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Abstract

Background: Prematurity is the strongest predictor of bronchopulmonary dysplasia

(BPD). Most previous studies investigated additional risk factors by conventional

statistics, while the few studies applying artificial intelligence, and specifically

machine learning (ML), for this purpose were mainly targeted to the predictive ability

of specific interventions. This study aimed to apply ML to identify, among routinely

collected data, variables predictive of BPD, and to compare these variables with

those identified through conventional statistics.

Methods: Very preterm infants were recruited; antenatal, perinatal, and postnatal

clinical data were collected. A BPD prediction model was built using conventional

statistics, and nine supervised ML algorithms were applied for the same purpose: the

results of the best‐performing model were described and compared with those of

conventional statistics.

Results: Both conventional statistics and ML identified the degree of immaturity (low

gestational age and/or birth weight), need for mechanical ventilation, and absent or

reversed end diastolic flow (AREDF) in the umbilical arteries as risk factors for BPD.

Each of the two approaches also identified additional potentially predictive clinical

variables.

Conclusion: ML algorithms might be useful to integrate conventional statistics in

identifying novel risk factors, in addition to prematurity, for the development of BPD

in very preterm infants. Specifically, the identification of AREDF status as an inde-

pendent risk factor for BPD by both conventional statistics and ML highlights the

opportunity to include detailed antenatal information in clinical predictive models for

neonatal diseases.
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1 | INTRODUCTION

Despite continuous improvement in neonatal care, broncho-

pulmonary dysplasia (BPD) remains the most frequent complication

of extremely preterm birth, with consequences that might impact on

long‐term growth, health, and neurodevelopment of affected

infants.1

The strongest risk factor for BPD is known to be prematurity, with

the highest risk for infants at the lowest gestational ages (GA). The

disease results by the combination of arrested fetal lung development

at the alveolar phase due to preterm birth, together with an aberrant

response in terms of lung repair to both antenatal and postnatal lung

injury.2 The constantly improving survival of extremely preterm infants

leads to an increasing number of infants at risk for BPD, as these

infants suffer significant lung immaturity and are likely to experience,

during their stay in the Neonatal Intensive Care Unit (NICU), a huge

number of interventions, such as mechanical ventilation, which guar-

antee survival but are detrimental to lung growth and repair.

The possibility to identify risk factors for BPD additional to

the degree of prematurity would allow to tailor clinical care of high‐

risk infants through proven and effective preventive interventions.3

To this purpose, the National Institute of Child Health and Human

Development (NICHD) developed a web‐based risk calculator for

BPD,4 which was recently updated to adapt to evolving BPD defi-

nition and respiratory care of preterm infants.5,6 To note, the prev-

alence of BPD varies greatly across centers, and risk factors for BPD

may differ according to population characteristics and specific clinical

practices, thus limiting a widespread applicability of algorithms or

calculators like the one proposed by the NICHD.7

In recent years, several studies have tried to move beyond

conventional statistical methods and their intrinsic limitations,

attempting to define prediction models for clinical outcomes relevant

to neonatal medicine through innovative methods based on artificial

intelligence (AI), and machine learning (ML) in particular.8,9 In this

respect, studies addressing BPD are few: most of them are targeted

to the role of specific procedures or interventions in predicting BPD

onset or severity, such as exome sequencing,10 gastric aspirates,11

chest X‐ray,12 and modes of respiratory support13; so far, only two

studies have applied ML techniques to build BPD predictive models

based on routinely collected perinatal variables.14,15

The potential for applying AI into NICU data analysis is huge and

mostly related to the ability of AI to identify complex relationships

among data which might be missed by conventional statistical

methods, thus improving early diagnosis, guiding personalized treat-

ment, and optimizing resource allocation. However, at present, sev-

eral technical, ethical, and clinical limitations prevent routine appli-

cation of AI methods into the NICU setting.16

The aim of the study was to apply ML to identify, among rou-

tinely collected antenatal, perinatal, and neonatal data, variables

predictive of BPD development in very preterm infants, and to crit-

ically compare these variables with those identified through con-

ventional statistics.

2 | METHODS

2.1 | Study population

The study was conducted at the level IV NICU of IRCCS AOU

Bologna, Italy. Data collection had been approved by the Insti-

tutional Review Board (CE AVEC—study ID 76/2013/U/Sper).

Parents and/or legal guardians of the recruited infants were

asked to provide written informed consent for their children

participation in the study.

Infants born between January 2007 and December 2017 with a

GA < 32 weeks and/or birth weight (BW) < 1500 g were recruited;

variables related to maternal health, pregnancy, and delivery, as well

as variables describing neonatal health, were recorded as for standard

clinical practice.

Specifically, the following prenatal and perinatal variables were

collected: prenatal ultrasound data, including absent or reverse end

diastolic flow in the umbilical artery (AREDF), and alterations in the

blood flow in the ductus venosus (DV) and middle cerebral artery

(MCA), clinical and/or histological chorioamnionitis, maternal hyper-

tension (including pre‐eclampsia, gestational hypertension, and

chronic maternal hypertension), antenatal steroid prophylaxis,

administration of magnesium sulfate (either given for maternal

eclampsia or neonatal neuroprotection), fetal growth restriction

(FGR), preterm prolonged rupture of membranes (pPROM) and type

of delivery (vaginal delivery or cesarean section).

Neonatal data were collected at birth, during hospitalization, and

at discharge. At birth, the following variables were recorded: GA, sex,

twin status, 5′‐Apgar score, cord blood pH and base excess (BE),

presence of major congenital malformations and anthropometric

measures (birth, length, and head circumference [HC]). Centiles and

Z‐scores for weight, length and HC at birth were calculated using the

Italian Growth standards (INeS growth charts 17).

BPD was defined, according to the criteria set by the 2018

NICHD workshop,18 as a persistent parenchymal lung disease, con-

firmed radiographically, in a preterm infant who required, at

36 weeks postmenstrual age, a definite degree of respiratory/oxygen

support to maintain optimal arterial oxygen saturations.

During hospitalization, the occurrence of major comorbidities

was also recorded: these included respiratory distress syndrome

(RDS),19 need for and length of mechanical ventilation (MV), in-

traventricular hemorrhage (IVH),20 periventricular leukomalacia (PVL),

early‐onset and late‐onset sepsis (EOS and LOS), retinopathy of

prematurity (ROP),21 patent ductus arteriosus (PDA) and necrotizing

enterocolitis (NEC) and its stage.22

At hospital discharge, data about nutrition and growth were

recorded. Auxological assessment at discharge was carried out using

the INTERGROWTH‐21st charts, which are the most updated stan-

dards for measuring postnatal growth in preterm infants.23 As for

nutrition, infants were categorized as having received exclusive

human milk (mother breast milk, donor milk, or both), exclusive for-

mula milk, or mixed feeding.
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2.2 | Data analysis

2.2.1 | Conventional statistics

All statistical analyses were carried out using IBM SPSS Statistics for

Windows, Version 28.0 (IBM Corp.). Data distribution was examined

through the Kolmogorov–Smirnov test. As most variables did follow a

normal distribution, parametric tests were used.

Specifically, a univariate analysis was first performed to identify

prenatal and neonatal variables potentially related to BPD. The t test

for independent samples was used for continuous variables, and the

chi‐square test for dichotomous variables. Potential collinearity

between independent variables to be included in the regression

models was checked using the Pearson correlation coefficient or the

point‐biserial correlation coefficient as appropriate. Correlation was

defined as “strong” when correlation coefficients were above 0.6.

Variables that proved to be significantly different between groups

(BPD vs. non‐BPD) were used to build a logistic regression model. A

p‐value < .05 was considered statistically significant.

2.2.2 | Machine learning approach

ML allows for the analysis of large data sets to identify relationships

between variables and detect crucial features in predictions. Its pri-

mary objective is to develop accurate and robust predictive models

capable of identifying the effect of various factors or features on the

likelihood of developing a specific neonatal disease. Since ML

grounds on data, accuracy in data acquisition and sample size are

crucial for ensuring models that manifest good performances. In

Figure 1, the t‐distributed stochastic neighbor embedding (t‐SNE)

visualization, a technique commonly employed to project high‐

dimensional data into a two‐dimensional space, is presented. Each

point depicted in the visualization corresponds to a data instance,

with its color indicating the respective class membership. This visu-

alization method is instrumental in identifying latent patterns and

structures within the data set, thereby facilitating its interpretation

and analysis. Typically, instances sharing similarities tend to form

clusters in close proximity. Application of t‐SNE to our data set

revealed inherent complexities, as evidenced by the observed overlap

between the two distinct classes. Nevertheless, the conspicuous

concentration of the BPD class within the bottom right region of the

graph implies the presence of an inherent pattern unique to this class.

This pattern holds potential significance for extracting distinguishing

features that enable the differentiation of BPD patients from non‐

BPD individual.

In the following paragraphs, the ML pipeline designed to auto-

mate and streamline the process of building, training, evaluating, and

deploying chosen ML models is described. All analyses were carried

out using the Scikit‐learn library.24

Data preparation

The purpose of data preprocessing is to ensure that the data are

carefully prepared and balanced, laying the groundwork for effective

model training and validation. The data preparation phase was carried

out as follows: a preliminary strategy of eliminating rows and columns

with null values was applied, when these presented several null val-

ues greater than 50% of the samples. For the remaining instances,

imputation was performed using the median or mode for the specific

attribute, depending on the variable type. The detection of outliers

was carried out upstream of the analysis. Depending on the char-

acteristics of the column attributes, we opted for either normalization

using the Min–Max Scaler or standardization. Since the data set

shows a significant imbalance, during the analysis various data bal-

ancing techniques were used, either individually or in combination.

Both Borderline‐SMOTE (synthetic minority over‐sampling tech-

nique) and synthetic minority over‐sampling technique for nominal

and continuous (SMOTENC) were used as oversampling meth-

ods,25,26 while undersampling was performed by randomly selecting

records to be removed (Random Undersampling). The data set was

divided into train (70%), validation (15%), and test (15%) sets.

The analysis process was conducted in two phases: one including

all features and another removing clinical variables considered

irrelevant to the analysis (initially there were over 70, reduced to 35).

Training

Different supervised ML algorithms were employed for classification

tasks, aiming to exploit the unique properties inherent to each.

Specifically, among the linear models, Support Vector Machines and

Logistic Regression were utilized. For tree‐based methodologies,

Decision Tree was employed. k‐Nearest Neighbors was used as an

instance‐based method and Gaussian Naive Bayes was adopted as

the probabilistic modeling approach, while the adopted ensemble

methods included Random Forest, Adaptive Boosting, Gradient

Boosting, and Extreme Gradient Boosting (XGBoost).

Models were trained aiming to optimize hyperparameters using a

randomized search cross‐validation approach. During the training

F IGURE 1 Data set t‐distributed stochastic neighbor embedding
(t‐SNE) visualization: instances from different classes are closely
clustered together in the two‐dimensional space. However, this
mixing of samples suggests overlapping or similar characteristics
among the two classes in the high‐dimensional feature space. BPD,
bronchopulmonary dysplasia.
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process, the recall metric was selected as the metric to be optimized.

Particularly in the medical field, recall is a priority as it is essential to

correctly identify all patients with a specific disease. Although this

may cause over‐diagnosis, in many medical contexts, it is better to err

on the side of caution rather than run the risk of not identifying a

pathological condition.

Evaluation

Following the training phase, the top‐performing models, character-

ized by their best hyperparameters, were evaluated on an indepen-

dent test set. The main goal of this evaluation process was twofold:

firstly, to maximize both accuracy and recall metrics, ensuring the

model's ability to correctly classify instances of interest while main-

taining overall predictive performance. Secondly, the goal was to

mitigate the risk of overfitting, thereby promoting the development

of a robust and generalizable model capable of effectively handling

unseen data.

From the confusion matrices generated during the evaluation, a

comprehensive array of performance metrics was computed. These

metrics included accuracy, recall, precision, and F1 score, providing a

holistic view of the model's classification performance across differ-

ent categories. Additionally, the loss function and the area under the

receiver operating characteristic (ROC‐AUC) curves were calculated,

offering further insights into model performance and discriminative

power.

The results obtained for each ML model, with different pre-

processing techniques, are shown in Table 1.

Model interpretability

During the testing phase, the most relevant features were identified,

namely those that had a greater impact on predicting the target

variables. The computation of feature importance is particularly

useful for understanding which variables influence the model's pre-

dictions the most and to what extent. Feature importance estimation

was conducted using various methods, specifically tailored for the ML

algorithm, provided by a fitted attribute in the Scikit‐learn library.

3 | RESULTS

3.1 | Study population

Over the 11‐year study period, 709 infants fulfilling inclusion criteria

were recruited (337 males, 47.5%). Forty‐one infants (5.8%) did not

survive the neonatal period.

Data collection was nearly complete for neonatal data, while

suffered from some missing data related to prenatal variables,

especially for outborn infants. The percentage description of prenatal

and neonatal data that follows is thus referred to the actual available

information for each item.

Six hundred thirty‐two over 691 infants (91.5%) were inborn;

most infants (565/626, 90.3%) had received at least one dose of

antenatal steroid prophylaxis, while a minority (117/588 for whom

TABLE 1 Performance metrics of different supervised machine
learning approaches in various test conditions.

Model Accuracy Recall Precision F1 score

Original data set without preprocessing

Logistic Regression 0.887 0.385 0.556 0.455

Decision Tree 0.858 0.538 0.438 0.483

Random Forest 0.887 0.077 1.000 0.143

k‐Nearest Neighbors 0.887 0.231 0.600 0.333

Support Vector Machines 0.906 0.385 0.714 0.500

Gaussian Naïve Bayes 0.679 1.000 0.277 0.433

Adaptive Boosting 0.877 0.154 0.500 0.235

Gradient Boosting 0.887 0.077 1.000 0.143

Extreme Gradient Boosting 0.887 0.308 0.571 0.400

Test set Oversampling no scaling

Logistic Regression 0.830 0.692 0.391 0.500

Decision Tree 0.792 0.538 0.304 0.389

Random Forest 0.821 0.615 0.364 0.457

k‐Nearest Neighbors 0.792 0.769 0.345 0.476

Support Vector Machines 0.849 0.692 0.429 0.529

Gaussian Naïve Bayes 0.660 0.923 0.255 0.400

Adaptive Boosting 0.783 0.615 0.308 0.410

Gradient Boosting 0.830 0.615 0.381 0.471

Extreme Gradient Boosting 0.906 0.615 0.615 0.615

Test set Undersampling

Logistic Regression 0.896 0.462 0.600 0.522

Decision Tree 0.868 0.538 0.467 0.500

Random Forest 0.887 0.077 1.000 0.143

k‐Nearest Neighbors 0.877 0.308 0.500 0.381

Support Vector Machines 0.896 0.308 0.667 0.421

Gaussian Naïve Bayes 0.679 1.000 0.277 0.433

Adaptive Boosting 0.868 0.077 0.333 0.125

Gradient Boosting 0.896 0.231 0.750 0.353

Extreme Gradient Boosting 0.877 0.462 0.500 0.480

Test set Undersampling + Oversampling SMOTENC

Logistic Regression 0.830 0.692 0.391 0.500

Decision Tree 0.792 0.462 0.286 0.353

Random Forest 0.840 0.692 0.409 0.514

k‐Nearest Neighbors 0.811 1.000 0.394 0.565

Support Vector Machines 0.783 0.923 0.353 0.511

Gaussian Naïve Bayes 0.670 0.923 0.353 0.511

Adaptive Boosting 0.783 0.615 0.308 0.410

Gradient Boosting 0.830 0.692 0.391 0.500

Extreme Gradient Boosting 0.858 0.692 0.450 0.545

Abbreviation: SMOTENC, synthetic minority over‐sampling technique for
nominal and continuous.
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data on prophylaxis were available, 19.9%) had received antenatal

magnesium sulfate.

A diagnosis of FGR was made for 147/589 (25%) infants, and

pPROM was detected in 163/600 (27.2%) cases. A diagnosis of

chorioamnionitis was made in only 15 cases (2.6%), but the number

of missing data in this respect was quite high (121/709). Maternal

hypertension was present in 163/627 cases (26%). Most infants

(593/691, 85.8%) were born after a cesarean section.

Mean (standard deviation [SD]) GA was 29.3 (2.8) weeks and

mean (SD) BW was 1157 (352) grams. Two hundred thirty‐six (33.4%)

infants had a BW< 1000 g (extremely low birth weight [ELBW]).

RDS was diagnosed in 619/677 (91.4%) infants, and BPD in 85/

653 (13%) infants. None of the infants without RDS later developed

BPD. The percentage of infants requiring MV was 34.5% (237/686).

As for comorbidities, a diagnosis of IVH was made in 177/676

(26.2%) infants (144 mild IVH, 33 severe IVH), while PVL was

detected in 20/665 (3%) infants. EOS occurred in 38/667 (5.7%)

infants, while LOS in 110/671 (16.4%) infants. ROP occurred in 87/

656 (13.3%) infants. PDA was diagnosed in 330/676 infants (48.8%),

required pharmacological treatment in 186 infants and surgery in 41

infants. A diagnosis of NEC any stage was made in 74/673 (11%)

infants, while infants requiring surgery were 17/673 (2.5%).

3.2 | Data analysis using conventional statistics

At the univariate analysis, several prenatal and neonatal factors, as

well as neonatal comorbidities, were found to be associated to BPD

development (Table 2).

As for prenatal variables, AREDF status, alterations of the blood

flow in the DV, and chorioamnionitis were more frequently detected

in infants later developing BPD (p = .015, <.001, and .014, respec-

tively). Vaginal delivery was more frequent in infants developing BPD

compared to those who did not (p = .002). Quite unexpectedly, BPD

occurred more frequently in singleton infants compared to twins

(p = .007); to note, twin infants had slightly but significantly higher GA

and BW compared to singletons (mean GA 29.7 [SD 2.7] vs. 29.1

[2.8] weeks, p = .004; mean BW 1237 [SD 341] vs. 1113 [SD 351] g,

p < .001). No significant difference (p = .346) in terms of BPD inci-

dence was documented between uncomplicated and complicated (i.e.

triplets, twin‐to‐twin transfusion syndrome, monochorionic twins,

IUGR or loss of one fetus) twin pregnancies.

Overall, infants developing BPD were significantly younger in

terms of GA and smaller, both for weight, length, and HC at birth

(p < .001 for all comparisons). In addition, BPD was significantly

associated with lower 5′‐Apgar score and higher BE (p < .001 for

both comparisons). As for neonatal comorbidities, infants devel-

oping BPD were more likely to need MV (p < .001) and to require

it for longer periods (p < .001). Infants developing BPD were also

at higher risk of other clinical morbidities including IVH, PDA,

ROP, EOS, LOS, and surgical NEC (p < .001 for all comparison,

apart from surgical NEC, for which p = .035). As expected, none of

the infants without RDS developed BPD (p < .001). Despite the

relatively long period of enrollment, which could have impacted

on specific features of neonatal care, including for example res-

piratory and nutritional management, no effect of birth year on

BPD risk was documented (p = .234).

To select variables to be included in the regression model,

potential correlations among variables which had proven to be sig-

nificant at the univariate analysis were tested: strong and significant

correlations were documented between BW and GA (r = .745,

p < .001) and among all anthropometric measures at birth (BW and

length: r = .904, p < .001, BW and HC: r = .845, p < .001, length and

HC: r = .826, p < .001); for this reason, only GA was included in the

conventional statistics model. In addition, PDA and need for phar-

macological treatment were strongly related (r = .638, p < .001), thus

leading to the sole inclusion of the latter variable in the model. All the

other potential correlations between variables proved to be mild

(r < .6, p < .05) or nonsignificant (p > .05).

The final model was then built by including three prenatal vari-

ables (AREDF status, Doppler alterations in the DV, and chor-

ioamnionitis), five birth variables (twin status, mode of delivery, 5′

Apgar score, arterial cord blood BE, and GA), and six variables related

to NICU stay (MV, IVH, LOS, ROP, PDA requiring pharmacological

treatment, and surgical NEC). In the final model, four variables proved

to be independently related to the occurrence of BPD: AREDF status,

GA, MV, and LOS (Table 3).

3.3 | Data analysis using ML approaches

As shown in Table 1, nine supervised ML algorithms were employed;

performances of different algorithms were evaluated, to assess which

model would provide the best hyperparameters. Different ML algo-

rithms showed variable performance metrics, with only four models

demonstrating an F1 score above 0.5: the SVC and the XGB Classifier

in the experiment involving oversampling of the data set using the

SMOTENC algorithm, without applying any scaling technique, and

the RF and XGB Classifier in the experiment where an integration of

undersampling and oversampling with SMOTENC were applied.

Among these, the only model also showing both recall and precision

values above 0.5 was the XGB Classifier Oversampling no scaling.

Figure 2 depicts feature importance estimation and the ROC‐

AUC curve obtained with this latter model. As shown in the figure,

the five most relevant variables which would predict BPD were

ELBW, GA, AREDF status, magnesium sulfate prophylaxis, and MV.

The area under the curve was 0.92.

Conventional statistics and the best‐performing ML algorithm

converged into identifying the degree of immaturity, depicted by low

GA (and ELBW in the ML approach), MV, and AREDF status, as

potential determinants of the risk of BPD. Furthermore, results of

conventional statistics suggested an additional association between

LOS and BPD, while the ML approach proposed magnesium sulfate

antenatal prophylaxis as a potential risk factor for BPD.

Results of the three other models with recall and F1 score above 0.5,

but precision below 0.5, are shown in Supplementary Figures E‐1 to E‐3.
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TABLE 2 Univariate analysis of potential prenatal, perinatal and neonatal risk factors for bronchopulmonary dysplasia.

BPD No BPD p Value

Antenatal variables

Doppler alterations

Umbilical artery AREDF 24/75 (32.0%) 100/518 (29.3%) .015

DV alterations 12/75 (16.0%) 18/518 (3.5%) <.001

MCA alterations 9/75 (12%) 35/517 (6.8%) .152

Chorioamnionitis 5/68 (7.4%) 8/489 (1.6%) .014

Maternal hypertension 20/76 (26.3%) 138/519 (26.6%) 1.000

Antenatal steroids 66/76 (86.8%) 471/518 (90.9%) .294

Magnesium sulfate 15/69 (21.7%) 97/488 (19.9%) .748

Fetal growth restriction 18/68 (26.5%) 123/480 (25.6%) .882

pPROM 20/70 (28.6%) 138/499 (27.6%) .887

Birth variables

Inborn 77/85 (90.6%) 521/568 (91.7%) .678

Twin status 19/85 (22.4%) 211/568 (37.1%) .007

Vaginal delivery 21/85 (24.7%) 64/568 (11.3%) .002

Gestational age 26.6 (2.1) 30.0 (2.4) <.001

Weight 778 (251) 1245 (304) <.001

Weight centile 40.37 (30.47) 45.06 (29.57) .090

Weight Z score −0.39 (1.14) −0.22 (1.06) .081

Birth weight<1000 g 70/85 (82.3%) 133/568 (23.4%) <.001

Small for gestational age 19/84 (22.6%) 96/566 (17.0%) .220

Length 32.5 (3.7) 38.0 (3.4) <.001

Length centile 36.35 (30.95) 43.37 (30.55) .029

Length Z score −0.73 (1.42) −0.30 (1.20) .006

Head circumference (HC) 23.6 (2.6) 27.4 (2.3) <.001

HC centile 39.82 (32.49) 49.07 (32.26) .015

HC Z score −0.42 (1.44) −0.04 (1.27) .013

Congenital malformations 9/85 (10.6%) 29/568 (5.1%) .076

Female sex 35/85 (41.2%) 298/568 (52.5%) .062

5′‐Apgar score 7.40 (1.71) 8.53 (1.32) <.001

Arterial cord blood pH 7.15 (0.79) 7.24 (0.52) .086

Arterial cord blood BE −6.23 (6.84) −3.73 (3.85) <.001

Neonatal variables

Mortality 3/85 (3.5%) 6/568 (1.1%) .100

RDS 84/84 (100%) 505/568 (88.9%) <.001

Mechanical ventilation (MV) 70/85 (82.4%) 135/568 (23.8%) <.001

Duration of MV (days) 31.6 (33.6) 9.7 (11.1) <.001

Intraventricular hemorrhage 41/85 (48.2%) 122/568 (21.5%) <.001

Periventricular leukomalacia 3/84 (3.6%) 16/562 (2.8%) .726

Early onset sepsis 5/84 (6.0%) 31/564 (5.5%) .800

Late onset sepsis 42/85 (49.4%) 66/567 (11.6%) <.001
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According to these three additional algorithms, additional clinical

variables, such as mode of delivery, PVL, ROP, LOS, and NEC, might be

linked to BPD. However, the exact impact of these variables is difficult to

interpret, as the precision of these models was suboptimal.

4 | DISCUSSION

The present study was aimed at evaluating and comparing the ability

of conventional statistics and AI to identify, among routinely col-

lected antenatal, perinatal, and neonatal variables, those predictive of

BPD development in very preterm infants. The two approaches

converged into identifying, beyond well‐known risk factors such as

immaturity and mechanical ventilation, also AREDF status, high-

lighting the opportunity of including prenatal variables into predictive

models for neonatal diseases.

Recent years have witnessed the successful integration of AI into

healthcare, particularly through ML, which excels in predictive tasks

without explicit programming. ML's adaptability has transformed

clinical medicine, even surpassing human performance in some in-

stances, notably in computer‐aided diagnosis systems.27,28 While

most randomized controlled trials comparing AI to standard care

were focused on intermediate clinical endpoints,29 a recent ran-

domized controlled trial even demonstrated the ability of an AI‐

enabled electrocardiogram, compared to conventional care, to reduce

the risk of all‐cause mortality in nearly 16,000 hospitalized patients.30

Medical data are rapidly expanding with the development of new

therapies and diagnostics. Health records also accumulate as patients

age, develop comorbidities, and undergo more diagnostic testing.

Traditional techniques are not equipped to manage this exponential

information growth, while ML algorithms are ideally suited to handle

abundant and heterogeneous data and may become the most feasible

option available in many biomedical settings.31 These attributes

are particularly useful for large and complex data sets, such as those

related to neonatal diseases, including BPD. Neonates who develop

BPD are usually hospitalized for several months, generating a great

amount of data; furthermore, the complex interplay between prenatal

factors and postnatal events that leads to the development of BPD

might be more suitable for ML analysis rather than for conventional

statistics, which might miss some unique insights.

TABLE 2 (Continued)

BPD No BPD p Value

Retinopathy of prematurity 41/84 (48.8%) 46/563 (8.2%) <.001

PDA 66/84 (78.6%) 240/567 (42.3%) <.001

PDA requiring drugs 49/83 (59.0%) 122/565 (21.6%) <.001

PDA requiring surgery 19/83 (22.9%) 18/565 (3.2%) <.001

NEC 14/85 (16.5%) 52/567 (9.1%) .052

NEC requiring surgery 5/85 (5.9%) 10/566 (1.8%) .035

Note: Variables are presented as number (percentage) or mean (standard deviation) as appropriate. A p value <.05 was considered as statistically

significant.

Abbreviations: AREDF, absent or reversed end diastolic flow; BE, base excess; BPD, bronchopulmonary dysplasia; DV, ductus venosus; MCA, medium
cerebral artery; NEC, necrotizing enterocolitis; PDA, patent ductus arteriosus; pPROM, preterm prolonged rupture of membranes; SIP, spontaneous

intestinal perforation.

TABLE 3 Logistic regression model built to evaluate prenatal,
perinatal and neonatal variable associated with the occurrence of
bronchopulmonary dysplasia.

B (S.E.) EXP(B)
95% CI
EXP(B) p

AREDF 1.526 (0.496) 4.598 1.741‐12.143 .002

DV alterations 0.615 (0.655) 1.850 0.512‐6.681 .348

Chorioamnionitis 0.449 (0.822) 1.567 0.313‐7.815 .585

Twin 0.162 (0.424) 1.175 0.512‐2.700 .703

Mode of delivery −0.384 (0.520) 0.681 0.246‐1.886 .460

5′‐Apgar score −0.134 (0.123) 0.875 0.688‐1.112 .275

Cord blood BE −0.026 (0.036) 0.975 0.908‐1.046 .476

Gestational age −0.480 (0.111) 0.619 0.498‐0.769 <.001

MV 0.888 (0.439) 2.430 1.028‐5.745 .043

IVH 0.229 (0.411) 1.258 0.562‐2.813 .577

LOS 1.031 (0.378) 2.803 1.335‐5.885 .006

ROP 0.675 (0.420) 1.965 0.863‐4.472 .108

Pharm_PDA 0.281 (0.371) 1.324 0.637‐2.751 .452

Surgical NEC −1.493 (0.836) 0.225 0.044‐1.156 .074

Constant 10.9340 (3.192) 56356.502 <.001

Note: A p value < .05 was considered statistically significant.

Abbreviations: AREDF, absent or reversed end diastolic flow; BE, base

excess; DV, ductus venosus; IVH, intraventricular hemorrhage; LOS, late
onset sepsis; MV, mechanical ventilation; NEC, necrotizing enterocolitis;
PDA, patent ductus arteriosus; ROP, retinopathy of prematurity.
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Previous studies, mainly based on conventional statistics, have sug-

gested several perinatal and neonatal risk factors for BPD: most studies

converge in identifying prematurity‐related features (low GA and/or low

BW) and the degree of respiratory support as the main risk factors for

BPD occurrence and severity4,5,15; furthermore, in analogy with the

present study, some authors have proposed a role for other comorbid-

ities, such as LOS and NEC, in increasing BPD risk.

As for papers dealing with ML algorithms to predict BPD, these are

few, often based on small samples, and heterogenous in structural

modelling and results.7,10–15,32 In addition, not all the available ML studies

were aimed at investigating clinical predictors of BPD, but some of them

were focused on evaluating specific variables, such as chest X‐ray fea-

tures, genomic profile, and BPDmarkers on biological specimens. To note,

however, most ML studies agreed with our results in terms of neonatal

variables predictive of BPD, including low GA and BW, need for respi-

ratory support, and comorbidities such as LOS.15

Interestingly, none of the previous studies was specifically designed

to include antenatal clinical and ultrasonographic variables among

potential predictors of BPD. The appraisal of AREDF status among

potential risk factors for BPD is in line with limited previous observations

on the higher incidence of BPD in AREDF versus non‐AREDF infants33; at

present, however, it is unclear whether the timing of onset of fetal growth

restriction and the degree of Doppler velocimetry alterations would have

a specific impact on BPD risk. Indeed, the identification of AREDF status

as an independent risk factor for BPD by both conventional statistics

and ML algorithm highlights the opportunity to include detailed antenatal

information into clinical predictive models for neonatal diseases. Further

studies aimed at linking prenatal data with neonatal clinical outcomes

should not describe only the occurrence and timing of fetal growth

restriction,34 but should also detail the features of blood flow alterations,

as it is well known that the earliest fetal growth restriction with AREDF

occurs, the worst will be the potential impact on fetal and neonatal

wellbeing.35

Magnesium sulfate prophylaxis was also identified by the ML algo-

rithm as potentially related to BPD, while no difference between BPD

and non‐BPD infants was documented through conventional statistics

(13.4 vs. 12.1%, p= .748). A potential explanation for this finding could be

related to the so‐called “overfitting”, which occurs when an algorithm

gives undue weight to an important feature which is strongly associated

with another relevant feature (i.e. magnesium sulfate prophylaxis, which is

usually indicated in early preterm birth). The two main contributors to

overfitting are selection bias and small data set size32,36: indeed, the

proportion of infants receiving antenatal magnesium sulfate prophylaxis

was quite low, several prenatal data about outborn infants were missing

F IGURE 2 Feature importance estimation (A) and the area under the receiver operating characteristic (ROC–AUC) curve (B) obtained through the
machine learning algorithm Extreme Gradient Boosting Classifier under the synthetic minority over‐sampling technique for nominal and continuous
(SMOTENC) oversampling preprocessing strategy. Features are ranked according to their contribution to predictive performance.
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and we were unable to distinguish indications for treatment (pre‐

eclampsia vs. neuroprotection).

From a wider perspective, AI has been increasingly used across

clinical specialties, showing positive outcomes primarily related to diag-

nostic yield or performance29; as for neonatal medicine, AI has the

potential to become a valuable diagnostic tool, offering several promising

new insights into BPD and other neonatal diseases such as NEC, ROP,

hypoxic‐ischemic encephalopathy, and neurodevelopmental impair-

ment.8,9,16,37 As for potential applications in BPD prediction, AI might be

used to analyze and combine different antenatal risk factors involved in

BPD onset with postnatal clinical, radiological, and laboratory parameters,

to develop a prediction model for BPD, or even a score to stratify the

severity of BPD. In addition, AI might help in discovering new risk factors

involved in BPD pathogenesis, in describing different phenotypes of this

heterogeneous disease (as suggested by the recent discovery of a

restrictive BPD phenotype38), or in applying novel treatments targeted to

specific patients' characteristics. At present, BPD treatment is based on

preventive strategies, broadly applied to the entire BPD population to

limit injury, and promote repair, whose efficacy likely depends on indi-

vidual factors which are not entirely understood.

Despite its enormous potential, AI solutions will likely never replace

the demanding work of clinicians. Sullivan et al. summarized the major

challenges of AI and ML through the acronymous “BARRIERS” (Babies,

Analytics, Reactors, Reassurance, Integration, Equipment, Re‐education,

and Space)39: the word refers to the difficulty of AI at standardizing non‐

specific neonatal clinical alterations and referring them to an exact dis-

ease, creating standardized models which would overcome the hetero-

geneity of clinical events, and displaying them to a broad range of clini-

cians, who should be compliant with the technology and confident with

its results. Finally, limited space can be a logistic barrier in the NICU.

Possible solutions to overcome these barriers are the use of ML‐trained

models to provide statistical guarantees on discovery findings and the

establishment of a multidisciplinary team including healthcare profes-

sionals, patients' representatives, and data scientists,32 with comple-

mentary roles: patients generate data, healthcare professionals identify

which data are useful and how to combine them, and clearly explain the

investigated disease to data scientists, who build up a specific set of data.

Some limitations of the present study must be acknowledged: study

recruitment encompasses a relatively long period, during which several

changes have occurred in neonatal resuscitation guidelines and neonatal

intensive care practice, including oxygen supplementation, modes of

respiratory support, both at birth and during NICU stay, and nutritional

practices. Even if in the present study birth year was not found to affect

the risk of BPD, those factors might have had an additional impact on the

risk of developing BPD3 and should be considered as potential con-

founders when planning future studies on this topic. In addition,

recent years have witnessed a rising awareness of the importance of

maintaining normothermia at birth,40 as this is associated with improved

clinical outcomes in preterm infants, including BPD.41 Data about tem-

perature at NICU admission were not available for all the included infants,

so we were unable to assess the specific impact of hypothermia on BPD

in the study cohort.

5 | CONCLUSIONS

BPD remains one of the most challenging diseases to understand,

prevent, and manage in the field of neonatology. An in‐depth un-

derstanding of its antenatal, perinatal, and postnatal risk factors is

increasingly needed to create a modern and more comprehensive

definition of BPD, with a consequent impact on diagnosis and

treatment.

Our study suggests that ML might discover new variables related

to BPD development. Even if accounting for ML limitations and

biases, we believe that many solutions are available to overcome

these biases and make ML a reliable and essential component of

clinical research.
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