%, it is very efficient in resource usage (8606
to 17,990 lookup tables) and features a very low classification latency (from 16 ns to 19 ns).

A different type of firewall deals with the security of bus transactions of microprocessors-
based embedded systems from potential attackers. Since these systems perform computation-
ally intensive algorithms and manipulate confidential information such as passwords, the
minimization of detection latency is very important.

Lázaro et al., in 2022, presented a firewall based on the Advanced eXtensible Interface
(AXI) for System-on-Chip security [40]. The objective was to design a system to detect
attacks against microprocessors and the designed firewall was located on an AXI bus to
protect an AXI slave device from the attacks of a fraudulent AXI master, such as accessing
non-allowed registers or carrying out a denial of service (DoS) attack. The proposed AXI
firewall was implemented on a Xilinx Zync7 FPGA device. Experimental results showed
that the system can efficiently work at a maximum frequency of 166 MHz and, due to the
implementation of the AXI to AXI path with combinatorial logic, it can achieve a latency of
zero clock cycles.

Restuccia and Kastner, in 2022, proposed a novel switching method for multicompo-
nent communication architectures on FPGA systems on chips to enable safe and secure bus
access and minimize the impact on performance and resource usage [41]. The proposed
technique was implemented on the Zynq Ultrascale+ (ZCU102) and Zynq Z-7020 (PYNQ)
platforms and the results showed the feasibility of detecting a wide range of software
attacks with significant benefits in terms of low resource usage and processing latency
minimization.

3. The Proposed Firewall on an FPGA

The schematic of a firewall working principle is presented in Figure 1. Here the firewall
is protecting a Local Area Network (LAN), which interconnects several PCs in a limited
area from potentially dangerous data packets. The firewall features two different ports:
Port A, connected to a router that manages the network traffic between the PCs in the
LAN and the internet, and Port B, which transmits/receives the network traffic to/from
the internet. Both ports are full duplex; that is, each port can transmit and receive data.
When a network packet is received at Port A, the firewall analyzes the packet against a set
of rules and, if no potential security threats are detected, it forwards the packet to Port B
for transmission, or blocks it otherwise. Each firewall port features its set of rules that can
be defined according to a whitelist approach, where only the packets that follow the rules
are allowed to pass, or a blacklist approach, where only the packets that follow the rules
are blocked.

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 22 
 

 

uploaded to the FPGA memory using the USB-UART interface. The developed software 

generates a text file with a set of firewall rules: each rule is 176 characters on one line of 

the text file and sets a range for the IP source address, the IP destination address, the 

source and destination ports and the transport layer (i.e., Level 4) protocol. During the 

firewall initialization, the text file is read and its content is transferred to the FPGA 

memory using the USB-UART interface. The firewall can analyze packets that belong to 

the network layer (i.e., Level 3) protocols ARP and IP, and, in the case of the IP protocol, 

can analyze packets that belong to the transport layer (i.e., Level 4) protocols UDP, TCP 

and ICMP. It also calculates a set of statistics of the network traffic at both ports. These 

statistics include the number of packets that are transmitted to the output port, the 

number of packets that are blocked due to checksum errors, the number of packets that 

are blocked due to firewall rules violation, the number of packets dropped when the 

memory is full, the protocol of the received packets and the amount of used memory. 

Such statistics can be downloaded to a PC using the USB-UART interface for further data 

analysis. 

 

Figure 1. Schematic of the working principle of a firewall. 

The schematic of the proposed hardware firewall is presented in Figure 2, where the 

different hardware blocks implemented in the FPGA programmable logic and their in-

terconnections are shown. Only the logic for the analysis of packets received at Port A is 

shown, for simplicity. In the real system, such logic is also duplicated for the packets re-

ceived at Port B. The synchronization of the digital circuits is carried out using the 200 

MHz LVDS crystal oscillator present on the KC705 development board. The 200 MHz 

clock is used to generate two different clock signals using the Xilinx IP ‘Clock Wizard’: a 

125 MHz clock used for the circuits devoted to the packets transmission/reception and 

analysis (CLK_125MHz), and a 10 MHz clock used for the communication with a PC 

through the USB-UART interface (CLK_10MHz). 

The USB-UART communication is managed by the ‘UART controller’ module that 

communicates with the PC using the ‘UART RX’ and ‘UART TX’ modules (baud rate 

115200, 8-bit data, 1 stop bit, no parity bit). The communication of the ‘UART controller’ 

module with the circuits implemented in the FPGA programmable logic is realized with 

a custom interface with an 8-bit data bus: UART_RX_DATA[7:0] that is valid when the 

signal UART_RX_DV is set for the received data, and UART_TX_DATA[7:0] that is valid 

when the signal UART_TX_DV is set for the transmitted data. The signal 

UART_TX_DONE informs the ‘UART controller’ module when a data byte has been 

transmitted. 

Figure 1. Schematic of the working principle of a firewall.



Future Internet 2024, 16, 303 6 of 22

The proposed firewall is designed using the Verilog HDL [42] and is implemented on
a Xilinx KC705 development board [43] that integrates the Kintex-7 XC7K325T-2FFG900C
FPGA. The KC705 development board has been selected since it features interfaces for
Ethernet communication at both 1 Gb/s and 10 Gb/s, and the on-board FPGA device has
a good amount of hardware resources (326,080 logic cells, 840 DSP slices, about 2 MB of
SRAM, 16 GTX transceivers and 500 pins) to implement our project. The designed firewall
works at a maximum data throughput of 1 Gb/s, but preliminary simulations have shown
that its performance can be extended to a higher data throughput of 10 Gb/s. Both ports
of the firewall can be configured with a set of 256 rules, defined according to a whitelist
or blacklist approach. The set of rules for each port can be defined using ad-hoc software
developed in LabVIEW (National Instruments) [44] and uploaded to the FPGA memory
using the USB-UART interface. The developed software generates a text file with a set of
firewall rules: each rule is 176 characters on one line of the text file and sets a range for
the IP source address, the IP destination address, the source and destination ports and the
transport layer (i.e., Level 4) protocol. During the firewall initialization, the text file is read
and its content is transferred to the FPGA memory using the USB-UART interface. The
firewall can analyze packets that belong to the network layer (i.e., Level 3) protocols ARP
and IP, and, in the case of the IP protocol, can analyze packets that belong to the transport
layer (i.e., Level 4) protocols UDP, TCP and ICMP. It also calculates a set of statistics of
the network traffic at both ports. These statistics include the number of packets that are
transmitted to the output port, the number of packets that are blocked due to checksum
errors, the number of packets that are blocked due to firewall rules violation, the number
of packets dropped when the memory is full, the protocol of the received packets and the
amount of used memory. Such statistics can be downloaded to a PC using the USB-UART
interface for further data analysis.

The schematic of the proposed hardware firewall is presented in Figure 2, where
the different hardware blocks implemented in the FPGA programmable logic and their
interconnections are shown. Only the logic for the analysis of packets received at Port A
is shown, for simplicity. In the real system, such logic is also duplicated for the packets
received at Port B. The synchronization of the digital circuits is carried out using the
200 MHz LVDS crystal oscillator present on the KC705 development board. The 200 MHz
clock is used to generate two different clock signals using the Xilinx IP ‘Clock Wizard’:
a 125 MHz clock used for the circuits devoted to the packets transmission/reception and
analysis (CLK_125MHz), and a 10 MHz clock used for the communication with a PC
through the USB-UART interface (CLK_10MHz).

The USB-UART communication is managed by the ‘UART controller’ module that
communicates with the PC using the ‘UART RX’ and ‘UART TX’ modules (baud rate
115,200, 8-bit data, 1 stop bit, no parity bit). The communication of the ‘UART controller’
module with the circuits implemented in the FPGA programmable logic is realized with a
custom interface with an 8-bit data bus: UART_RX_DATA[7:0] that is valid when the signal
UART_RX_DV is set for the received data, and UART_TX_DATA[7:0] that is valid when the
signal UART_TX_DV is set for the transmitted data. The signal UART_TX_DONE informs
the ‘UART controller’ module when a data byte has been transmitted.



Future Internet 2024, 16, 303 7 of 22
Future Internet 2024, 16, x FOR PEER REVIEW 7 of 22 
 

 

 

Figure 2. Schematic of the designed hardware firewall on an FPGA. 

Each firewall port features the following: 

1. An ‘AXI 1G/2.5G Ethernet Subsystem’ IP module by Xilinx [45]. This module man-

ages the media access control (MAC) layer and the physical (PHY) layer of the 

Ethernet protocol. It is interfaced on the KC705 board with an SFP/SFP+ connector 

that transmits/receives the Ethernet data using fiber optic cables (differential signals 

RX_P, RX_N for the received data and differential signals TX_P, TX_N for the 

transmitted data). On the FPGA side, the packet data are transferred with an 8-bit 

data bus using the AXI communication protocol. In the case of the receiving port, for 

example, RX_DATA[7:0] stores the 8-bit data that are valid when the signal RX_DV 

is set, while RX_LAST is set during the transfer of the last byte of the packet. 

RX_ERR is a signal to indicate the presence of errors during the reception of the 

packet. 

2. An ‘RX control’ module, designed using the Verilog HDL. This module is responsi-

ble for receiving the packet data from the ‘AXI 1G/2.5G Ethernet Subsystem’ module, 

storing the data in memory, and providing the packet data to the ‘Packet analysis’ 

module. 

3. A ‘Data memory’ module that instantiates a dual-port SRAM using the block 

memory inside the FPGA, i.e., with the Xilinx IP module ‘Block memory generator’ 

[46]. This memory has a size of 16 kB and features 16,384 words of 1 byte each. It is 

used to store the received packet data before a decision is made on the compliance of 

the packet with the firewall rules. Each port of the memory features an address bus 

(14-bit), a data bus (8-bit), and a write enable (WE) signal that is set during a write 

operation. 

4. A ‘Control memory’ module that instantiates a dual-port SRAM using the block 

memory inside the FPGA, i.e., with the Xilinx IP module ‘Block memory generator’ 

[46]. This memory has a size of 5 kB and features 1024 words of 40 bits each. Each 

port of the memory features an address bus (10-bit), a data bus (40-bit), and a write 

enable (WE) signal that is set during a write operation. Each word of the Control 

memory is composed of three fields and is associated with a specific packet whose 

data are stored in the Data memory. The most significant bits store the STATUS 

Figure 2. Schematic of the designed hardware firewall on an FPGA.

Each firewall port features the following:

1. An ‘AXI 1G/2.5G Ethernet Subsystem’ IP module by Xilinx [45]. This module manages
the media access control (MAC) layer and the physical (PHY) layer of the Ethernet
protocol. It is interfaced on the KC705 board with an SFP/SFP+ connector that
transmits/receives the Ethernet data using fiber optic cables (differential signals RX_P,
RX_N for the received data and differential signals TX_P, TX_N for the transmitted
data). On the FPGA side, the packet data are transferred with an 8-bit data bus
using the AXI communication protocol. In the case of the receiving port, for example,
RX_DATA[7:0] stores the 8-bit data that are valid when the signal RX_DV is set, while
RX_LAST is set during the transfer of the last byte of the packet. RX_ERR is a signal
to indicate the presence of errors during the reception of the packet.

2. An ‘RX control’ module, designed using the Verilog HDL. This module is responsible
for receiving the packet data from the ‘AXI 1G/2.5G Ethernet Subsystem’ module,
storing the data in memory, and providing the packet data to the ‘Packet analysis’
module.

3. A ‘Data memory’ module that instantiates a dual-port SRAM using the block memory
inside the FPGA, i.e., with the Xilinx IP module ‘Block memory generator’ [46]. This
memory has a size of 16 kB and features 16,384 words of 1 byte each. It is used to store
the received packet data before a decision is made on the compliance of the packet
with the firewall rules. Each port of the memory features an address bus (14-bit), a
data bus (8-bit), and a write enable (WE) signal that is set during a write operation.

4. A ‘Control memory’ module that instantiates a dual-port SRAM using the block mem-
ory inside the FPGA, i.e., with the Xilinx IP module ‘Block memory generator’ [46].
This memory has a size of 5 kB and features 1024 words of 40 bits each. Each port of
the memory features an address bus (10-bit), a data bus (40-bit), and a write enable
(WE) signal that is set during a write operation. Each word of the Control memory
is composed of three fields and is associated with a specific packet whose data are
stored in the Data memory. The most significant bits store the STATUS BYTE (8-bit),
which defines the status of the packet: h0 for quarantined packets before a decision
on the compliance with the firewall rules is made; h37 for packets that comply with



Future Internet 2024, 16, 303 8 of 22

the firewall rules and can be transmitted; h2C for packets that do not comply with
the firewall rules and must be blocked; h21 for packets with a checksum error that
must be blocked. The other two fields are the PACKET START ADDRESS (16-bit),
which stores the Data memory address of the first byte of the packet, and the PACKET
LENGTH (16-bit), which stores the size of the packet in bytes.

5. A ‘Packet analysis’ module, designed using the Verilog HDL. This module receives
the packet data (FW_DATA[7:0]) from the ‘RX control’ module: the data are valid
when the signal FW_EN is set, while BYTE_NUMBER[15:0] indicates the position of
the current data inside the packet. The signal FW_OUT is set one clock cycle after
the reception of the last data byte. The ‘Packet analysis’ module is implemented as a
combinational circuit (zero clock cycles latency) and calculates a set of parameters,
such as the MAC source and destination addresses, the IP source and destination
addresses and the source and destination ports. The packet parameters are then used
by the ‘Check firewall rules’ module to decide on the compliance of the packet with
the firewall rules.

6. A ‘Check firewall rules’ module, designed using the Verilog HDL. This module
checks if the packet parameters comply with the firewall rules stored in the ‘Fire-
wall rules memory’ and sends its decision to the ‘RX control’ module with the 2-bit
data FW_RESULT[1:0] (that indicate if the packet can be considered safe or not)
and the 3-bit data FW_PCK_TYPE[2:0] (that indicate the protocol of the processed
packet). Both FW_RESULT[1:0] and FW_PCK_TYPE[2:0] are valid when the signal
FW_COMPLETED is set.

7. A ‘Firewall rules memory’ module that instantiates a dual-port SRAM using the block
memory inside the FPGA, i.e., with the Xilinx IP module ‘Block memory genera-
tor’ [46]. This memory has a size of 7 kB and features 256 words of 224 bits each. Each
224-bit word stores a single firewall rule. Each port of the memory features an address
bus (8-bit), a data bus (224-bit) and a write enable (WE) signal that is set during a
write operation. The firewall rules are written in the memory during the initialization
by the ‘UART controller’ module and are read by the ‘Check firewall rules’ module
during the packet processing step.

8. A ‘TX control’ module, designed using the Verilog HDL. This module is interfaced
with the Data memory and Control memory and checks the status of the packet before
a decision is made if the packet must be transmitted to the output port or must be
blocked. The packets that are allowed to pass the firewall are sent to the ‘AXI 1G/2.5G
Ethernet Subsystem’ module using the same 8-bit AXI communication protocol of the
‘RX control’ module.

The operations of the packet processing in the firewall are presented in the flow-chart
of Figure 3, while the waveforms of the signals obtained with a simulation in the Vivado
design suite are presented in Figure 4. The packet processing steps in Figure 3 are not
carried out sequentially, but the operations are pipelined to minimize the firewall latency
(i.e., the delay between the packet reception at the input port and the packet transmission
at the output port) and maximize the data throughput.

The packet reception is carried out as long as the Data memory occupation (MEMused
in Figure 3) is lower than 12 kB, i.e., after the processing of one packet is completed the
value of MEMused is checked (step R7 in Figure 3). When Data memory occupation exceeds
12 kB, the firewall stops receiving packets until the Data memory occupation falls below
5 kB (step R8 in Figure 3). The operations of packet reception and subsequent analysis, as
presented in Figure 3, can be summarized as follows:

1. When the Xilinx IP module ‘AXI 1G/2.5G Ethernet Subsystem’ receives an Ethernet
frame from the fiber optic cable connected to the SFP/SFP+ connector, it handles
the physical layer of the Ethernet frame, checks the correctness of the frame check
sequence (FCS) field and transmits the packet (of length n bytes) to the FPGA logic
using AXI bus protocol. The latency associated with this operation (Step R1 in Figure 3)
can be estimated from the module datasheet as TSFP to AXI = 200 ns [45].



Future Internet 2024, 16, 303 9 of 22

2. When the module ‘RX control’ receives the packet, it stores the packet data in the Data
memory from address i to address i + n − 1 (Step R2 in Figure 3) and updates the
content of Control memory, by setting the control word at address j with STATUS
BYTE = 0 h, PACKET START ADDRESS = i and PACKET LENGTH = n (Step R3 in
Figure 3). The value of Data memory occupation is then increased (Step R4 in Figure 3)
and the address of the Data memory and Control memory is updated (Step R5 in
Figure 3). Concurrently, it sends the packet data to the ‘Packet analysis’ module. When
all data for packet analysis are available, the signal FW_OUT is asserted. The latency
associated with these operations (i.e., the delay between the reception of the last byte
of the packet and the assertion of FW_OUT) is 1 clock cycle, thus TRX to FW_OUT = 8 ns.

3. The module ‘Packet analysis’ calculates the packet fields (Step A1 in Figure 3) and
operates concurrently with the ‘RX control’ module. The module ‘Packet analysis’
is implemented with a combinational circuit. Thus, when the signal FW_OUT is
asserted, all the packet fields are valid and no latency is associated with this operation.

4. When the packet fields are valid, the ‘Check firewall rules’ module checks the compli-
ance of the packet fields with the firewall rules (Step C1 in Figure 3) and generates the
response in the 2-bit register FW_RESULT[1:0] (0 for a packet with checksum error,
1 for a packet that violates the firewall rules, 3 for a packet that can be transmitted)
and the 3-bit register FW_PCK_TYPE[2:0] that defines the protocol of the packet (0 for
ARP, 1 for TCP, 2 for UDP, 3 for ICMP, 4 for IPv6 and 5 for others). Then, the signal
FW_COMPLETED is asserted to inform the ‘RX control’ module that the results of the
packet analysis are available. The latency associated with this operation is 18 clock
cycles, thus TFW_OUT to FW_COMPLETED = 144 ns.

5. When the signal FW_COMPLETED is asserted, the ‘RX control’ module updates the
value of the STATUS BYTE for the Control Word present at address j of the Control
memory, according to the value of the register FW_RESULT[1:0] (Step R6 in Figure 3).
The latency associated with this operation is of 1 clock cycle, thus TCW UPDATE = 8 ns.
At this time, the ‘TX control’ module can decide if the packet can be transmitted or
must be blocked.

The operations of the transmission of the packets that comply with the firewall rules,
as presented in Figure 3, can be summarized as follows:

1. The ‘TX control’ module continuously reads the Control Word stored at address k of
the Control memory (Step T1 in Figure 3) and checks if the value of the STATUS BYTE
is different from 0 (Step T2 in Figure 3). If the value of the STATUS BYTE is 37h (i.e.,
the packet complies with the firewall rules), the packet is sent to the ‘AXI 1G/2.5G
Ethernet Subsystem’ module to be transmitted, or it is discarded, otherwise (Step T3
and T4 in Figure 3). Then, the signal TX_COMPLETED is set to inform the ‘RX control’
module that the packet was transmitted/discarded. The ‘RX control’ module can
update the content of Control memory (Step R9 in Figure 3) and decrease the value of
Data memory occupation (Step R10 in Figure 3). Finally, the value of k is incremented
by the ‘TX control’ module (Step T5 in Figure 3). The latency associated with these
operations is of 7 clock cycles, thus TTX DECISION = 56 ns.

2. The Xilinx IP module ‘AXI 1G/2.5G Ethernet Subsystem’ transmits the Ethernet
frame using the fiber optic cable connected to the SFP/SFP+ connector. The la-
tency associated with this operation can be estimated from the module datasheet as
TAXI to SFP = 211 ns [45].

The latency of the firewall, i.e., the delay introduced between the time an Ethernet
frame is received at the input port and the time the same Ethernet frame is transmitted at
the output port, can be estimated as follows:

TFIREWALL = TSFP to AXI + TRX to FW_OUT + TFW_OUT to FW_COMPLETED + TCW_UPDATE + TTX_DECISION + TAXI to SFP (1)

where TSFP to AXI = 200 ns (as reported in the ‘AXI 1G/2.5G Ethernet Subsystem’ product
guide [45]), TRX to FW_OUT = 8 ns (since the delay between the last byte of a packet and the
assertion of the signal FW_OUT is of 1 clock cycle), TFW_OUT to FW_COMPLETED = 144 ns (since



Future Internet 2024, 16, 303 10 of 22

the delay introduced by the operation to check the compliance of a packet with the firewall
rules is of 18 clock cycles), TCW UPDATE = 8 ns (since the delay introduced by the update of
the Control memory by the ‘RX control’ module is of 1 clock cycle), TTX DECISION = 56 ns
(since the delay introduced by the ‘TX control’ module to check the packet STATUS
BYTE and to send the packet to in the ‘AXI 1G/2.5G Ethernet Subsystem’ module is of
7 clock cycles) and TAXI to SFP = 211 ns (as reported in the ‘AXI 1G/2.5G Ethernet Subsystem’
product guide [45]). Thus, TFIREWALL = 627 ns.

Future Internet 2024, 16, x FOR PEER REVIEW 10 of 22 
 

 

The latency of the firewall, i.e., the delay introduced between the time an Ethernet 

frame is received at the input port and the time the same Ethernet frame is transmitted at 

the output port, can be estimated as follows: 

𝑇𝐹𝐼𝑅𝐸𝑊𝐴𝐿𝐿 = 𝑇𝑆𝐹𝑃 𝑡𝑜 𝐴𝑋𝐼 + 𝑇𝑅𝑋 𝑡𝑜 𝐹𝑊_𝑂𝑈𝑇 + 𝑇𝐹𝑊_𝑂𝑈𝑇 𝑡𝑜 𝐹𝑊_𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸𝐷 + 𝑇𝐶𝑊_𝑈𝑃𝐷𝐴𝑇𝐸 + 𝑇𝑇𝑋_𝐷𝐸𝐶𝐼𝑆𝐼𝑂𝑁 + 𝑇𝐴𝑋𝐼 𝑡𝑜 𝑆𝐹𝑃 (1) 

where TSFP to AXI = 200 ns (as reported in the ‘AXI 1G/2.5G Ethernet Subsystem’ product 

guide [45]), TRX to FW_OUT = 8 ns (since the delay between the last byte of a packet and the 

assertion of the signal FW_OUT is of 1 clock cycle), TFW_OUT to FW_COMPLETED = 144 ns (since the 

delay introduced by the operation to check the compliance of a packet with the firewall 

rules is of 18 clock cycles), TCW UPDATE = 8 ns (since the delay introduced by the update of 

the Control memory by the ‘RX control’ module is of 1 clock cycle), TTX DECISION = 56 ns 

(since the delay introduced by the ‘TX control’ module to check the packet STATUS BYTE 

and to send the packet to in the ‘AXI 1G/2.5G Ethernet Subsystem’ module is of 7 clock 

cycles) and TAXI to SFP = 211 ns (as reported in the ‘AXI 1G/2.5G Ethernet Subsystem’ prod-

uct guide [45]). Thus, TFIREWALL = 627 ns. 

 

Figure 3. Flow chart of the steps for the packet processing in the firewall. The steps carried out by 

the ‘RX control’ module are presented in blue. The steps carried out by the ‘Packet analysis’ module 

are presented in red. The steps carried out by the ‘Check firewall rules’ module are presented in 

yellow. The steps carried out by the ‘TX control’ module are presented in green. 

Figure 3. Flow chart of the steps for the packet processing in the firewall. The steps carried out by the
‘RX control’ module are presented in blue. The steps carried out by the ‘Packet analysis’ module are
presented in red. The steps carried out by the ‘Check firewall rules’ module are presented in yellow.
The steps carried out by the ‘TX control’ module are presented in green.



Future Internet 2024, 16, 303 11 of 22Future Internet 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 4. Waveforms of the signals during the processing steps of an Ethernet packet. 

The waveforms of the signals obtained with a simulation of the designed firewall 

hardware are shown in Figure 4. In particular, in the considered time period, two Ether-

net frames are received at Port A, which include a TCP packet and a UDP packet. The 

packet data (PORT_A_RX_DATA[7:0]) are received when the enable signal 

(PORT_A_RX_DV) is set, and the last byte of the packet is transferred in the clock cycle 

when PORT_A_RX_LAST is set. The two packets are stored in the Data memory at the 

addresses (DADDR_IN[13:0]) between 0 and 59 for the first packet, and at the addresses 

between 60 and 119 for the second packet. The control word for the first packet is stored 

in the Control memory at the address (CADDR_IN[9:0]) 0, while the second packet con-

trol word is stored at Control memory Address 1. The received packets are analyzed and 

their most important identification fields are determined: the MAC destination address 

(MAC_DEST[47:0]), the MAC source address (MAC_SOURCE[47:0]), the network layer 

protocol (LEV3_PROTOCOL[15:0]), the IP source address (IP_SOURCE[31:0]), the IP 

destination address (IP_DEST[31:0]), the transport layer protocol 

(LEV4_PROTOCOL[7:0]), the source port (SOURCE_PORT[15:0]) and the destination 

port (DEST_PORT[15:0]). In particular, the first received packet can be identified as a TCP 

packet since it is characterized by a network layer protocol of 0800h and a transport layer 

protocol of 6, while the second received packet can be identified as a UDP packet since it 

is characterized by a network layer protocol of 0800h and a transport layer protocol of 17. 

Both received packets are checked against the firewall rules that are loaded in the ‘Fire-

wall rules memory’ during the device initialization. The results of the rules verification 

steps are valid when the signal FW_COMPLETED is set. In particular, for both packets, 

FW_RESULT[1:0] = 3, and this means that the packets comply with the firewall rules and 

can be transmitted to Port B. For both packets, it is also TX_PCK_LENGTH[15:0] = 60 and 

this indicates that the packet size is 60 bytes. Figure 4 also shows the waveforms of the 

signals during the transmission of the first packet at Port B. In particular, the first packet 

is read from the Data memory (addresses DADDR_OUT[13:0] between 0 and 59) and 

transferred to the ‘AXI 1G/2.5G Ethernet Subsystem’ module of Port B using the 8-bit AXI 

protocol (PORT_B_TX_DATA[7:0] transferred when PORT_B_TX_DV = 1 with the signal 

Figure 4. Waveforms of the signals during the processing steps of an Ethernet packet.

The waveforms of the signals obtained with a simulation of the designed firewall
hardware are shown in Figure 4. In particular, in the considered time period, two Ethernet
frames are received at Port A, which include a TCP packet and a UDP packet. The packet
data (PORT_A_RX_DATA[7:0]) are received when the enable signal (PORT_A_RX_DV) is
set, and the last byte of the packet is transferred in the clock cycle when PORT_A_RX_LAST
is set. The two packets are stored in the Data memory at the addresses (DADDR_IN[13:0])
between 0 and 59 for the first packet, and at the addresses between 60 and 119 for the second
packet. The control word for the first packet is stored in the Control memory at the address
(CADDR_IN[9:0]) 0, while the second packet control word is stored at Control memory
Address 1. The received packets are analyzed and their most important identification fields
are determined: the MAC destination address (MAC_DEST[47:0]), the MAC source address
(MAC_SOURCE[47:0]), the network layer protocol (LEV3_PROTOCOL[15:0]), the IP source
address (IP_SOURCE[31:0]), the IP destination address (IP_DEST[31:0]), the transport
layer protocol (LEV4_PROTOCOL[7:0]), the source port (SOURCE_PORT[15:0]) and the
destination port (DEST_PORT[15:0]). In particular, the first received packet can be identified
as a TCP packet since it is characterized by a network layer protocol of 0800h and a transport
layer protocol of 6, while the second received packet can be identified as a UDP packet
since it is characterized by a network layer protocol of 0800h and a transport layer protocol
of 17. Both received packets are checked against the firewall rules that are loaded in the
‘Firewall rules memory’ during the device initialization. The results of the rules verification
steps are valid when the signal FW_COMPLETED is set. In particular, for both packets,
FW_RESULT[1:0] = 3, and this means that the packets comply with the firewall rules and
can be transmitted to Port B. For both packets, it is also TX_PCK_LENGTH[15:0] = 60 and
this indicates that the packet size is 60 bytes. Figure 4 also shows the waveforms of the
signals during the transmission of the first packet at Port B. In particular, the first packet
is read from the Data memory (addresses DADDR_OUT[13:0] between 0 and 59) and
transferred to the ‘AXI 1G/2.5G Ethernet Subsystem’ module of Port B using the 8-bit AXI
protocol (PORT_B_TX_DATA[7:0] transferred when PORT_B_TX_DV = 1 with the signal
PORT_B_TX_LAST set during the last data transfer). The signal PORT_B_TX_READY is
set when the ‘AXI 1G/2.5G Ethernet Subsystem’ module is ready to receive data.



Future Internet 2024, 16, 303 12 of 22

4. Experimental Results

The performance of the proposed firewall was tested by experimental measurements.
In Section 4.1, the firewall performance is presented with two packet generators, used to
generate controlled network traffic, connected to the two ports of the firewall. In Section 4.2,
the firewall performance is presented under real operative conditions when the firewall
controls the network traffic between a PC and the Internet. In Section 4.3, preliminary
simulations are presented to show the feasibility of upgrading the proposed design to work
at a higher data throughput (10 Gb/s).

4.1. Firewall Performance under Controlled Network Traffic

In the first instance, Ethernet data were provided to the firewall using a packet gener-
ator, designed on another KC705 FPGA device, which can generate packets of type ARP,
TCP, UDP and ICMP of different sizes and with different data throughputs. A detailed
description of the packet generator was presented in [17].

The measurement setup is presented in Figure 5. Two packet generators are connected
to the two firewall ports implemented with a Quad SFP28 FPGA Mezzanine Card (FMC)
Ethernet module [47]. A PC is used to communicate with the two packet generators and the
firewall using the USB-UART interface. Initially, the two packet generators are configured
to generate packets of a selected protocol, size and data throughput. Then, the firewall
statistics (including the number of received/transmitted packets, the level of occupation of
data memory, etc.) are acquired at time intervals of 1 s.

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 22 
 

 

PORT_B_TX_LAST set during the last data transfer). The signal PORT_B_TX_READY is 

set when the ‘AXI 1G/2.5G Ethernet Subsystem’ module is ready to receive data. 

4. Experimental Results 

The performance of the proposed firewall was tested by experimental measure-

ments. In Section 4.1, the firewall performance is presented with two packet generators, 

used to generate controlled network traffic, connected to the two ports of the firewall. In 

Section 4.2, the firewall performance is presented under real operative conditions when 

the firewall controls the network traffic between a PC and the Internet. In Section 4.3, 

preliminary simulations are presented to show the feasibility of upgrading the proposed 

design to work at a higher data throughput (10 Gb/s). 

4.1. Firewall Performance under Controlled Network Traffic 

In the first instance, Ethernet data were provided to the firewall using a packet gen-

erator, designed on another KC705 FPGA device, which can generate packets of type 

ARP, TCP, UDP and ICMP of different sizes and with different data throughputs. A de-

tailed description of the packet generator was presented in [17]. 

The measurement setup is presented in Figure 5. Two packet generators are con-

nected to the two firewall ports implemented with a Quad SFP28 FPGA Mezzanine Card 

(FMC) Ethernet module [47]. A PC is used to communicate with the two packet genera-

tors and the firewall using the USB-UART interface. Initially, the two packet generators 

are configured to generate packets of a selected protocol, size and data throughput. Then, 

the firewall statistics (including the number of received/transmitted packets, the level of 

occupation of data memory, etc.) are acquired at time intervals of 1 s. 

 

Figure 5. Experimental setup for the measurement of the firewall performance under conditions 

where the network data are generated by an ad-hoc designed packet generator. 

The firewall performance was evaluated in the case of UDP packets. First of all, the 

packets were continuously generated (i.e., no delay between packets) to evaluate the 

maximum data throughput for different sizes of the generated packets. Tests were carried 

out for five different sizes of UDP packet: 100 bytes, 250 bytes, 500 bytes, 750 bytes and 

1000 bytes. The results are reported in Figure 6. As can be seen, the data throughput in-

creases for packets of larger size. In the case of packets of 100 bytes in size, the data 

throughput is 0.811 Gb/s, which is about 80% of the maximum data throughput of 1 Gb/s. 

In the case of packets of 250, 500, 750 and 1000 bytes in size, the data throughput was 

Figure 5. Experimental setup for the measurement of the firewall performance under conditions
where the network data are generated by an ad-hoc designed packet generator.

The firewall performance was evaluated in the case of UDP packets. First of all,
the packets were continuously generated (i.e., no delay between packets) to evaluate the
maximum data throughput for different sizes of the generated packets. Tests were carried
out for five different sizes of UDP packet: 100 bytes, 250 bytes, 500 bytes, 750 bytes and
1000 bytes. The results are reported in Figure 6. As can be seen, the data throughput
increases for packets of larger size. In the case of packets of 100 bytes in size, the data
throughput is 0.811 Gb/s, which is about 80% of the maximum data throughput of 1 Gb/s.
In the case of packets of 250, 500, 750 and 1000 bytes in size, the data throughput was
measured as 0.917 Gb/s, 0.959 Gb/s, 0.974 Gb/s and 0.982 Gb/s, respectively. The increase
in data throughput for packets of larger size can be easily explained by the fact that an
Ethernet frame contains a packet that is preceded by a preamble and start frame delimiter



Future Internet 2024, 16, 303 13 of 22

(8 bytes) and ends with a frame check sequence (4 bytes) used to detect data corruption.
Thus, in the case of packets of larger size, this overhead has less impact on the data
throughput.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

measured as 0.917 Gb/s, 0.959 Gb/s, 0.974 Gb/s and 0.982 Gb/s, respectively. The increase 

in data throughput for packets of larger size can be easily explained by the fact that an 

Ethernet frame contains a packet that is preceded by a preamble and start frame delimiter 

(8 bytes) and ends with a frame check sequence (4 bytes) used to detect data corruption. 

Thus, in the case of packets of larger size, this overhead has less impact on the data 

throughput. 

 

Figure 6. Data throughput of the proposed firewall for UDP packets of different sizes. 

As discussed in Section 3, when an Ethernet frame is received at one port of the 

firewall, its content is stored in the 16 kB data memory before a decision is made if the 

Ethernet frame must be transmitted or discarded. Thus, the size of the used data memory 

(i.e., used memory hereafter) was measured at time intervals of 1 s for UDP packets of 

different sizes and different values of the inter-frame delay. The firewall was designed to 

receive data as long as the used memory is lower than 12 kB, while, when this threshold 

is exceeded, the firewall discards the received packets until the used memory decreases 

below 5 kB. The results showed how, if the inter-frame delay is lower than 13 clock cy-

cles, the used memory increases with time and eventually reaches the critical threshold of 

12 kB, while for inter-frame delays of 13 clock cycles or higher, the firewall works con-

tinuously without reaching the critical threshold. The measured used memory is plotted 

vs. time in Figure 7 in the case of UDP packets of a size of 100 bytes and no inter-frame 

delay. 

 

Figure 7. Used data memory vs. time in the case of UDP packets of size 100 bytes and no in-

ter-frame delay. 

Figure 6. Data throughput of the proposed firewall for UDP packets of different sizes.

As discussed in Section 3, when an Ethernet frame is received at one port of the
firewall, its content is stored in the 16 kB data memory before a decision is made if the
Ethernet frame must be transmitted or discarded. Thus, the size of the used data memory
(i.e., used memory hereafter) was measured at time intervals of 1 s for UDP packets of
different sizes and different values of the inter-frame delay. The firewall was designed to
receive data as long as the used memory is lower than 12 kB, while, when this threshold
is exceeded, the firewall discards the received packets until the used memory decreases
below 5 kB. The results showed how, if the inter-frame delay is lower than 13 clock cycles,
the used memory increases with time and eventually reaches the critical threshold of 12 kB,
while for inter-frame delays of 13 clock cycles or higher, the firewall works continuously
without reaching the critical threshold. The measured used memory is plotted vs. time in
Figure 7 in the case of UDP packets of a size of 100 bytes and no inter-frame delay.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

measured as 0.917 Gb/s, 0.959 Gb/s, 0.974 Gb/s and 0.982 Gb/s, respectively. The increase 

in data throughput for packets of larger size can be easily explained by the fact that an 

Ethernet frame contains a packet that is preceded by a preamble and start frame delimiter 

(8 bytes) and ends with a frame check sequence (4 bytes) used to detect data corruption. 

Thus, in the case of packets of larger size, this overhead has less impact on the data 

throughput. 

 

Figure 6. Data throughput of the proposed firewall for UDP packets of different sizes. 

As discussed in Section 3, when an Ethernet frame is received at one port of the 

firewall, its content is stored in the 16 kB data memory before a decision is made if the 

Ethernet frame must be transmitted or discarded. Thus, the size of the used data memory 

(i.e., used memory hereafter) was measured at time intervals of 1 s for UDP packets of 

different sizes and different values of the inter-frame delay. The firewall was designed to 

receive data as long as the used memory is lower than 12 kB, while, when this threshold 

is exceeded, the firewall discards the received packets until the used memory decreases 

below 5 kB. The results showed how, if the inter-frame delay is lower than 13 clock cy-

cles, the used memory increases with time and eventually reaches the critical threshold of 

12 kB, while for inter-frame delays of 13 clock cycles or higher, the firewall works con-

tinuously without reaching the critical threshold. The measured used memory is plotted 

vs. time in Figure 7 in the case of UDP packets of a size of 100 bytes and no inter-frame 

delay. 

 

Figure 7. Used data memory vs. time in the case of UDP packets of size 100 bytes and no in-

ter-frame delay. 
Figure 7. Used data memory vs. time in the case of UDP packets of size 100 bytes and no inter-frame
delay.

As can be seen in Figure 7, the used memory increases with a constant rate λ until the
critical threshold of 12 kB is reached, then the firewall stops receiving packets until the used
memory decreases below 5 kB. The used memory increase rate (λ) was measured for UDP



Future Internet 2024, 16, 303 14 of 22

packets of different sizes and different values of the inter-frame delay. The experimental
results showed no significant correlation between λ and the inter-frame delay. This can be
explained since the ‘AXI 1G/2.5G Ethernet Subsystem’ IP module introduces a delay of
12 clock cycles to process the Ethernet frame. The measured value of λ as a function of the
packet size is reported in Figure 8 for both the average value and the standard deviation.

Future Internet 2024, 16, x FOR PEER REVIEW 14 of 22 
 

 

As can be seen in Figure 7, the used memory increases with a constant rate λ until 

the critical threshold of 12 kB is reached, then the firewall stops receiving packets until 

the used memory decreases below 5 kB. The used memory increase rate (λ) was meas-

ured for UDP packets of different sizes and different values of the inter-frame delay. The 

experimental results showed no significant correlation between λ and the inter-frame 

delay. This can be explained since the ‘AXI 1G/2.5G Ethernet Subsystem’ IP module in-

troduces a delay of 12 clock cycles to process the Ethernet frame. The measured value of λ 

as a function of the packet size is reported in Figure 8 for both the average value and the 

standard deviation. 

 

Figure 8. Measured value of the parameter λ in the case of UDP packets of different sizes and no 

inter-frame delay. 

The measured λ resulted in comparable values for the different sizes of packet, with 

the case of a packet size of 750 bytes producing a slightly higher value. The average value 

of λ for the different packet sizes was calculated as 33.2 bytes/s. Thus, the used memory 

increases from 5 kB to 12 kB in an average time of 215.8 s. When the used memory 

threshold of 12 kB is reached, the firewall stops receiving packets, while the packets in the 

data memory are transferred until the used memory decreases below 5 kB. At this time, 

the firewall returns to being functional. Considering the worst-case scenario when all 

packets in the data memory are transmitted and the firewall data throughput is 0.811 

Gb/s (in the case of 100-byte size), the time needed for the used memory to decrease un-

der 5 kB can be estimated as 70.71 µs. This means that the firewall is not operative for a 

negligible part of the time (3.29∙× 10−5%). 

4.2. Firewall Performance under Real Operative Conditions 

After the firewall performance was evaluated in controlled conditions, where 

Ethernet frames of selected protocol, size and data throughput were generated, the sys-

tem was tested in real operative conditions. The experimental setup in this case is pre-

sented in Figure 9, where the proposed firewall is placed between a PC used to generate 

real network traffic (Port A) and the Internet (Port B). Another PC was used to acquire the 

firewall statistics at regular time intervals of 1 s using the USB-UART interface. 

Under the new operative conditions, the proposed firewall was tested in the fol-

lowing cases: 

1. Download/upload of a file (the results are reported in Section 4.2.1). 

2. Access to websites with different restrictions on the firewall rules (the results are 

reported in Section 4.2.2). 

Figure 8. Measured value of the parameter λ in the case of UDP packets of different sizes and no
inter-frame delay.

The measured λ resulted in comparable values for the different sizes of packet, with
the case of a packet size of 750 bytes producing a slightly higher value. The average
value of λ for the different packet sizes was calculated as 33.2 bytes/s. Thus, the used
memory increases from 5 kB to 12 kB in an average time of 215.8 s. When the used memory
threshold of 12 kB is reached, the firewall stops receiving packets, while the packets in the
data memory are transferred until the used memory decreases below 5 kB. At this time, the
firewall returns to being functional. Considering the worst-case scenario when all packets
in the data memory are transmitted and the firewall data throughput is 0.811 Gb/s (in the
case of 100-byte size), the time needed for the used memory to decrease under 5 kB can be
estimated as 70.71 µs. This means that the firewall is not operative for a negligible part of
the time (3.29·10−5%).

4.2. Firewall Performance under Real Operative Conditions

After the firewall performance was evaluated in controlled conditions, where Ethernet
frames of selected protocol, size and data throughput were generated, the system was
tested in real operative conditions. The experimental setup in this case is presented in
Figure 9, where the proposed firewall is placed between a PC used to generate real network
traffic (Port A) and the Internet (Port B). Another PC was used to acquire the firewall
statistics at regular time intervals of 1 s using the USB-UART interface.

Under the new operative conditions, the proposed firewall was tested in the following
cases:

1. Download/upload of a file (the results are reported in Section 4.2.1).
2. Access to websites with different restrictions on the firewall rules (the results are

reported in Section 4.2.2).



Future Internet 2024, 16, 303 15 of 22Future Internet 2024, 16, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 9. Experimental setup for the measurement of the firewall performance under operative 

conditions of real network traffic. 

In all the reported cases, the network traffic was also monitored with the software 

Wireshark (version 4.0.3) running on the PC connected to Port A as a reference to verify 

the correctness of the data provided by the firewall statistics. 

4.2.1. Download/Upload of a File 

During this first test, the Arduino IDE (file size 197 MB) was downloaded from the 

official website using the Linux command ‘wget’. The file was downloaded four times in 

sequence by setting different limits for the download bandwidth (2.5 MB/s, 5 MB/s, 10 

MB/s, 25 MB/s). The results are reported in Figure 10. 

 

Figure 10. Data throughput measured by the proposed firewall during a file download with the 

Linux command ‘wget’ and four different limits for the download bandwidth. 

As can be seen, the data throughput from Port A to Port B (i.e., from the PC to the 

website hosting the file) has values of 1.77 kB/s, 2.23 kB/s, 13.07 kB/s and 58.54 kB/s dur-

ing the four download operations with a bandwidth limit of 2.5 MB/s, 5 MB/s, 10 MB/s 

and 25 MB/s, respectively. This can be explained by the fact that, during a download 

operation, data transferred from the PC to the website hosting the file represent only 

Figure 9. Experimental setup for the measurement of the firewall performance under operative
conditions of real network traffic.

In all the reported cases, the network traffic was also monitored with the software
Wireshark (version 4.0.3) running on the PC connected to Port A as a reference to verify the
correctness of the data provided by the firewall statistics.

4.2.1. Download/Upload of a File

During this first test, the Arduino IDE (file size 197 MB) was downloaded from the
official website using the Linux command ‘wget’. The file was downloaded four times
in sequence by setting different limits for the download bandwidth (2.5 MB/s, 5 MB/s,
10 MB/s, 25 MB/s). The results are reported in Figure 10.

Future Internet 2024, 16, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 9. Experimental setup for the measurement of the firewall performance under operative 

conditions of real network traffic. 

In all the reported cases, the network traffic was also monitored with the software 

Wireshark (version 4.0.3) running on the PC connected to Port A as a reference to verify 

the correctness of the data provided by the firewall statistics. 

4.2.1. Download/Upload of a File 

During this first test, the Arduino IDE (file size 197 MB) was downloaded from the 

official website using the Linux command ‘wget’. The file was downloaded four times in 

sequence by setting different limits for the download bandwidth (2.5 MB/s, 5 MB/s, 10 

MB/s, 25 MB/s). The results are reported in Figure 10. 

 

Figure 10. Data throughput measured by the proposed firewall during a file download with the 

Linux command ‘wget’ and four different limits for the download bandwidth. 

As can be seen, the data throughput from Port A to Port B (i.e., from the PC to the 

website hosting the file) has values of 1.77 kB/s, 2.23 kB/s, 13.07 kB/s and 58.54 kB/s dur-

ing the four download operations with a bandwidth limit of 2.5 MB/s, 5 MB/s, 10 MB/s 

and 25 MB/s, respectively. This can be explained by the fact that, during a download 

operation, data transferred from the PC to the website hosting the file represent only 

Figure 10. Data throughput measured by the proposed firewall during a file download with the
Linux command ‘wget’ and four different limits for the download bandwidth.

As can be seen, the data throughput from Port A to Port B (i.e., from the PC to the
website hosting the file) has values of 1.77 kB/s, 2.23 kB/s, 13.07 kB/s and 58.54 kB/s
during the four download operations with a bandwidth limit of 2.5 MB/s, 5 MB/s,
10 MB/s and 25 MB/s, respectively. This can be explained by the fact that, during a
download operation, data transferred from the PC to the website hosting the file represent



Future Internet 2024, 16, 303 16 of 22

only control packets that are sent to the website to negotiate the file download. The down-
load data are then sent from the website to the PC (from Port B to Port A). In this case, the
measured data throughput is 2.76 MB/s, 5.57 MB/s, 10.91 MB/s and 27.9 MB/s during
the four download operations with a bandwidth limit of 2.5 MB/s, 5 MB/s, 10 MB/s and
25 MB/s, respectively. The total downloaded data in each of the four download operations
are equal to the file size (197 MB).

A second test was carried out using FileZilla, an open-source multi-platform software
that can be used to transfer files using the FTP protocol [48]. In this case, the same file of
197 MB in size was first uploaded to a FileZilla server and then downloaded to the PC.
The measured data throughput at the two ports of the firewall are plotted vs. time and
presented in Figure 11. During the upload phase, lasting 36 s, the average data throughput
from the PC to the Filezilla server (i.e., from Port A to Port B) is 5.34 MB/s while the average
data throughput from the FileZilla server to the PC (i.e., from Port B to Port A) is 80.88 kB/s.
During the download phase, lasting 166 s, the average data throughput from the PC to the
Filezilla server (i.e., from Port A to Port B) is 13.75 kB/s while the average data throughput
from the FileZilla server to the PC (i.e., from Port B to Port A) is 1.19 MB/s.

Future Internet 2024, 16, x FOR PEER REVIEW 16 of 22 
 

 

control packets that are sent to the website to negotiate the file download. The download 

data are then sent from the website to the PC (from Port B to Port A). In this case, the 

measured data throughput is 2.76 MB/s, 5.57 MB/s, 10.91 MB/s and 27.9 MB/s during the 

four download operations with a bandwidth limit of 2.5 MB/s, 5 MB/s, 10 MB/s and 25 

MB/s, respectively. The total downloaded data in each of the four download operations 

are equal to the file size (197 MB). 

A second test was carried out using FileZilla, an open-source multi-platform soft-

ware that can be used to transfer files using the FTP protocol [48]. In this case, the same 

file of 197 MB in size was first uploaded to a FileZilla server and then downloaded to the 

PC. The measured data throughput at the two ports of the firewall are plotted vs. time 

and presented in Figure 11. During the upload phase, lasting 36 s, the average data 

throughput from the PC to the Filezilla server (i.e., from Port A to Port B) is 5.34 MB/s 

while the average data throughput from the FileZilla server to the PC (i.e., from Port B to 

Port A) is 80.88 kB/s. During the download phase, lasting 166 s, the average data 

throughput from the PC to the Filezilla server (i.e., from Port A to Port B) is 13.75 kB/s 

while the average data throughput from the FileZilla server to the PC (i.e., from Port B to 

Port A) is 1.19 MB/s. 

 

Figure 11. Data throughput measured by the proposed firewall during a file upload/download 

using the open-source software FileZilla (version 3.66.1). 

4.2.2. Access to Websites with Different Restrictions on the Firewall Rules 

During this test, the PC tried to access three different websites, characterized by 

three different IP addresses: 146.75.61.50 for website #1, 13.226.175.71 for website #2 and 

88.221.111.115 for website #3. The firewall was programmed with a blacklist approach to 

block data traffic to the IP address 13.226.175.71 of website #2. Access to website #1 was 

carried out from 0 to 65 s, access to website #2 was carried out from 75 to 125 s and access 

to website #3 was carried out from 130 to 185 s. The measured data throughput of TCP 

and UDP packets are presented in Figure 12 for the network traffic from Port A to Port B 

(i.e., from the PC to the Internet) and in Figure 13 for the network traffic from Port B to 

Port A (i.e., from the Internet to the PC). 

In the case of websites #1 and #3, which have no restrictions based on the firewall 

rules, control data are sent from the PC to the website and the website content is trans-

ferred back to the PC. These websites were correctly visualized. In the case of website #2, 

which is present on the firewall blacklist and, thus, must be blocked, some control data 

are sent to the Port A of the firewall, but these data are blocked and no response from the 

website is detected. The website #2 was not visualized on the PC. 

Figure 11. Data throughput measured by the proposed firewall during a file upload/download using
the open-source software FileZilla (version 3.66.1).

4.2.2. Access to Websites with Different Restrictions on the Firewall Rules

During this test, the PC tried to access three different websites, characterized by
three different IP addresses: 146.75.61.50 for website #1, 13.226.175.71 for website #2 and
88.221.111.115 for website #3. The firewall was programmed with a blacklist approach to
block data traffic to the IP address 13.226.175.71 of website #2. Access to website #1 was
carried out from 0 to 65 s, access to website #2 was carried out from 75 to 125 s and access
to website #3 was carried out from 130 to 185 s. The measured data throughput of TCP and
UDP packets are presented in Figure 12 for the network traffic from Port A to Port B (i.e.,
from the PC to the Internet) and in Figure 13 for the network traffic from Port B to Port A
(i.e., from the Internet to the PC).

In the case of websites #1 and #3, which have no restrictions based on the firewall
rules, control data are sent from the PC to the website and the website content is transferred
back to the PC. These websites were correctly visualized. In the case of website #2, which is
present on the firewall blacklist and, thus, must be blocked, some control data are sent to
the Port A of the firewall, but these data are blocked and no response from the website is
detected. The website #2 was not visualized on the PC.



Future Internet 2024, 16, 303 17 of 22Future Internet 2024, 16, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 12. Data throughput of TCP and UDP packets from Port A to Port B during the access to 

different websites. 

 

Figure 13. Data throughput of TCP and UDP packets from Port B to Port A during the access to 

different websites. 

4.3. Upgraded Design for Data Throughput of 10 Gb/s 

Simulations were carried out to evaluate the feasibility of upgrading the proposed 

firewall design to work at the higher data throughput of 10 Gb/s. In the case of this higher 

data throughput, the hardware designed in the FPGA programmable logic was interfaced 

with the Ethernet SFP/SFP+ connector using the Xilinx IP module ‘AXI 10G/25G Ethernet 

Subsystem’ that replaced the ‘AXI 1G/2.5G Ethernet Subsystem’ module used in the 1 

Gb/s firewall. Two different clock signals were generated from the 200 MHz KC705 os-

cillator using the Xilinx IP ‘Clock Wizard’: a 156.25 MHz clock used for the circuits de-

voted to the packets’ transmission/reception and analysis (CLK_156.25MHz), and a 10 

MHz clock used for the communication with a PC through the USB-UART interface 

(CLK_10MHz). 

The signal waveforms during a simulation are reported in Figure 14, where four 

different packets (of 60 bytes in size) were received at Port A and processed: a UDP 

packet, a TCP packet and two ARP packets. The ‘AXI 10G/25G Ethernet Subsystem’ 

module transfers the received packet to the designed hardware in the FPGA program-

mable logic using a 64-bit AXI communication protocol. The 64-bit data bus 

Figure 12. Data throughput of TCP and UDP packets from Port A to Port B during the access to
different websites.

Future Internet 2024, 16, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 12. Data throughput of TCP and UDP packets from Port A to Port B during the access to 

different websites. 

 

Figure 13. Data throughput of TCP and UDP packets from Port B to Port A during the access to 

different websites. 

4.3. Upgraded Design for Data Throughput of 10 Gb/s 

Simulations were carried out to evaluate the feasibility of upgrading the proposed 

firewall design to work at the higher data throughput of 10 Gb/s. In the case of this higher 

data throughput, the hardware designed in the FPGA programmable logic was interfaced 

with the Ethernet SFP/SFP+ connector using the Xilinx IP module ‘AXI 10G/25G Ethernet 

Subsystem’ that replaced the ‘AXI 1G/2.5G Ethernet Subsystem’ module used in the 1 

Gb/s firewall. Two different clock signals were generated from the 200 MHz KC705 os-

cillator using the Xilinx IP ‘Clock Wizard’: a 156.25 MHz clock used for the circuits de-

voted to the packets’ transmission/reception and analysis (CLK_156.25MHz), and a 10 

MHz clock used for the communication with a PC through the USB-UART interface 

(CLK_10MHz). 

The signal waveforms during a simulation are reported in Figure 14, where four 

different packets (of 60 bytes in size) were received at Port A and processed: a UDP 

packet, a TCP packet and two ARP packets. The ‘AXI 10G/25G Ethernet Subsystem’ 

module transfers the received packet to the designed hardware in the FPGA program-

mable logic using a 64-bit AXI communication protocol. The 64-bit data bus 

Figure 13. Data throughput of TCP and UDP packets from Port B to Port A during the access to
different websites.

4.3. Upgraded Design for Data Throughput of 10 Gb/s

Simulations were carried out to evaluate the feasibility of upgrading the proposed
firewall design to work at the higher data throughput of 10 Gb/s. In the case of this higher
data throughput, the hardware designed in the FPGA programmable logic was interfaced
with the Ethernet SFP/SFP+ connector using the Xilinx IP module ‘AXI 10G/25G Ethernet
Subsystem’ that replaced the ‘AXI 1G/2.5G Ethernet Subsystem’ module used in the 1 Gb/s
firewall. Two different clock signals were generated from the 200 MHz KC705 oscillator
using the Xilinx IP ‘Clock Wizard’: a 156.25 MHz clock used for the circuits devoted to the
packets’ transmission/reception and analysis (CLK_156.25MHz), and a 10 MHz clock used
for the communication with a PC through the USB-UART interface (CLK_10MHz).

The signal waveforms during a simulation are reported in Figure 14, where four
different packets (of 60 bytes in size) were received at Port A and processed: a UDP packet,
a TCP packet and two ARP packets. The ‘AXI 10G/25G Ethernet Subsystem’ module
transfers the received packet to the designed hardware in the FPGA programmable logic
using a 64-bit AXI communication protocol. The 64-bit data bus PORT_A_RX_DATA[63:0] is
valid when the signal PORT_A_RX_DV is set. During the transfer of the last 64-bit word of



Future Internet 2024, 16, 303 18 of 22

data, the signal PORT_A_RX_LAST is set and the 8-bit control bus PORT_A_RX_KEEP[7:0]
defines how many bytes of the 64-bit data bus PORT_A_RX_DATA[63:0] are valid.

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 22 
 

 

PORT_A_RX_DATA[63:0] is valid when the signal PORT_A_RX_DV is set. During the 

transfer of the last 64-bit word of data, the signal PORT_A_RX_LAST is set and the 8-bit 

control bus PORT_A_RX_KEEP[7:0] defines how many bytes of the 64-bit data bus 

PORT_A_RX_DATA[63:0] are valid. 

 

Figure 14. Waveforms of the signals during the packets processing steps in the case of the firewall 

for the higher data throughput of 10 Gb/s. 

The ‘Packet analysis’ module is implemented using a combinational circuit working 

on a 64-bit word (FW_DATA[63:0]) for each clock cycle and calculates the same packet 

identification fields of the 1 Gb/s firewall with a latency of zero clock cycles: the MAC 

destination address (MAC_DEST[47:0]), the MAC source address (MAC_SOURCE[47:0]), 

the network layer protocol (LEV3_PROTOCOL[15:0]), the IP source address 

(IP_SOURCE[31:0]), the IP destination address (IP_DEST[31:0]), the transport layer pro-

tocol (LEV4_PROTOCOL[7:0]), the source port (SOURCE_PORT[15:0]) and the destina-

tion port (DEST_PORT[15:0]). 

When the signal FW_OUT is set, the ‘Check firewall rules’ module exploits the 

packet identification fields calculated by the ‘Packet analysis’ module to check if the re-

ceived packet complies with the firewall rules. In the case of the 10 Gb/s data throughput, 

however, a severe constraint is present on the maximum number of clock cycles that can 

be used to check the compliance of the packet with the firewall rules. Considering a 

packet size of 64 bytes as a case study, the number of clock cycles available between two 

consecutive packets is 64 in the case of the 1 Gb/s firewall and 8 in the case of the 10 Gb/s 

firewall. Thus, the maximum number of rules for each firewall port was decreased from 

256 (in the case of the 1 Gb/s firewall) to 32 (in the case of the 10 Gb/s firewall). The 

packets were checked against the firewall rules, and the results in Figure 14 show how, 

among the four received packets, the UDP packet, the TCP packet and the second ARP 

packet complied with the firewall rules (FW_RESULT[1:0] = 3) and were transferred to 

the ‘AXI 10G/25G Ethernet Subsystem’ module of Port B to be transmitted, while the first 

ARP packet presented an error (FW_RESULT[1:0] = 0) and was discarded. 

Figure 14. Waveforms of the signals during the packets processing steps in the case of the firewall for
the higher data throughput of 10 Gb/s.

The ‘Packet analysis’ module is implemented using a combinational circuit working on
a 64-bit word (FW_DATA[63:0]) for each clock cycle and calculates the same packet identifi-
cation fields of the 1 Gb/s firewall with a latency of zero clock cycles: the MAC destination
address (MAC_DEST[47:0]), the MAC source address (MAC_SOURCE[47:0]), the network
layer protocol (LEV3_PROTOCOL[15:0]), the IP source address (IP_SOURCE[31:0]), the IP
destination address (IP_DEST[31:0]), the transport layer protocol (LEV4_PROTOCOL[7:0]),
the source port (SOURCE_PORT[15:0]) and the destination port (DEST_PORT[15:0]).

When the signal FW_OUT is set, the ‘Check firewall rules’ module exploits the packet
identification fields calculated by the ‘Packet analysis’ module to check if the received
packet complies with the firewall rules. In the case of the 10 Gb/s data throughput,
however, a severe constraint is present on the maximum number of clock cycles that can be
used to check the compliance of the packet with the firewall rules. Considering a packet size
of 64 bytes as a case study, the number of clock cycles available between two consecutive
packets is 64 in the case of the 1 Gb/s firewall and 8 in the case of the 10 Gb/s firewall. Thus,
the maximum number of rules for each firewall port was decreased from 256 (in the case of
the 1 Gb/s firewall) to 32 (in the case of the 10 Gb/s firewall). The packets were checked
against the firewall rules, and the results in Figure 14 show how, among the four received
packets, the UDP packet, the TCP packet and the second ARP packet complied with the
firewall rules (FW_RESULT[1:0] = 3) and were transferred to the ‘AXI 10G/25G Ethernet
Subsystem’ module of Port B to be transmitted, while the first ARP packet presented an
error (FW_RESULT[1:0] = 0) and was discarded.

Overall, these preliminary simulations show promising results on the feasibility of
upgrading the designed firewall hardware on an FPGA to work at a data throughput of
10 Gb/s. Future activities on this research project will implement the upgraded design



Future Internet 2024, 16, 303 19 of 22

on the KC705 development board, and experimental measurements will be carried out to
evaluate the system performance.

5. Comparison with the State of the Art

In this section, the features and the performance of the designed firewall hardware on
an FPGA are compared with similar systems from the literature. In particular, a comparison
is made among the firewalls presented in Section 2 that belong to the same category of
stateless firewalls that analyze the packets using a set of rules without storing the status
of the network connection. The main features of the considered firewalls are presented
in Table 1.

Table 1. Comparison of the performance for the designed firewall with other firewalls from the
literature.

FPGA Device Supported Protocols Data Throughput Latency Reference

Xilinx Kintex-7 325T ARP, TCP, UDP, ICMP 0.8 Gb/s 402 µs [28]
Altera EP4CE115F29 ARP, TCP, UDP, ICMP 0.95 Gb/s 61.266 µs [29]

Xilinx Spartan 6 TCP, UDP (512 bit) NA NA [30]
Altera Stratix II
EP2S60F672C5 ARP, TCP, UDP, ICMP NA 1.76 µs [31]

Xilinx and Altera devices NA NA NA [32]
Xilinx Virtex-7 690T TCP, UDP, TXLAN, GTP 3.67 Gb/s NA [33]
Xilinx Virtex-7 690T ARP, TCP, UDP, ICMP NA NA [34]
Xilinx Kintex-7 325T ARP, TCP, UDP, ICMP 0.982 Gb/s 627 ns This work

The proposed design was implemented on a KC705 development board that mounts
the Kintex-7 XC7K325T-2FFG900C FPGA. It can classify packets belonging to the protocols
ARP, TCP, UDP and ICMP. For each port of the firewall, up to 256 rules can be defined to
discriminate between safe and potentially dangerous packets according to a whitelist or
blacklist approach. Before a decision is made on the compliance of the packets with the
firewall rules, the packet data are stored in a 16 kB memory on the FPGA, and this allows
the firewall to be operative almost 100% of the time. A set of statistics, such as the number
of received packets, the number of allowed packets, the number of dropped packets and
the memory occupation, are calculated in real time and can be downloaded to a PC using
the USB-UART interface to detect potential anomalies in the network traffic. Experimental
measurements have shown that the designed firewall features a very low latency (627 ns)
and a data throughput of 0.982 Gb/s. Preliminary simulations have shown promising
results that the design can be upgraded to work at a maximum data throughput of 10 Gb/s
with minor modifications.

Regarding the supported network protocols, the proposed firewall can classify packets
that belong to the protocols ARP, TCP, UDP and ICMP, just like most of the compared
systems [28,29,31,34]. The system presented in Ref. [30] can only analyze packets belonging
to the protocols TCP and UDP, and the experiments were only carried out on packets of a
fixed size (512-bit). The performance of the system presented in Ref. [32] is not reported
since this firewall was evaluated only by simulations and was not implemented on an FPGA
device. The firewall presented in Ref. [33] was designed for the detection of cyber-attacks
in 5G networks and thus also implements additional protocols for this type of network
(TXLAN and GTP).

Regarding the data throughput, the firewall presented in Ref. [33] achieves the best
performance (3.67 Gb/s), while all the other systems presented in Table 1 feature a data
throughput lower than the proposed firewall (0.982 Gb/s). However, based on the promis-
ing simulations presented in Section 4.3, we are confident that our system can be improved
with a higher data throughput. Moreover, the firewall of Ref. [33] is characterized by a
packet loss rate of about 2.5%, while our system is not operative for a negligible part of the
time (3.29·10−5%).



Future Internet 2024, 16, 303 20 of 22

Regarding the packet latency, the proposed firewall features the lowest value (627 ns)
among the systems presented in Table 1.

Overall, the presented firewall hardware on an FPGA features a very good perfor-
mance that makes it suitable as a configurable intrusion prevention system to guarantee
the security of exchanged data among universities and research centers. Nevertheless,
there is room for improvement, and the next steps in this research line will be aimed at
improving the system’s performance. In particular, the simulated system for the higher
data throughput of 10 Gb/s will be implemented on an FPGA and its performance will be
evaluated in a real network scenario. Moreover, the network data analysis will be improved
by introducing stateful packet inspection by storing the status of the network connection
and/or by the use of machine-learning algorithms.

6. Conclusions

A hardware firewall implemented on an FPGA for the security of network data
transmission using the Ethernet protocol was presented in this work. The firewall was
experimentally validated in the case of a data throughput of 1 Gb/s, and preliminary simu-
lations have shown that the proposed design can be upgraded with minor modifications to
work at a data throughput of 10 Gb/s. The device can process network packets of the types
ARP, UDP, TCP and ICMP with a latency of 627 ns and a data throughput in the range
from 0.811 Gb/s to 0.982 Gb/s for a packet size in the range from 100 bytes to 1000 bytes. It
is user configurable using a whitelist or blacklist approach, with up to 256 rules for each
port that are used to discriminate between safe and potentially dangerous data packets. A
set of statistics, such as the number of received/transmitted packets and the amount of
received/transmitted data, is calculated and can be used to detect possible anomalies in
the network traffic. Overall, the proposed firewall based on an FPGA is a cost-effective
solution that is highly competitive with hardware firewalls based on ASICs and can be
used to mitigate security threats of malicious data within the network, yielding users full
observability of the device behavior. Future steps of this research project will be the im-
plementation of the upgraded 10 Gb/s firewall design on an FPGA to test its performance
under real operative conditions and/or the implementation of a stateful packet inspection.

Author Contributions: Conceptualization, M.G., A.G. and F.A.; methodology, M.G., A.G. and F.A.;
software, M.G. and F.A.; validation, M.G. and F.A.; formal analysis, M.G. and F.A.; investigation,
M.G. and F.A.; resources, M.G. and F.A.; data curation, M.G.; writing—original draft preparation,
M.G.; writing—review and editing, M.G., A.G., F.A. and M.P.; visualization, M.G., A.G. and F.A.;
supervision, A.G. and M.P.; project administration, A.G. and M.P.; funding acquisition, A.G. All
authors have read and agreed to the published version of the manuscript.

Funding: Italian Ministry of University and Research, Grant/Award Number: J45F21002000001;
“Alma Idea 2022” Linea di Intervento A (D.M. 737/2021); Italian Ministry of Industry Incentives
(MISE); Ministry of University and Research (MUR).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the National Institute for Nuclear Physics
(INFN, Bologna division) and the National Center for Frame Analysis (CNAF, Bologna division) for
the support in the development and testing of the presented hardware firewall on FPGA.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Khan, R.A. A survey on wired and wireless network. Lahore Garrison Univ. Res. J. Comput. Sci. Inf. Technol. 2018, 2, 19–28.
2. Narayanasamy, S.K.; Srinivasan, K.; Hu, Y.C.; Masilamani, S.K.; Huang, K.Y. A contemporary review on utilizing semantic web

technologies in healthcare, virtual communities, and ontology-based information processing systems. Electronics 2022, 11, 453.
[CrossRef]

3. Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling technologies for urban smart mobility: Recent trends,
opportunities and challenges. Sensors 2021, 21, 2143. [CrossRef]

https://doi.org/10.3390/electronics11030453
https://doi.org/10.3390/s21062143


Future Internet 2024, 16, 303 21 of 22

4. Rahman, S.S.; Dekkati, S. Revolutionizing Commerce: The Dynamics and Future of E-Commerce Web Applications. Asian J. Appl.
Sci. Eng. 2022, 11, 65–73. [CrossRef]

5. Camacho, D.; Panizo-LLedot, A.; Bello-Orgaz, G.; Gonzalez-Pardo, A.; Cambria, E. The four dimensions of social network
analysis: An overview of research methods, applications, and software tools. Inf. Fusion 2020, 63, 88–120. [CrossRef]

6. Ryalat, M.; ElMoaqet, H.; AlFaouri, M. Design of a smart factory based on cyber-physical systems and Internet of Things towards
Industry 4.0. Appl. Sci. 2023, 13, 2156. [CrossRef]

7. Ramasamy, L.K.; Khan, F.; Shah, M.; Prasad, B.V.V.S.; Iwendi, C.; Biamba, C. Secure smart wearable computing through artificial
intelligence-enabled internet of things and cyber-physical systems for health monitoring. Sensors 2022, 22, 1076. [CrossRef]

8. Volosciuc, C.; Bogdan, R.; Blajovan, B.; Stângaciu, C.; Marcu, M. GreenLab, an IoT-Based Small-Scale Smart Greenhouse. Future
Internet 2024, 16, 195. [CrossRef]

9. Saminathan, K.; Mulka, S.T.R.; Damodharan, S.; Maheswar, R.; Lorincz, J. An Artificial Neural Network Autoencoder for Insider
Cyber Security Threat Detection. Future Internet 2023, 15, 373. [CrossRef]

10. Li, Y.; Liu, Q. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments.
Energy Rep. 2021, 7, 8176–8186. [CrossRef]

11. Dang, T.K.; Nguyen, K.D.; Kieu-Do-Nguyen, B.; Hoang, T.T.; Pham, C.K. Realization of Authenticated One-Pass Key Establishment
on RISC-V Micro-Controller for IoT Applications. Future Internet 2024, 16, 157. [CrossRef]

12. Dong, S.; Su, H.; Xia, Y.; Zhu, F.; Hu, X.; Wang, B. A comprehensive survey on authentication and attack detection schemes that
threaten it in vehicular ad-hoc networks. IEEE Trans. Intell. Transp. Syst. 2023, 24, 13573–13602. [CrossRef]

13. Subramani, S.; Svn, S.K. Review of security methods based on classical cryptography and quantum cryptography. Cybern. Syst.
2023, 1–19. [CrossRef]

14. Thabit, F.; Can, O.; Aljahdali, A.O.; Al-Gaphari, G.H.; Alkhzaimi, H.A. Cryptography algorithms for enhancing IoT security.
Internet Things 2023, 22, 100759. [CrossRef]

15. Chakir, O.; Sadqi, Y.; Maleh, Y. Evaluation of open-source web application firewalls for cyber threat intelligence. In Big Data
Analytics and Intelligent Systems for Cyber Threat Intelligence; River Publishers: Aalborg, Denmark, 2023; pp. 35–48.

16. Dawadi, B.R.; Adhikari, B.; Srivastava, D.K. Deep learning technique-enabled web application firewall for the detection of web
attacks. Sensors 2023, 23, 2073. [CrossRef]

17. Grossi, M.; Alfonsi, F.; Prandini, M.; Gabrielli, A. A Highly Configurable Packet Sniffer Based on Field-Programmable Gate
Arrays for Network Security Applications. Electronics 2023, 12, 4412. [CrossRef]

18. Grossi, M.; Alfonsi, F.; Prandini, M.; Gabrielli, A. A high throughput Intrusion Detection System (IDS) to enhance the security of
data transmission among research centers. J. Instrum. 2023, 18, C12017. [CrossRef]

19. Lata, K.; Cenkeramaddi, L.R. FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis. Cryptography
2023, 7, 55. [CrossRef]

20. Serrano, R.; Duran, C.; Sarmiento, M.; Dang, T.K.; Hoang, T.T.; Pham, C.K. A Unified PUF and Crypto Core Exploiting the
Metastability in Latches. Future Internet 2022, 14, 298. [CrossRef]

21. Grossi, M.; Omaña, M.; Rossi, D.; Marzulli, B.; Metra, C. Novel BTI Robust Ring-Oscillator-Based Physically Unclonable Function.
In Proceedings of the IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS), Torino, Italy,
12–14 September 2022; pp. 1–7.

22. Mihalos, M.G.; Nalmpantis, S.I.; Ovaliadis, K. Design and Implementation of Firewall Security Policies using Linux Iptables. J.
Eng. Sci. Technol. Rev. 2019, 12, 80–86. [CrossRef]

23. Wang, B.; Lu, K.; Chang, P. Design and implementation of Linux firewall based on the frame of Netfilter/IPtable. In Proceedings
of the IEEE 11th International Conference on Computer Science & Education (ICCSE), Nagoya, Japan, 23–25 August 2016;
pp. 949–953.

24. Šimon, M.; Huraj, L.; Čerňanský, M. Performance evaluations of IPTables firewall solutions under DDoS attacks. J. Appl. Math.
Stat. Inform. 2015, 11, 35–45. [CrossRef]

25. Wireshark Packet Sniffer. Available online: https://www.wireshark.org/ (accessed on 19 June 2024).
26. TCPdump Packet Sniffer. Available online: https://www.tcpdump.org/ (accessed on 19 June 2024).
27. Li, J.; Xiao, W.; Zhang, C. Data security crisis in universities: Identification of key factors affecting data breach incidents. Humanit.

Soc. Sci. Commun. 2023, 10, 270. [CrossRef] [PubMed]
28. Mohammed, R.K.; Ueno, Y. An FPGA-based Network Firewall with Expandable Rule Description. Indones. J. Electr. Eng. Comput.

Sci. 2018, 10, 1310–1318. [CrossRef]
29. Lin, S.; Zhang, D.; Fu, Y.; Wang, S. A design of the ethernet firewall based on FPGA. In Proceedings of the IEEE 10th International

Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October
2017; pp. 1–5.

30. Keni, S.M.; Mande, S. Design and implementation of hardware firewall using FPGA. In Proceedings of the IEEE 3rd International
Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–4.

31. Ajami, R.; Dinh, A. Design a hardware network firewall on FPGA. In Proceedings of the IEEE 24th Canadian Conference on
Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, 8–11 May 2011; pp. 000674–000678.

https://doi.org/10.18034/ajase.v11i1.58
https://doi.org/10.1016/j.inffus.2020.05.009
https://doi.org/10.3390/app13042156
https://doi.org/10.3390/s22031076
https://doi.org/10.3390/fi16060195
https://doi.org/10.3390/fi15120373
https://doi.org/10.1016/j.egyr.2021.08.126
https://doi.org/10.3390/fi16050157
https://doi.org/10.1109/TITS.2023.3297527
https://doi.org/10.1080/01969722.2023.2166261
https://doi.org/10.1016/j.iot.2023.100759
https://doi.org/10.3390/s23042073
https://doi.org/10.3390/electronics12214412
https://doi.org/10.1088/1748-0221/18/12/C12017
https://doi.org/10.3390/cryptography7040055
https://doi.org/10.3390/fi14100298
https://doi.org/10.25103/jestr.121.09
https://doi.org/10.1515/jamsi-2015-0010
https://www.wireshark.org/
https://www.tcpdump.org/
https://doi.org/10.1057/s41599-023-01757-0
https://www.ncbi.nlm.nih.gov/pubmed/37273415
https://doi.org/10.11591/ijeecs.v10.i3.pp1310-1318


Future Internet 2024, 16, 303 22 of 22

32. Antonov, A.P.; Filippov, A.S.; Mamoutova, O.V. Next generation FPGA-based platform for network security. In Proceedings of
the IEEE 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information
Technology (FRUCT-ISPIT), St. Petersburg, Russia, 18–22 April 2016; pp. 9–14.

33. Ricart-Sanchez, R.; Malagon, P.; Alcaraz-Calero, J.M.; Wang, Q. NetFPGA-based firewall solution for 5G multi-tenant architectures.
In Proceedings of the IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 132–136.

34. Salopek, D.; Mikuc, M. Enhancing Mitigation of Volumetric DDoS Attacks: A Hybrid FPGA/Software Filtering Datapath. Sensors
2023, 23, 7636. [CrossRef]

35. Bianchi, G.; Bonola, M.; Pontarelli, S.; Sanvito, D.; Capone, A.; Cascone, C. Open Packet Processor: A programmable architecture
for wire speed platform-independent stateful in-network processing. arXiv 2016, arXiv:1605.01977.

36. Pontarelli, S.; Bifulco, R.; Bonola, M.; Cascone, C.; Spaziani, M.; Bruschi, V.; Sanvito, D.; Siracusano, G.; Capone, A.; Honda, M.;
et al. FlowBlaze: Stateful Packet Processing in Hardware. In Proceedings of the 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 531–548.

37. Tran, C.; Vo, T.N.; Thinh, T.N. HA-IDS: A heterogeneous anomaly-based intrusion detection system. In Proceedings of the IEEE
4th NAFOSTED Conference on Information and Computer Science, Hanoi, Vietnam, 24–25 November 2017; pp. 156–161.

38. Le Jeune, L.; Goedemé, T.; Mentens, N. Towards real-time deep learning-based network intrusion detection on FPGA. In Applied
Cryptography and Network Security Workshops: ACNS 2021 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI,
SecMT, and SiMLA, Kamakura, Japan, 21–24 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 133–150.

39. Murovič, T.; Trost, A. Genetically optimized massively parallel binary neural networks for intrusion detection systems. Comput.
Commun. 2021, 179, 1–10. [CrossRef]

40. Lázaro, J.; Bidarte, U.; Muguira, L.; Astarloa, A.; Jiménez, J. Embedded firewall for on-chip bus transactions. Comput. Electr. Eng.
2022, 98, 107707. [CrossRef]

41. Restuccia, F.; Kastner, R. Cut and forward: Safe and secure communication for FPGA system on chips. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 2022, 41, 4052–4063. [CrossRef]

42. Verilog HDL Tutorial. Available online: https://www.chipverify.com/tutorials/verilog (accessed on 9 August 2024).
43. Xilinx KC705 Development Board. Available online: https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html

(accessed on 19 June 2024).
44. LabVIEW Graphical Programming Language. Available online: https://www.ni.com/en/shop/labview.html (accessed on 9

August 2024).
45. AXI 1G/2.5G Ethernet Subsystem v7.2 Product Guide. Available online: https://docs.amd.com/viewer/book-attachment/

GVuCppHToFb1WA89zYBnLA/h3XUJnOY_QWIild5x9SAeQ (accessed on 9 August 2024).
46. Block Memory Generator. Available online: https://www.xilinx.com/products/intellectual-property/block_memory_generator.

html (accessed on 19 June 2024).
47. Quad SFP28 FPGA Mezzanine Card (FMC) Ethernet Module. Available online: https://hiteksys.com/interface-modules/x4-sfp-

fmc-module (accessed on 19 June 2024).
48. FileZilla Software. Available online: https://filezilla-project.org/ (accessed on 19 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s23177636
https://doi.org/10.1016/j.comcom.2021.07.015
https://doi.org/10.1016/j.compeleceng.2022.107707
https://doi.org/10.1109/TCAD.2022.3197343
https://www.chipverify.com/tutorials/verilog
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.ni.com/en/shop/labview.html
https://docs.amd.com/viewer/book-attachment/GVuCppHToFb1WA89zYBnLA/h3XUJnOY_QWIild5x9SAeQ
https://docs.amd.com/viewer/book-attachment/GVuCppHToFb1WA89zYBnLA/h3XUJnOY_QWIild5x9SAeQ
https://www.xilinx.com/products/intellectual-property/block_memory_generator.html
https://www.xilinx.com/products/intellectual-property/block_memory_generator.html
https://hiteksys.com/interface-modules/x4-sfp-fmc-module
https://hiteksys.com/interface-modules/x4-sfp-fmc-module
https://filezilla-project.org/

	Introduction 
	Related Work 
	The Proposed Firewall on an FPGA 
	Experimental Results 
	Firewall Performance under Controlled Network Traffic 
	Firewall Performance under Real Operative Conditions 
	Download/Upload of a File 
	Access to Websites with Different Restrictions on the Firewall Rules 

	Upgraded Design for Data Throughput of 10 Gb/s 

	Comparison with the State of the Art 
	Conclusions 
	References

