
Knowledge-Based Systems 303 (2024) 112383

A
0
n

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

UNIFY: A unified policy designing framework for solving integrated
Constrained Optimization and Machine Learning problems
Mattia Silvestri, Allegra De Filippo ∗, Michele Lombardi, Michela Milano
Department of Computer Science and Engineering, University of Bologna, Italy

A R T I C L E I N F O

Keywords:
Machine Learning
Constrained Optimization
Reinforcement Learning
Parameter tuning

A B S T R A C T

The integration of Machine Learning (ML) and Constrained Optimization (CO) techniques has recently gained
significant interest. While pure CO methods struggle with scalability and robustness, and ML methods
like constrained Reinforcement Learning (RL) face difficulties with combinatorial decision spaces and hard
constraints, a hybrid approach shows promise. However, multi-stage decision-making under uncertainty
remains challenging for current methods, which often rely on restrictive assumptions or specialized algorithms.
This paper introduces unify, a versatile framework for tackling a wide range of problems, including multi-
stage decision-making under uncertainty, using standard ML and CO components. unify integrates a CO
problem with an unconstrained ML model through parameters controlled by the ML model, guiding the
decision process. This ensures feasible decisions, minimal costs over time, and robustness to uncertainty. In
the empirical evaluation, unify demonstrates its capability to address problems typically handled by Decision
Focused Learning, Constrained RL, and Stochastic Optimization. While not always outperforming specialized
methods, unify’s flexibility offers broader applicability and maintainability. The paper includes the method’s
formalization and empirical evaluation through case studies in energy management and production scheduling,
concluding with future research directions.
1. Introduction

In recent years, the integration of Machine Learning (ML) and
Constrained Optimization (CO) techniques has attracted considerable
interest. In general, pure CO methods encounter challenges in terms of
scalability and robustness, while pure ML methods such as constrained
Reinforcement Learning (RL) [1] face difficulties in handling combi-
natorial decision spaces and hard constraints. A promising research
direction involves combining the two approaches at the modeling level,
using ML to provide parameters [2] or entire parts [3,4] of CO mod-
els. Methods in this class can exploit implicit knowledge (from data)
and provide better support for uncertainty compared to classical CO
approaches; they also grant a better degree of constraints satisfaction
guarantees compared to pure ML methods.

However, while integrated ML and CO methods have expanded
the scope of automated decision support, some complex problems
remain out reach even for such techniques. This is the case for con-
strained decision-making problems under uncertainty over multiple
stages, which are widespread, but notoriously very challenging to
tackle (e.g. production or logistic planning, energy management) and
very common in industrial contexts.

∗ Corresponding author.
E-mail addresses: mattia.silvestri4@unibo.it (M. Silvestri), allegra.defilippo@unibo.it (A. De Filippo), michele.lombardi2@unibo.it (M. Lombardi),

michela.milano@unibo.it (M. Milano).

Existing approaches often rely on assumptions that narrow their
applicability (e.g. to linear or convex optimization problems) or require
specialized algorithms [5]; as a result, identifying and implementing
a viable technique for a given practical problem can be non trivial,
creating a barrier towards industrial adoption. Based on the authors’
experience with decision-support companies, constrained optimization
solutions relying on deterministic, expert-designed, models tend to be
the most frequently employed solution in practice. Available data is
typically lightly processed (e.g. to compute averages) or used to train
ML models in isolation that then feed parameters to the CO models.

In this perspective, we present a single framework called unify
that : (1) is versatile enough to deal with a wide range of problems,
including multi-stage decision making under uncertainty; and (2) can
be implemented by relying on standard ML and CO components. Start-
ing from the problem knowledge in the form of both a declarative
formulation (constraints and an objective function), and data (historical
or simulated), the framework defines a solution policy by combining a
CO problem and an unconstrained ML model. The interface between
the two components consists of a set of virtual parameters in the CO
https://doi.org/10.1016/j.knosys.2024.112383
Received 20 May 2024; Received in revised form 28 July 2024; Accepted 12 Augu
vailable online 22 August 2024
950-7051/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
st 2024

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
mailto:mattia.silvestri4@unibo.it
mailto:allegra.defilippo@unibo.it
mailto:michele.lombardi2@unibo.it
mailto:michela.milano@unibo.it
https://doi.org/10.1016/j.knosys.2024.112383
https://doi.org/10.1016/j.knosys.2024.112383
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.112383&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
problem, whose value is controlled by the ML model to ‘‘steer’’ the
decision process.

Any optimization technology can be used for the CO component,
while training is performed via standard RL techniques. The resulting
policy can queried repeatedly and efficiently to obtain decisions that:
(1) are feasible, (2) lead to minimal cost over the considered time
horizon, and (3) are robust w.r.t. uncertainty.

The content of this paper builds upon the earlier results by [6] and
substantially extends them in terms of both theory, experimentation
and generalizability. In addition to introducing unify, we also show
how the method can address problems usually tackled via approaches
such as Decision Focused Learning [7], Constrained RL [8], Algorithm
Configuration [9], and Stochastic Optimization [10], and to extend
their functionality. While our approach cannot be expected to exceed
the performance of specialized methods, we believe its flexibility makes
it considerably more generally applicable and maintainable, and hence
appealing from a practical perspective. Moreover, to the best of the
authors’ knowledge, no approach proposed up to this point can deal
with constrained decision-making problems under uncertainty over
multiple stages without significant shortcomings, due to difficulties in
handling constraints or multi-stage decisions.

The work is structured as follows: in Section 2 we introduce the
context and notation for our method, discuss its key idea by means of
a simple example, and provide motivation by highlighting potential ap-
plication domains; a full formalization follows in Section 3. In Section 4
we discuss how unify can be configured to address problems that are
typically tackled by existing ML, CO, or hybrid approaches, covering
related work for each considered case. In Section 5, we provide an
empirical evaluation focused on investigating the flexibility of our
approach; we consider two practical case studies, namely an Energy
Management System and a Weighted Set Multi-cover Problem with
stochastic demands (capturing the structure of a simple production
scheduling scenario). Concluding remarks and open research directions
are in Section 6.

2. Context and motivation

In its most general form, our method is capable of addressing multi-
stage constrained decision problems with clearly defined constraints
and cost, but defined in the presence of uncertainty represented by
means of data. Since problems in this class provide the main motivation
for our approach, here we list and discuss a few notable examples,
two of which cover the use cases employed in our experiments. We
then proceed to highlight their common characteristics and to define a
formal notation.

Energy management systems (EMSs). An EMS requires the allocation of
minimum-cost power flows from different energy resources to satisfy
energy demands. Based on forecasts of the availability of Distributed
Energy Resources (DERs) and user load demand, the EMS schedules
power flows among the different sources and decides whether any
excess of energy should be sold to the market or stored in the sys-
tem. This problem has a clear declarative formulation, but it also
involves elements of uncertainty (e.g. demands and power generation
from DERs). While extensive literature on the topic exists [11,12],
solutions deployed in the real-world often disregard uncertainty by
assuming determinism (i.e. they treat predictions as perfect) or by being
myopic (i.e. disregarding the long-term impact of current decisions).
This is preferred in practice to the poor scalability of stochastic con-
strained optimization, and the difficulty of guaranteeing feasibility with
data-driven methods.

Production scheduling. In a production scheduling problem, a factory
has to manufacture a set of products to satisfy customer demands.
2
Knowledge about the product demands is usually available in the form
of historical data; at production time, true demands may be unknown,
in which case only forecasts based on implicit knowledge can be made.
Failing to satisfy the demands results in missed profit, or a cost in
case additional products need to be purchased from external sources.
The manufacturing process can be subject to a number of constraints
that are typically well-known and problem-specific. While methods
for production planning and scheduling under uncertainty have been
studies for decades, practical solutions still often assume determinism
or rely on heuristic rules [13], again to preserve scalability and feasi-
bility. In [14], some of the authors of this paper proposed to build an
anticipatory approach by relying on an offline parameter tuning phase,
a behavior that unify is capable of replicating and extending.

Paired kidney donation. Some organ transplant programs require com-
plex planning stages. As an example, in paired kidney donation in-
compatible patient–donor pairs are allowed to swap donors; while the
approach opens opportunities for new transplants, it also makes it very
challenging to determine which transplants to perform. However, when
choosing which pairs to consider for surgery, one needs to consider
biological compatibility and to balance short-term survival with long-
term maximization of the number of transplants. New patients and
donors continuously arrive or leave the pool, according to a distribution
that can be estimated only via historical data. This setting has received
some research attention in the last two decades [15]; due to the
challenging nature of the problem and the size of the patient–donor
pool, both the literature and practical approaches have focused on
myopic solutions. Among the few exceptions, the approach from [16]
introduced a degree of anticipativity via parameter tuning, similarly to
what would later by done in [14] for EMSs.

Delivery problems under uncertainty. Delivery problems are a vast class
of optimization problems from the field of logistics that span from
long-range hauling of goods to last-mile delivery and shuttle services.
These problems require finding the optimal routes for a set of vehicles
in such a way that customer requests are satisfied. Typically, several
problem elements are well-known (e.g. road network, vehicle capacity),
but many others are subject to uncertainty (e.g. travel times, amount
and sometimes the location of the requests). Similarly to the previous
cases, historical data can be used to characterize the elements of
uncertainty. Routing problems under uncertainty have been extensively
studied [17], but scalability in the general case remains a challenge,
as the most effective algorithms rely deeply on properties of specific
problem classes.

2.1. Key problem elements and notation

The considered examples feature some common elements, which
define the broadest class of problem that the unify framework can
address. They can be formalized as follows:

(1) Multiple decision stages, referred to as a sequence of stage in-
dices {𝑘}𝑇𝑘=1. The notation 𝑇 represents the end of the planning
horizon, and it might be infinite for decision processes that run
indefinitely.

(2) Observables available at each stage, referred to as vector of values
𝑥(𝑘). These might represent information that is useful for making
decisions, for evaluating the impact of past decisions, for making
predictions, or for describing the system state.

(3) Uncertainty, affecting the values of the observables and repre-
sented via a probability distribution 𝑃 , i.e. 𝑥 ∼ 𝑃 . While we
make no specific assumption on the distribution, its properties
(e.g., causality or exogeneity) can affect which solution methods
can be employed to implement an approach based on unify.

M. Silvestri et al.

r

Knowledge-Based Systems 303 (2024) 112383
Table 1
Examples of real-world problems that can be tackled with unify and their components.
Problem Stages Observables Uncertainty Decisions Constraints Cost

EMS Time
intervals

Past demands and
production

True
demands and
production

Power flows Power
balance
and limits

Power flows
cost

Production
scheduling

Production days Customer
information,
time of the year

True product
demands

Molds
to use

Molds
availability

Manufacture cost

Organ
transplant
programs

Sets of
surgery
operations

Patient
information

True
transplants
requests

Accepted
transplants
requests

Patient–donor
compatibility

Patients
deceased

Delivery
problems

Customers
requests

Customer
information,
hour of the day

Travel time,
new requests

Travel route Time
constraints

Traveling
time
(4) Decisions to be taken for each stage, referred to as vectors of
variables 𝑧(𝑘). The variables might represent how many items to
produce in a day, the power-flows for a 15 min interval in an
EMS, which donor–patient pairs to select for surgery in an organ
transplant program, etc. We make no assumption on the domain
of 𝑧(𝑘), which in the general case may even be stage-dependent
(e.g. changing donor and patient pools in an organ transplant
program).

(5) Hard constraints for each stage, which define the feasible values
for the decision variables. We represent such constraints as a
set, whose definition depends on the values of the observables:
formally, we have that 𝑧(𝑘) ∈ 𝐶(𝑥(𝑘)), with 𝐶(⋅) being a set-valued
function. We assume without loss of generality1 that the feasible
set can be defined based on the observables for the current stage.
The constraints may require a power balance, or establish a
maximal production capacity for a set of products.

(6) An immediate cost function, referred to as 𝑓 , which specifies the
cost incurred in stage 𝑘+1 depending on the decisions at stage 𝑘,
and on the observable at stages 𝑘 and 𝑘+1 (i.e. the previous state
and how uncertainty unfolds). Formally, we have that the cost
incurred at stage 𝑘+1 is given by 𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘)). For example,
the function may measure the total profit we get at stage 𝑘 + 1
depending on the observed demand (in 𝑥(𝑘+1)), by selling items
produced (𝑧(𝑘)) and stored (in 𝑥(𝑘)) at stage 𝑘. We assume the
goal is to minimize the expected cost over all the decision stages.

Knowledge about the constraints and the cost function can typically be
obtained in explicit form by talking to domain experts, while information
about the uncertainty distribution 𝑃 is typically available in implicit
form, through collections of historical data.

While all elements can be relevant in the general case, a specific
application may introduce simplifying restrictions, e.g., a limited num-
ber of stages, a focus on exogenous uncertainty, or a deterministic cost
function 𝑓 . Similarly, not all terms in 𝑥(𝑘) might be relevant for defining
the constraint set 𝐶(𝑥(𝑘)) or the cost 𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘)) (see Table 1).

3. The unify framework

We can now proceed to define the general problems that our frame-
work can address. We view a multi-stage decisions process as the
repeated application of a solution policy, which can be trained on
available data to minimize an expected cost. This setup shifts most of
the computation effort to the training phase, thus keeping the inference
(execution) process lightweight.

As a key challenge, the policy we seek should output decision
vectors that are feasible w.r.t. the problem constraints. Such issue is ad-
dressed in unify by decomposing the solution policy in two component:

1 If this is not true, the observables can be redefined so as to capture all
elevant information (typically with adverse effects on scalability).
 o

3
a ML model (naturally capable of dealing with uncertainty) and a CO
problem (tasked with guaranteeing constraint satisfaction). Communi-
cation between the two components occurs via set of parameters in the
CO problem formulation, which we refer to as virtual parameters. Train-
ing can be performed by classical Reinforcement Learning techniques,
by treating the CO problem as part of the environment.

Inference and training problem statements. The process of choosing a
decision vector 𝑧(𝑘) based on the observables 𝑥(𝑘) can be viewed as the
application of a policy. This is defined as a function:

𝜋 ∶ (𝑥; 𝜃) ↦ 𝑧 ∈ 𝐶(𝑥) (1)

where 𝑥, 𝑧, and 𝐶(𝑥) are defined as in Section 2. The requirement
𝑧 ∈ 𝐶(𝑥) implies that any viable policy is expected to consistently satisfy
all the constraints defined for a single decision stage.

The term 𝜃 represents a set of training parameters that can be used to
adjust the function behavior. These should not be confused with the vir-
tual parameters in our decomposition, which will be formally discussed
later in this section. The 𝜃 parameters should be chosen to minimize
the long-term cost of the decisions, accounting for uncertainty. We can
therefore formulate the training problem as:

argmin
𝜃∈𝛩

E𝜏∼𝑃

[𝑇
∑

𝑘=1
𝛾𝑘𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘))

]

with: 𝑧(𝑘) = 𝜋(𝑥(𝑘); 𝜃)

(2)

where 𝑓 is the cost function for a single stage and 𝜏 refers to a tra-
jectory, i.e. a sequence of observables and decisions 𝜏 = {𝑥(1), 𝑧(1), 𝑥(2),
𝑧(2),… , 𝑥(𝑇), 𝑧(𝑇), 𝑥(𝑇+1)}.

The trajectory probability is given by the distribution 𝑃 , which
in practical applications will likely be approximated via a sample of
historical or simulated data. The term 𝑇 is the End Of Horizon, and 𝛾
is a discount factor, analogous to that used in Reinforcement Learning.
For an infinite horizon, 𝛾 should be strictly lower than 1, and for
decision problems over a finite horizon, 𝛾 should be equal to 1.2

Once training has been performed and an optimal parameter vector
𝜃∗ has been found, the decision-making problem can be solved by re-
peatedly observing 𝑥(𝑘), querying 𝜋(𝑥(𝑘); 𝜃∗) to obtain a decision vector
𝑧(𝑘), and deploying the decisions to move to the next step.

Decomposed policy formulation. The main challenge when solving
Eq. (2) is that of guaranteeing constraint satisfaction, which prevents
addressing the problem with classical RL methods. In unify, such
difficulty is addressed by reformulating the policy as a composition of
two terms:

𝜋(𝑥; 𝜃) ≡ 𝑔(𝑥, ℎ(𝑥; 𝜃)) (3)

2 In Eq. (2) 𝛾 is raised to the power of 𝑘 to give higher priority to the costs
f stages that are closer in time.

M. Silvestri et al.

a
M
f
O
p
p
e

a
d
m

m
c
s
c
t
s
p

v
o
b

a
t
f
t
c
b
o
p
m
p
v

I
v
a

c
p
c
t
e
b

m
o
l
t
r
p
W

4

i
s
p
o
b
a
c
f

Knowledge-Based Systems 303 (2024) 112383
where ℎ(𝑥; 𝜃) is a ML model and 𝑔(𝑥, 𝑦) denotes the solution of a
Constrained Optimization problem. Both components take as input the
observable 𝑥. The ML model is the only component in the decompo-
sition whose behavior is affected directly by the training parameters
𝜃. The output of the ML model consists of a parameter vector 𝑦 for
the CO problem formulation, representing for example travel times,
demands, costs, or penalties. Due to how training is performed in unify,
such parameters are not associated to ground truth values; instead, they
are used by the ML model to guide the CO problem towards desirable
solutions, and trained (as we will discuss) to minimize the solution cost.
For these reason, we refer to 𝑦 as virtual parameters. Formally, the 𝑔
function is defined as follows:

𝑔(𝑥, 𝑦) ≡ argmin
𝑧∈�̃�(𝑥,𝑦)

𝑓 (𝑥, 𝑦, 𝑧) (4)

where the cost and constraint functions 𝑓 (𝑥, 𝑦, 𝑧) and �̃�(𝑥, 𝑦) are
application-dependent and need to be defined when formulating the
decomposition.

Both terms can be derived from the original cost and constraint
functions from 2 i.e. 𝑓 and 𝐶, with a few modifications. First, 𝑓
nd �̃� need to depend on the virtual parameter vector 𝑦, so that the
L model can alter the optimal solution of Eq. (4). Second, the cost

unction 𝑓 does not use the next-stage observables 𝑥(𝑘+1) as input.
ne way to derive 𝑓 and �̃� consists in treating 𝑥(𝑘+1) as the virtual
arameters 𝑦, e.g. letting uncertain travel times, demands, or costs be
rovided by the ML model. A second approach involves neglecting the
ffect of the future observable 𝑥(𝑘+1), and introducing artificial costs

or penalty terms, which then take the role of the virtual parameters.
Both strategies are showcased in our experimental evaluation, while
guidelines for these steps are provided below at the end of this Section.

The set �̃�(𝑥, 𝑦) should imply the feasibility of the decision vector
according to the original constraints. This is necessary for the policy to
satisfy Eq. (1) and can be formalized as:

𝑧 ∈ �̃�(𝑥, 𝑦) ⇒ 𝑧 ∈ 𝐶(𝑥) (5)

In practice, the property can be enforced either (1) by retaining the
same constraints as the original problem, i.e. �̃�(𝑥, 𝑦) ≡ 𝐶(𝑥), or 2 by
incorporating the virtual parameters in a conservative fashion (e.g. tem-
poral buffers over deadline constraints, or reduction factors over capac-
ity constraints).

Reformulated training problem. With the decomposed policy reformula-
tion, the training problem becomes:

argmin
𝜃∈𝛩

E𝜏∼𝑃

[𝑇
∑

𝑘=1
𝛾𝑘𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘))

]

with: 𝑧(𝑘) = 𝑔(𝑥(𝑘), 𝑦(𝑘)) and: 𝑦(𝑘) = ℎ(𝑥(𝑘); 𝜃)

(6)

Eq. (6) is considerably easier to solve than Eq. (2), since the sources
of complexity in the original problem are handled them via distinct,
more appropriate techniques: the CO problem (which can be solved
via Mathematical Programming or similar techniques) is in charge of
ensuring feasibility and exploring a complex decision space; the ML
model handles uncertainty and long-term feasibility; both components
contribute to cost optimization.

The main challenge when solving Eq. (6) is the fact that 𝑔(𝑥(𝑘), 𝑦(𝑘))
is defined through an argmin operator. In many practical cases, such
as Linear Programs or Combinatorial Problems, the decision vector
may change in discrete steps in response to arbitrarily small changes
in the virtual parameter vector, thus making 𝑔(𝑥(𝑘), 𝑦(𝑘)) piecewise
constant and non-differentiable. Thankfully, optimizing over functions
with these properties is a much better-understood topic, thanks to
recent developments in Decision Focused Learning, and decades of
research in both Black Box Optimization and Reinforcement Learning.
See the surveys by [7,18], and [19] for additional references.

In fact, Eq. (6) can be mapped to a traditional RL problem by

a simple change in perspective. At training time, the solution of the a

4
CO problem can be seen as part of the environment and the virtual
parameter vector 𝑦(𝑘) is viewed as the RL agent ‘‘action’’ for the 𝑘th
stage. Conversely, at inference time the ML model and the CO problem
re components of a single policy (as already discussed). The two
ifferent viewpoints are depicted in Fig. 1. As a major benefit, this
apping enables one to use any Reinforcement Learning algorithm for

policy training in unify.

Guidelines for grounding unify. Defining the virtual parameters 𝑦, the
cost function 𝑓 (𝑥, 𝑦, 𝑧), and the constraint function �̃�(𝑥, 𝑦) are the

ajor design decisions when grounding our method on a practical use
ase. Given a use case that we want to tackle with unify, the crucial
teps to follow (illustrated in Fig. 2) include: (1) defining the problem
omponents (e.g., observables, decisions, constraints); (2) determining
he virtual parameters; (3) employing ML to predict them; (4) under-
tanding how the virtual parameters modify the original optimization
roblem formulation.

Nevertheless, the primary source of unify’s flexibility lies in adopting
irtual parameters as an interface between the ML model and the
ptimization process. Choosing the most suitable ones can, however,
e challenging when grounding unify.

The main idea in unify is to extend an optimization approach, such
s the one we have just defined, by allowing an external component
o guide its behavior. Doing this requires introducing a mechanism
or enabling communication between such a component and the op-
imization solver. This is achieved in unify by adjusting the value of
ertain parameters in the optimization problem. Such parameters can
e either (1) chosen from those naturally present in the formulation
r (2) introduced ad-hoc for this purpose. In both cases, the selected
arameters remain interpretable (since they are employed in a symbolic
odel), but only in a loose sense (since they are determined by a
roblem-agnostic component): for this reason, we refer to them as
irtual parameters.

In unify, a Machine Learning model can tune the virtual parameters.
n particular, we introduce a ML model ℎ, with training parameter
ector 𝜃, whose role is to predict the optimal virtual parameters 𝑦(𝑘)

t stage 𝑘 given the current observation 𝑥(𝑘).
Our design choice is motivated by a few observations: (1) Ma-

hine Learning is naturally well-suited to deal with uncertainty; (2)
redictions made by ML models are contextual, meaning that in our
ase they can change depending on the observed 𝑥(𝑘) values; (3) once
rained, a ML model can very efficiently perform inference on unseen
xamples. Alternative options for the external component, such as
lackbox optimization, do not provide the same advantages.

Unlike in classical ML tasks such as supervised learning, the ML
odel should not be trained for maximum accuracy. In fact, on the

ne hand, the model output consists of virtual parameters, which may
ack a real-world counterpart, and therefore any ground truth value. On
he other hand, our overall goal is not to make accurate predictions but
ather to lead to optimal decisions. Therefore, our ML model should in
rinciple be trained to minimize the decision cost of the overall policy.
e will discuss how this is done in the unify framework in Section 3.

. Applicability of unify to different problem classes

The main appeal of our method lies in its versatility and ease of
mplementation, thus leading to more maintainable decision support
ystems in practical settings. In this section, we will discuss the ap-
licability of our methods to problem classes usually addressed by
ther approaches. We will present the problem statement considered
y each method, then we will describe how unify can be grounded to
chieve analogous results. We also discuss how the resulting groundings
ompare to related work in each area. For sake of simplicity, we will use
or all approaches a notation as close as possible to that of Sections 2
nd 3.

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
Fig. 1. UNIFY decomposition for the training and inference problems.
Fig. 2. When using unify, one must define the components of the decision-making problem, the virtual parameters that the ML estimates and how they alter the original problem
formulation.
.

4.1. Decision focused learning (DFL)

Many real world decision problems are addressed via ‘‘predict, then
optimize’’ approaches. These involve training a ML model to estimate
parameters of optimization problems that are unknown at solution time
(e.g. travel times, item or energy demands); then, CO methods are
employed as usual to obtain optimal decisions.

Traditionally, supervised learning methods are used to train the ML
model. However, it was recently shown [20] that such practice can lead
to suboptimal solutions, due to a misalignment between the training
and optimization objective (i.e. accuracy and decision cost). Such issue
can be addressed by training the ML for minimal decision cost, which
typically leads to lower accuracy, but higher solution quality. The
approach is known as Decision Focused Learning and has attracted
considerable research interest in recent years; the field is well surveyed
in [7].

DFL problem statement and a related unify grounding. The decision-
focused training problem in typical DFL methods can be stated as:

argmin
𝜃∈𝛩

E(𝑥,𝑦∗)∼𝑃
[

𝑓 (𝑥, 𝑦∗, 𝑧∗)
]

(7)

with: 𝑧∗ = argmin
𝑧

{𝑓 (𝑥, 𝑦, 𝑧) ∣ 𝑧 ∈ 𝐶} (8)

and: 𝑦 = ℎ(𝑥; 𝜃) (9)

where 𝑥 is the contextual information available to make estimates,
𝑦 is the ML model estimate of the unknown optimization problem
parameters, 𝑧∗ is the optimal solution of the problem instantiated by
the predictions 𝑦, 𝑦∗ are the ground truth problem parameters, and it is
assumed that the feasible region 𝐶 is fixed. While the original approach
from [20] was restricted to quadratic programming, subsequent works
have tackled linear and combinatorial problems, either in an exact
fashion by assuming linear costs and a fixed feasible space [21,22], or
in an approximate fashion via continuous relaxations [23]. Both inner
and outer relaxations have been employed also to enhance scalability
5
Table 2
Grounding unify to address Decision Focused Learning problems, as in Eqs. (7) and (9)

Element Decision Focused Learning

Number of stages 𝑇 𝑇 = 1, since there is a single stage
Observables 𝑥(𝑘) 𝑥(1) ≡ (𝑥, ⊥), 𝑥(2) ≡ (⊥, 𝑦∗)
Virtual parameters 𝑦(𝑘) 𝑦(1) ≡ 𝑦, the estimated parameters
Decisions 𝑧(𝑘) 𝑧(1) ≡ 𝑧, the decision vector
Actual cost 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)) 𝑓 (𝑥, 𝑦∗ , 𝑧∗)
CO constraints �̃�(𝑥(𝑘) , 𝑦(𝑘)) 𝐶, since the feasible set is fixed
CO cost 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧(𝑘)) 𝑓 (𝑥, 𝑦, 𝑧)
ML model ℎ(𝑥(𝑘); 𝜃) ℎ(𝑥; 𝜃)
Distribution 𝑃 𝑃 , approximated via the training data

of the training process [24,25], which is a key challenge in DFL since
it requires to solve a large number of optimization problem.

Our framework can be considered a generalization of the DFL
setting; in particular, equivalent result can be obtained by using the
predicted parameters 𝑦 in Eqs. (7)–(9) as the virtual parameters. The
full list of grounding choices is formally presented in Table 2. Most
notably, the ground truth parameters in DFL incorporated in the ob-
servable vector in unify: the initial observation vector is 𝑥(1) = (𝑥, ⊥)
and the second stage observable vector is 𝑥(2) = (⊥, 𝑦∗); the ⊥ notation
is used to denote values that are unused in the respective stage.

Comparison of DFL methods and unify. Analogously to DFL, this ground-
ing of unify enables training for minimal decision costs; benefits and
limitations are also the same, i.e. better solution quality compared to
‘‘predict, then optimize‘‘, but higher training time. As high accuracy is
not a primary focus, both methods enable using simpler ML models that
are faster to evaluate and easier to verify using formal methods.

While unify employs RL as a general training solution, DFL methods
tend to focus on specific types of optimization problems and use
dedicated techniques. For example, surrogate losses such as the one
from [26] have shown excellent performance, but are applicable only
to linear cost functions.

M. Silvestri et al.

i
l
a
s
a
d
c
f
i
p
e
o
e

4

a
s
o
s
d

C
p
f

a

Knowledge-Based Systems 303 (2024) 112383
Table 3
Grounding unify to address Constrained RL problems, as in Eqs. (13) and (15).

Element Constrained RL

Number or stages 𝑇 𝑇 , unchanged
Observables 𝑥(𝑘) 𝑥(𝑘), unchanged
Virtual parameters 𝑦(𝑘) 𝑦(𝑘), unchanged
Decisions 𝑧(𝑘) 𝑧(𝑘), unchanged
Actual cost 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)) 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)), unchanged
CO constraints �̃�(𝑥(𝑘) , 𝑦(𝑘)) 𝐶(𝑥)
CO cost 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧(𝑘)) ‖𝑧 − 𝑦(𝑘)‖22
ML model ℎ(𝑥(𝑘); 𝜃) ℎ(𝑥(𝑘); 𝜃), unchanged
Distribution 𝑃 𝑃 , approximated via the training data or simulation

Overall, our approach is considerably more versatile than exist-
ng DFL techniques, naturally having the ability to deal with non-
inear cost functions, unknown parameters in the problem constraints,
nd multiple-decision stages. DFL methods are classically restricted to
ingle-decision stages and convex or linear cost functions. Recently,

few DFL approaches that can address two-decision stages (main
ecisions, plus a recourse action) have emerged [27,28]; such methods
an also deal with parameters in the constraints and non-linear cost
unctions, in the case of [27] just for packing problems, while [28]
s capable to addressing Mixed-Integer Linear Programs. Unknown
arameters in constraints for Integer Linear Problems are also consid-
red in [29]. However, the proposed method focuses on imitating the
ptimal solution instead of minimizing the downstream tasks loss. No
xisting DFL method can deal with more than two decision stages.

.2. Constrained RL

Constrained RL addresses the task of training a policy to maximize
reward function while adhering to a set of constraints. These con-

traints may involve safety considerations, natural laws, or limitations
n resource availability. Such a setup is common in various real-world
cenarios, e.g. self-driving cars, drone operation, battery-powered in-
ustrial robots.

onstrained RL problem statement and a related unify grounding. The
roblem of training a constrained RL policy can be formulated as
ollow:

rgmin
𝜃∈𝛩

E𝜏∼𝑃

[𝑇
∑

𝑘=1
𝛾𝑘𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘))

]

(10)

with: 𝑧(𝑘) = 𝜋(𝑥(𝑘); 𝜃) (11)

s.t.: 𝑧(𝑘) ∈ 𝐶(𝑥(𝑘)) (12)

where 𝜏 is a trajectory sampled from a probability distribution 𝑃 , 𝑓 is
the reward function, 𝜋 is the RL agent, 𝑧(𝑘) and 𝑥(𝑘) are respectively
the action and observation at timestep 𝑘, and 𝐶(𝑥(𝑘)) is the set of
constraints.

A strategy that some RL methods use to enforce constraints consists
in projecting the decision vector from a baseline policy in feasible
space; the technique is often presented a as a ‘‘safety layer’’ on top of
a neural network policy [8], and uses the Euclidean distance to guide
the projection. This approach can be replicated in unify by grounding
the method as follows:

argmin
𝜃∈𝛩

E𝜏∼𝑃

[𝑇
∑

𝑘=1
𝛾𝑘𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘))

]

(13)

with: 𝑧(𝑘) = argmin
𝑧

{‖𝑧 − 𝑦(𝑘)‖22 ∣ 𝑧
′ ∈ 𝐶(𝑥)} (14)

and: 𝑦(𝑘) = ℎ(𝑥(𝑘); 𝜃) (15)

The full set of grounding choices is reported in Table 3. Most notably,
the virtual parameter vector 𝑦(𝑘) and the decision vector 𝑧(𝑘) are in the
same space, since in constrained RL the ML agent is still in charge of
producing actual decisions.
6
Comparison of constrained RL methods and unify. unify retains all the
key properties of Constrained RL: (1) decisions are feasible by con-
struction w.r.t. constraints defined for single stages; (2) fast inference,
since the training cost is payed only once; (3) there is no need for
the agent to have access to detailed problem knowledge. In fact, the
presented constrained RL problem is similar to our training formulation
from Eq. (6).

As a key difference, the ML model is expected to directly output
a vector in the decision space, which makes it more difficult for RL
method to deal with combinatorial problems; for example, routing
problem need to be decomposed in RL by addressing a single transition
decision at a time. unify has no such limitation, as it can rely on the CO
problem to effectively explore combinatorial space (e.g. the routing or
transplant management problems mentioned in Section 2). Moreover,
by choosing a design with a limited number of virtual parameters,
our method can further simplify the RL training process; in the EMS
use case from our experimentation in Section 5, for example, we use
a single virtual parameter even if the decision space has a higher
dimensionality (multiple power flows). Finally, our method naturally
accounts for the decisions costs when computing 𝑧(𝑘), rather than using
a Euclidean distance as a proxy for the cost of restoring feasibility.

Safety layers are not the only viable for constrained RL. Another
strategy, investigated by [30], enforces constraints by projecting the
policy weights, as in the projected gradient method [31]; this approach
improves numerical stability, but incurs a much higher computational
cost, due to the large number of parameters typically present in ML
models. Most techniques designed for RL can potentially be employed
for unify, either directly or with some adaptation. In our experiments we
limit ourselves to the Advantage Actor-Critic (A2C) algorithm, leaving
this area open for investigation.

4.3. Integrated offline/online optimization

Many real-world problems consist of two distinct phases. During
an offline phase, long-term ‘‘strategic’’ decisions are obtained via ex-
pensive but accurate approaches. Conversely, during a subsequent on-
line phase, ‘‘operational’’ decisions are scheduled within strict time
constraints and usually over multiple steps, requiring computational-
efficient but often approximated methods. For example, in vehicle
routing problems, we might plan the route in advance and then adjust
it when new customers appear. While for many years these two phases
have been addressed separately, recently there has been an increasing
interest in a tighter integration [32].

Offline/online optimization problem statement and unify grounding. Exam-
ples include the approach from [16] for the Kidney Exchange Problem,
and the more general method from [5], applied to the EMS problem
considered in our experimentation. In [5] some of the authors of this
papers describe how to control the behavior of an online CO problem by
adjusting some of the parameters of its formulation in a offline phase.
The approach requires the online problem to be convex, and works by
using the Karush–Kuhn–Tucker conditions to encode its behavior as a
set of constraints. Scenario-based stochastic optimization is then used
in the offline phase to obtain parameter values that are guaranteed
optimal, within the limit of the sampling noise. The overall approach is
referred to as tuning and its behavior is schematically depicted in Fig. 3.

Formally, approaches in this class target problems in the form:

argmin
𝑦∈𝑌

E𝜏∼𝑃

[𝑇
∑

𝑘=1
𝛾𝑘𝑓 (𝑥(𝑘), 𝑥(𝑘+1), 𝑧(𝑘))

]

(16)

with: 𝑧(𝑘) = argmin
𝑧

{𝑓 (𝑥(𝑘), 𝑦, 𝑧) ∣ 𝑧 ∈ �̃�(𝑥, 𝑦)} (17)

where 𝑇 is the number of steps in the online phase, 𝑓 is the actual cost
of the decisions made at each step; the 𝑓 and �̃� terms correspond to
a modified cost and constraint function that depend on the parameters
being tuned; such parameters can be virtual in nature like in the unify

case.

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
Fig. 3. Schematic view of the tuning algorithm. Given the forecasted load demands and RES production, and the model of the myopic solver, the offline model is built by sampling
many scenarios and adding the virtual cost (𝑦 in the picture) to the myopic solver. The model is then augmented with the KKT conditions and its solution, i.e. the optimal 𝑦 w.r.t.
the sampled scenarios, is then employed in the online algorithm.
Table 4
Grounding unify to address Offline/Online Optimization problems, as in Eqs. (16) and
(17).

Element Offline/Online Optimization

Number of stages 𝑇 𝑇 , unchanged
Observables 𝑥(𝑘) 𝑥(𝑘), unchanged
Virtual parameters 𝑦(𝑘) 𝑦, there is a single virtual parameter vector
Decisions 𝑧(𝑘) 𝑧(𝑘), unchanged
Actual cost 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)) 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)), unchanged
CO constraints �̃�(𝑥(𝑘) , 𝑦(𝑘)) �̃�(𝑥, 𝑦), unchanged
CO cost 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧(𝑘)) 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧), unchanged
ML model ℎ(𝑥(𝑘); 𝜃) none, 𝑦 can be trained directly
Distribution 𝑃 𝑃 , approximated via the training data or simulation

Our method represents a strict generalization of this offline-online
setup, and the problem from Eqs. (16) and (17) can be addressed
by grounding the approach as in Table 4. Most notably, the virtual
parameter vector lacks a stage index, i.e. 𝑦(𝑘) = 𝑦, since it is computed
once and for all in the offline phase. Moreover, the ML model is absent
or, in other words, the trainable parameters 𝜃 are the same as the
virtual parameters 𝑦.

Comparison of offline/online optimization and unify. When configured in
this fashion, our approach matches the behavior of the existing general
methods for offline/online integration, but without the requirement
that the online optimization problem is convex. Due to its reliance
on a ML model, our method can however take advantage contextual
information, such as weather or traffic forecasts. The analogy with
offline/online optimization also suggest an alternative configuration for
unify; in particular, rather then computing the virtual parameters 𝑦(𝑘)

at every step (as we do in the formalization from Section 3), on finite-
horizon problem it is possible to compute them all at once. For example,
based on weather forecasts, one may compute virtual parameters for
a full day of operation of an Energy Management System. In such a
scenario, the actual power flows would still be computed in an online
fashion, thus maintaining the ability to satisfy the balance constraints;
strategic guidance, however, would be more stable, thanks to the
pre-computed virtual parameters. We investigate this approach in our
experimentation, in the context of the EMS use case.

4.4. Stochastic optimization

The field of Stochastic Optimization [10] focuses on enhancing
robustness in decision-making problems Two-stage stochastic problems
have received particular attention in the field. These involve making a
set of first-stage decisions before uncertainty is revealed (e.g. assign-
ing customers to routes); once the uncertain elements are observed,
however, one can rely on second-stage decisions (often referred to as
recourse actions) to recover feasibility or to improve the cost.

Two-stage stochastic problem statement and unify grounding. Two-stage
stochastic optimization problems can be formulated as:

argmin
{

𝑓0(𝑥, 𝑧′) + E𝑥+∼𝑃
[

𝑓 (𝑥, 𝑥+, 𝑧′)
]

∣ 𝑧′ ∈ 𝐶 ′(𝑥)
}

(18)

𝑧′

7
with: 𝑓 (𝑥, 𝑥+, 𝑧′) = argmin
𝑧′′

{𝐹 (𝑥, 𝑥+, 𝑧′, 𝑧′′) ∣ 𝑧′′ ∈ 𝐶 ′′(𝑥, 𝑥+, 𝑧′)} (19)

where 𝑥 refers to observable quantities such as know problem param-
eters (e.g. truck capacities) and correlates for the uncertain elements
𝑥+ (e.g. the time of the day as a correlate for road traffic). The
first- and second-stage variables, referred to respectively as 𝑧′ and 𝑧′′,
must belong to the feasible set returned by 𝐶 ′(𝑥) and 𝐶 ′′(𝑥, 𝑥+, 𝑧′),
representing the first- and second-stage constraints. The problem cost
includes a deterministic term 𝑓0, plus a term 𝑓 that is known only once
the uncertainty is revealed, i.e. in the second stage; therefore, in the
first stage we should minimize its expectation, accounting both for the
uncertain elements and for the second-stage decisions.

The unify framework can be used to address two-stage stochastic
optimization, by using as virtual parameters 𝑦 the elements of uncer-
tainty present in the problem (e.g. demands, travel times). The training
process in unify will then adjust such parameters to achieve a low
expected costs, rather than to correctly estimate their distribution. As
a result, the 𝑦 vector can be viewed as a ‘‘virtual scenario’’, according
to which the CO problem will optimize the decisions vector.

Formally, in this setup the 𝑔(𝑥, 𝑦) function from Eq. (4) takes the
form:

argmin
𝑧′

min
𝑧′′

{𝑓0(𝑥, 𝑧′) + 𝐹 (𝑥, 𝑦, 𝑧′, 𝑧′′)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑓 (𝑥,𝑦,(𝑧′ ,𝑧′′))

∣ (𝑧′, 𝑧′′) ∈ 𝐶 ′(𝑥) × 𝐶 ′′(𝑥, 𝑦)} (20)

The modified cost function 𝑓 for the CO problem corresponds to the
cost payed under such virtual scenario. The decisions obtained by
solving Eq. (20) are then evaluated as usual in unify, according to their
actual cost under the revealed uncertainty, i.e. 𝑓0(𝑥, 𝑧′) + 𝑓 (𝑥, 𝑥+, 𝑧′).
The complete set of mapping choices is detailed in Table 5.

Comparison of two-stage stochastic optimization method and unify. Tradi-
tional techniques for stochastic optimization problems employ Monte
Carlo methods to estimate expected values and evaluate constraint
satisfaction. In particular, the Sample Average Approximation method
[33] is still a staple of the field, at least for complex real-world problem
that are not amenable to more specialized methods. The approach
tackles Eqs. (18) and (19) by sampling a set of scenarios from the
distribution 𝑃 , then replacing the expectation with a sample mean.
This results in optimization models with a single set of first-stage
decision variables, but multiple copies of second-stage variables (one
per scenario). After a solution is obtained, only the first-stage decisions
are retained, since the second-stage decisions in the SAA model are only
used for approximating the problem objective.

Scalability is a key challenge in SAA approaches, and it has been
mitigated by resorting to Benders decomposition in so-called L-shaped
methods [34,35]; as a drawback, these approaches require additional
assumptions (e.g. recourse actions computed by Linear Programs).
Multi-stage decision problems are frequently approximated as a series
of two-stage problems in what are known as online anticipatory algo-
rithms [36], then solved via L-shaped methods. Alternatively, the AM-
SAA method [37] directly exploits the connection between multi-stage
stochastic optimization and Markov Decision Processes.

M. Silvestri et al.

a

e
s
p
p
a

4

r
T
o
b
t
b
d
n
g
c

d
o
i
a
p
i
s

5

t
f
o
c
M
b
d

o
t
a
d
a

o
r

5

p
t
t

5

S
d
c

Knowledge-Based Systems 303 (2024) 112383
Table 5
Grounding unify to address Two-Stage Stochastic Optimization problems, as in Eqs. (18)
nd (19).
Element Two-Stage Stochastic Optimization

Number of stages 𝑇 𝑇 = 1, the focus is on the first-stage decisions
Observables 𝑥(𝑘) 𝑥(1) = (𝑥, ⊥), 𝑥(2) = (⊥, 𝑥+)
Virtual parameters 𝑦(𝑘) 𝑦(1), representing a ‘‘virtual scenario’’
Decisions 𝑧(𝑘) 𝑧(1) = (𝑧′ , 𝑧′′), of which only 𝑧′ is retained
Actual cost 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)) 𝑓0(𝑥, 𝑧′) + 𝑓 (𝑥, 𝑥+ , 𝑧′)
CO constraints �̃�(𝑥(𝑘) , 𝑦(𝑘)) 𝐶 ′(𝑥) × 𝐶 ′′(𝑥, 𝑦)
CO cost 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧(𝑘)) 𝑓0(𝑥, 𝑧′) + 𝑓 (𝑥, 𝑦, 𝑧′)
ML model ℎ(𝑥(𝑘); 𝜃) missing in classical stochastic optimization
Distribution 𝑃 𝑃 , approximated via the training data or simulation

Using unify for two-stage stochastic optimization still allows to
obtain robust decisions, but with much better inference-time scalability
compared to SAA approaches. This is a consequence of relying on
a single ‘‘virtual’’ scenario in the CO problem rather than sampling
multiples ones. In our method sampling stil occurs, but only when
evaluating the training cost, which enables using parallelization for
a faster computation of the expected value. Moreover, unify naturally
supports endogenous uncertainty, since at training time the first-stage
decisions are known when sampling 𝑥+ (𝑥(2)) in the grounding; mod-
ling endogenous uncertainty is typically difficult in SAA approaches,
ince the scenarios are sampled before the definition of the optimization
roblem. As a drawback, our approach may over-constrain the decision
rocess, since it can yield only solutions that can be defined based on
single scenario.

.5. General remarks

An area of research that is related to our method is that of Algo-
ithm Configuration, Parameter Tuning, and more recently Auto ML.
hese approaches seek to improve the performance of an algorithm
ver a target distribution, but they focus on adjusting the algorithm
ehavior (or the structure of a ML pipeline), rather than on changing
he parameters of optimization models. For example, the focus might
e on choosing branching heuristics, the learning rate in a gradient
escent method, or the number of layers and neurons in a feed-forward
eural network. We do not cover methods in this class in detail, but a
ood survey is provided by [9]. Some solutions methods from this area
ould be employed within unify: for example, the surrogate-based black-

box optimization method from [38] or the Reinforcement Learning
approach from [39].

A policy-based framework for stochastic optimization was also pro-
posed in [10], but with the aim of providing a unified view over
diverse solution approaches. The result is convenient tool for defining a
taxonomy or analyzing existing methods. Conversely, our unify is closer
in spirit to a single, though very versatile, solution approach that can
implemented using standard ML and CO components.

We designed the discussion in this section to clarify the versatility
of unify, despite the simplicity of its core idea. We hope our discus-
sion clarifies how the framework blurs the line between approaches that
have been investigated mostly in isolation, thus highlighting opportunities
for cross-fertilization. For example, Decision Focused Learning and
Reinforcement Learning share a few key challenges (differentiating
black-box or piecewise constant functions), suggesting that many ideas
developed for one of the two fields could be adapted to the other. Simi-
larly, drawing ties from Machine Learning to offline/online integration
and Stochastic Optimization could open the way for more scalable
approaches, while retaining the key advantages of such techniques
(e.g. convergence and feasibility guarantees).

Finally, the performance of a unify grounding can be heavily depen-
dent on the choice of the virtual parameters. On the one hand, this
is a non-trivial challenge for the method designer, since it requires an
understanding of both Machine Learning and Constrained Optimization
8
methods. On the other, by choosing a convenient 𝑦 vector one can
configure which aspects of the original problem are delegated to the ML
model and which ones to the CO problem. Making 𝑦 more similar to
a vector of decisions makes the approach closer to Reinforcement
Learning, and it might be better suited for use cases where declarative
models are hard to craft. Using just a few key parameters in 𝑦 (as we
o in our EMS example) goes in the opposite direction, and allows
ne to capitalize on explicit problem knowledge in cases where this
s available. Overall, choosing the virtual parameters can be thought of as
design handle that enables partitioning the complexity of the original
roblem into either a ML or CO module. By managing this decision,
t is possible to make sure that each module is used according to its
trengths, at the same time compensating for known limitations.

. Empirical evaluation

Our experimental evaluation is designed to demonstrate the versa-
ility of the unify approach, and how such versatility can compensate
or weaknesses in existing approaches. For this reason, we will focus
n two use cases where using unify can provide advantages. We will
onsider an Energy Management System Problem and a Weighted Set
ulti-cover Problem with stochastic coverage requirements, which can

e seen as a simplified production scheduling problem. Code and
ataset to reproduce the results are publicly available.3

Specifically, we employ our approach to: (1) replicate the behavior
f some of the offline/online integration methods discussed in Sec-
ion 4; (2) enforce constraint satisfaction in RL; (3) enable DFL in

scenario where existing methods are not applicable; (4) enhance
ecision robustness in stochastic optimization without using sampling
t inference time.

At the same time, we will use our experiments to provide examples
f how the method can be grounded by choosing virtual parameters to
efactor a decision problem into a ML and a CO component.

.1. Use cases and unify groundings

Despite representing very different application domains, both these
roblems involve decision-making under uncertainty, observable quan-
ities that can provide information about uncertainty, and a combina-
ion of explicit and implicit knowledge.

.1.1. Energy management system
The first use case we consider is the EMS. An Energy Management

ystem requires the allocation of minimum-cost power flows from
ifferent Distributed Energy Resources and an energy storage unit. We
onsider the same EMS setup as [40,41], which assumes exogenous
uncertainty stemming from uncontrollable variations in the planned
consumption load and the inclusion of Renewable Energy Sources
(RES). This problem is based on real industrial data and settings, also
used in research projects.4 [42]

Given energy prices and the accessibility of DERs, the EMS must
determine: (1) the amount of energy to generate; (2) the selection
of generators for fulfilling the energy demand; (3) if the energy in
excess should be sold in the energy market or stored. Decisions need
to be taken and implemented at fixed intervals (e.g. every 15 min),
so that power balance can be maintained to prevent grid failure. This
results in tight restrictions on the response time for any optimization
method. Additionally, power flows from/to individual generators and
the storage system are subject to capacity constraints. Provided that
power balance is maintained, the EMS goal is to minimize the cost over
one day of operation since several key pieces of information (e.g. grid
energy prices) are provided with a daily frequency.

3 https://github.com/ai-research-disi/unify
4 http://www.virtus-csea.it/

https://github.com/ai-research-disi/unify
http://www.virtus-csea.it/

M. Silvestri et al.

T
p
g
e
w
a
n
f
h
n
t
T
s

s
o
e
t
p
i
t
m

t
c
a
a
c
P

a

W
t
i
t
t
i
a

v
s

v
t
t
m

i
C

c
t

g
L
w
p

a
s
e
R
o
s
p
s

t
f
o
u
b
f
e
s
e
a
S

5

F
u
a
o
v
a
p
b
𝑥
b
t
p
(

r
a
d
r
(
m
s
g

𝑓

w
p
i
o
o
d
t

i
p

Knowledge-Based Systems 303 (2024) 112383
In this use case, it is possible to account for the explicit problem
elements by relying on declarative optimization. In particular, we can
model the cost function and the constraints via the following Linear
Program (LP), similarly to what was done by [40]. For stage 𝑘 we have:

argmin
𝑧(𝑘)

𝑚
∑

𝑖=2
𝑐(𝑘)𝑖 𝑧(𝑘)𝑖 (21)

s.t.
𝑚
∑

𝑖=1
𝑧(𝑘)𝑖 = 𝑥(𝑘)𝑙𝑜𝑎𝑑 (22)

𝑙𝑖 ≤ 𝑧(𝑘)𝑖 ≤ 𝑢𝑖 ∀𝑖 = 1..𝑚 (23)

0 ≤ 𝑥(𝑘)𝑠𝑡𝑜𝑟𝑎𝑔𝑒 − 𝜂𝑧(𝑘)1 ≤ 𝑞 (24)

𝑧(𝑘)𝑖 ∈ R ∀𝑖 = 1..𝑚 (25)

he decision variables 𝑧(𝑘)𝑖 correspond to the power flows from (for a
ositive sign) or to (for a negative sign) each power generator, the
rid, and the storage system. There is a linear cost associated with
very power flow, except for the storage system, which is associated
ith index 1. The costs change over each interval, but they are known
t planning time (since they are communicated one day ahead). The
et energy produced must match the observed demand, i.e. 𝑥(𝑘)𝑙𝑜𝑎𝑑 . All
lows must satisfy lower and upper physical bounds, i.e. 𝑙𝑖 and 𝑢𝑖. We
ave 𝑙𝑖 ≥ 0 for every unit except for the grid, for which 𝑙𝑖 is strictly
egative since selling energy is always an option. The energy level in
he storage system cannot be negative and cannot exceed its capacity 𝑞.
he charging rate 𝜂 depends on the time interval length and the storage
ystem efficiency.

The LP we have presented can provide feasibility guarantees (as-
uming the physical limits from/to the grid are large enough) and
ptimize the cost for a single stage. It can also be solved quickly
nough that latency constraints are not an issue. However, the model is
otally myopic: it lacks any mechanism to anticipate future load, energy
roduction, and costs. In particular, the model will never store energy
n preparation for price spikes, since within a single stage using energy
o satisfy demand or selling to the grid is always more efficient than
oving it to the storage system.

In the EMS case, handling control of any of the existing parameters
o the external component (e.g. 𝑙𝑖, 𝑢𝑖, 𝜂) might lead to the violation of a
ritical constraint. We can however introduce an ad-hoc parameter that
llows the external component to alter the problem solution without
ffecting short-term feasibility. In particular, we will associate a virtual
ost 𝑦(𝑘) to the storage system, leading to the following modified Linear
rogram:

rgmin
𝑧(𝑘)

𝑦(𝑘)𝑧(𝑘)1 +
𝑚
∑

𝑖=2
𝑐(𝑘)𝑖 𝑧(𝑘)𝑖 (26)

s.t. Eq. (22)–(25) (27)

here we assume without loss of generality that 𝑧(𝑘)1 refers to the flow
o/from the storage unit. Now, by giving a negative value to 𝑦(𝑘) it
s possible to provide an incentive for the optimization model to fill
he storage system, for example, to prepare for a forthcoming peak in
he grid energy price. In other words, while the optimization problem
s still largely unchanged (and very easy to solve), it can now exhibit
nticipatory behavior by adjusting the value of the virtual parameters.

In particular, we introduce a ML model ℎ, with training parameter
ector 𝜃, whose role is to predict the optimal virtual parameters 𝑦(𝑘) at
tage 𝑘 given the current observation 𝑥(𝑘), i.e. 𝑦(𝑘) = ℎ(𝑥(𝑘); 𝜃).

To practically demonstrate the advantages of introducing a set of
irtual parameters, we present preliminary results on the EMS problem
hat will be discussed in more detail later in the paper. Fig. 4 compares
he output flows from the storage w.r.t. the hour of the day for the
yopic solver and unify.

Since it is myopic, the online solver uses all the energy available
n the storage at the beginning of the day without ever refilling it.
onversely, by adjusting the virtual costs, unify exhibits anticipatory
9
apabilities, so that the storage system is used also in the later hours of
he day.

We consider two versions of this problem, with slightly different
rounding choices. In both cases, the CO problem is defined via the
inear Program in Eqs. (26)–(27), i.e. the version where a virtual cost
as associated with the storage system. The details of the grounding
rocess are listed in Table 6.

The two versions differ in terms of how the ML model is used
t execution (i.e. inference) time. In the first version, referred to as
equential, the ML model is provided with up-to-date information at
very decision step, which includes forecasts about energy demand and
ES production for the entire planning horizon, plus the charge level
f the storage system. The ML model output is the virtual cost for the
torage system at the current stage, i.e. 𝑦(𝑘). In this setup, training is
erformed via RL by viewing each solution of the CO problem, and
ubsequent cost evaluation, as an environment interaction, as per Fig. 1.

In the second version, the ML model input includes only information
hat is available one day ahead, i.e. demand and RES production
orecasts. Such approach allows to obtain all virtual parameters ahead
f the multi-stage decision process, thus following the same strategy
sed in offline/online optimization. After the virtual parameters have
een obtained, power flow decisions are taken as usual in a sequential
ashion. In this setup, training is performed again via RL, but an
nvironment interaction corresponds to the computation of the entire
equence of decisions {𝑧(𝑘)}𝑇𝑘=1. As a result, the learning task becomes
asier, but less capable of adapting to dynamic conditions. Both setups
re practically meaningful; additional technical details are provided in
ection 5.2.

.1.2. Weighted set multi-cover
As a second use case, we consider a production scheduling problem.

ormally, we assume a factory can manufacture products out of a
niverse 𝐼 . Products can be built only in specific combinations, each
ssociated with a different construction cost and represented as sets
ver 𝐼 . For our experimental evaluation, we consider a stochastic
ersion of the problem where the demands 𝑑 are uncertain and follow
Poisson distribution with rate 𝜆. Their true value is unknown at

roduction time, but we assume that some correlated information 𝑥 can
e observed, and used to make predictions. The observable information
is described in a rather abstract fashion since this is a synthetic

enchmark: additional information in this regard is provided later in
his section. Unmet demands can still be satisfied by buying additional
roducts but at a higher cost. Our goal is to meet customer demands
by either manufacturing or buying) while minimizing the total cost.

Formally, this is a two-stage stochastic optimization problem, with
ecourse actions. From the point of view of a unify grounding, there is
single decision stage; the observables include information available

ecision making, corresponding to 𝑥(1) = (𝑥, ⊥); and the information
evealed after the decisions have been made, corresponding to 𝑥(2) =
⊥, 𝑑). The grounding choices are listed in details in Table 7. Notably,
ost stage superscripts are omitted (since there is a single decision

tate) and no hard constraints are present. The actual decision cost is
iven by:

(𝑥, 𝑑, 𝑧) =
∑

𝑗∈𝐽
𝑐𝑗𝑧𝑗 +

∑

𝑖∈𝐼
𝑝𝑖 max

(

0, 𝑑𝑖 −
∑

𝑗∈𝐽
𝑎𝑖𝑗𝑧𝑗

)

(28)

here 𝐼 is the universe, and 𝐽 is the collection (the indices) of all
ossible sets. The sets are described via the 𝑎𝑖𝑗 coefficients, with 𝑎𝑖𝑗 = 1
ff the 𝑖th item is contained in the 𝑗th set. The 𝑐𝑗 coefficient is the cost
f manufacturing the 𝑗th set, while 𝑝𝑖 is the cost of buying one unit
f the 𝑖th item. The number of units to be bought equals the unmet
emand, i.e. it is the feasible assignment of the recourse actions having
he lowest cost.

According to the guidelines for selecting virtual parameters outlined
n Section 3 and to the grounding process in Section 4.4, the virtual
arameters correspond in this case to an element that is already part

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
Fig. 4. Mean and standard deviation of the storage output flow on 100 problem instances w.r.t. the hour of the day.
Table 6
EMS grounding for the main problem elements in the approach.

Element EMS Grounding

Number of stages 𝑇 𝑇 = 96, each stage corresponds to a 15-minute interval over one day
Observables 𝑥(𝑘) 𝑥(𝑘) = (𝑥(𝑘)𝑠𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑥

(𝑘)
𝑙𝑜𝑎𝑑 , 𝑥

(𝑘)
𝑟𝑒𝑠 , 𝑥𝑙𝑜𝑎𝑑𝑓 , 𝑥𝑟𝑒𝑠𝑓), corresponding to the energy level in the storage system, the RES production and load for stage 𝑘,

plus forecasts for RES production and load for all stages
Virtual parameters 𝑦(𝑘) the virtual cost for storage power flows at stage 𝑘
Decisions 𝑧(𝑘) power flow from/to each generator and the storage system at stage 𝑘
Actual cost 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)) cost (or profit, if negative) of generating, buying, or selling energy for stage 𝑘, as in
CO constraints �̃�(𝑥(𝑘) , 𝑦(𝑘)) �̃�(𝑥(𝑘) , 𝑦(𝑘)) = �̃�(𝑥(𝑘)), since the constraints are independent on the virtual parameters; constraints include the power balance of the

energy system, and upper/lower bounds for the power flows Eq. (22)-(25)
CO cost 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧(𝑘)) modified cost function, including a storage-related plan, as in Eq. (26)
ML model ℎ(𝑥(𝑘); 𝜃) ℎ(𝑥(𝑘) , 𝑥𝑙𝑜𝑎𝑑𝑓 , 𝑥𝑟𝑒𝑠𝑓 ; 𝜃) in the sequential setup; ℎ(𝑥𝑙𝑜𝑎𝑑𝑓 , 𝑥𝑟𝑒𝑠𝑓 ; 𝜃) in the all-at-once setup, since only information available one day ahead can

be used in that case
Distribution 𝑃 approximated via the training data
Table 7
WSMC grounding for the main problem elements in the approach.

Element WSMC Grounding

Number of stages 𝑇 𝑇 = 1, since there is a single stage
Observables 𝑥(𝑘) 𝑥(1) ≡ (𝑥, ⊥), 𝑥(2) ≡ (⊥, 𝑑), where 𝑥 are correlates that can be used to predict the customer demands 𝑑
Virtual parameters 𝑦(𝑘) 𝑦(1) ≡ 𝑦, virtual demand values
Decisions 𝑧(𝑘) 𝑧(1) ≡ (𝑧, 𝑠), i.e. the number of units of each product set to be manufactured, plus the number of additional products to buy to meet the

virtual demands
Actual cost 𝑓 (𝑥(𝑘) , 𝑥(𝑘+1) , 𝑧(𝑘)) 𝑓 (𝑥, 𝑑, 𝑧∗), as per Eq. (28); cost of both manufactured and bought items, with 𝑑 being the actual demands
CO constraints �̃�(𝑥(𝑘) , 𝑦(𝑘)) absent (demands can always be satisfied by buying products)
CO cost 𝑓 (𝑥(𝑘) , 𝑦(𝑘) , 𝑧(𝑘)) 𝑓 (𝑥, 𝑦, 𝑧∗), as per Eq. (28); cost of both manufactured and bought items, with 𝑦 being the virtual demands
ML model ℎ(𝑥(𝑘); 𝜃) ℎ(𝑥; 𝜃), where the input are the observable correlates
Distribution 𝑃 𝑃 , approximated via the training data
of the problem description. In particular, the 𝑦 vector corresponds to
a set of demands; unlike actual demands, however, these are virtual,
since their role is that of guiding the CO problem towards a good
solution, and not that of providing an accurate representation of the
actual demand distribution. This also means that, after training, the
virtual demands 𝑦 will not necessarily match any statistics of the true
demands 𝑑 (e.g. their expected value, or even a quantile). To offer
an initial insight, Fig. 5 presents some results that will be discussed
in greater detail later. The image depicts the ground-truth and virtual
demands with respect to the input features. It is evident that the scale
of the virtual demands differs from that of the ground-truth demands.

We use the virtual demands to formulate a WSMC problem with a
single scenario (represented by the virtual demands themselves) and
recourse actions (i.e., how much of the items should be bought, rather
than manufactured). The CO problem used in unify can be modeled via
the following Mixed Integer Linear Program:

min
∑

𝑗∈𝐽
𝑐𝑗𝑧𝑗 +

∑

𝑖∈𝐼
𝑝𝑖𝑠𝑖 (29)

∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑧𝑗 ≥ 𝑦𝑖(1 −𝑤𝑖) ∀𝑖 ∈ 𝐼 (30)

(𝑤𝑖 = 1) ⟹

(

𝑠𝑖 ≥ 𝑦𝑖 −
∑

𝑎𝑖,𝑗𝑧𝑗

)

∀𝑖 ∈ 𝐼 (31)

𝑗∈𝐽

10
Fig. 5. This figure provides an intuitive understanding of the concept of ‘‘virtual
demands’’ in the WSMC: the predicted demands (blue dots) exhibit a different scale
compared to the true ones (orange crosses).

M. Silvestri et al.

W
e
r
t
d
i
E
T
t

b
l
i
t

5

p
a
l
r
a
d
o
i
T
f
s
p
i
w
p

a
f
o
t
i
w
a

l
m
a
a
T
g
r
a
t

t
r
r
h
t

5

g
p
r
m
s

t
T
i
f
f
o
t
u
p
r
a

t
s
E
t
b
t
t
h
c
b
a
l

a
a
m
t
t
t

5

c
i
a
m
i
C

t
a

Knowledge-Based Systems 303 (2024) 112383
𝑧𝑗 ≥ 0, 𝑧𝑗 ∈ Z ∀𝑗 ∈ 𝐽 (32)

𝑤𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼 (33)

𝑠𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (34)

hile the vector of decision variables 𝑧 specifies how many units of
ach set should be manufactured , the additional vector of variables 𝑠
epresents how many units should be bought. As we mentioned, 𝑦𝑖 is
he virtual demand for the 𝑖th item. Eq. (30) specifies that all virtual
emands should be met unless the ‘‘flag variable’’ 𝑤𝑖 for the respective
tem is raised, i.e. 𝑤𝑖 = 1. In this case, the indicator constraint in
q. (31) forces the 𝑠𝑖 variable to be larger than the unmet demand.
he objective combines the cost of manufacturing each set (built using
he 𝑐𝑗 coefficients) with that of buying items (with the 𝑝𝑖 coefficients).

The cost function of the CO problem is obtained from Eq. (28)
y simply swapping the actual demands 𝑑 for the virtual ones 𝑦;
inearizing the max operators that appear in the equations required the
ntroduction of constraints in the MILP, which should be considered for
his reason just part of the problem cost representation.

.2. Technical details on dataset generation

To generate EMS problem instances, we used the same dataset and
rice values of [6]. From this dataset, we extract electric load demand
nd photovoltaic production forecasts, as well as upper and lower
imits for generating units, and the initial status of storage units. The
ealizations of uncertain variables are derived from the forecasts by
dding noise from a normal distribution, as previously outlined. The
ataset contains individual profiles of load demand with a time step
f 5 min resolution from 00:00 to 23:00. We aggregate these profiles
nto 15-minute timestamps and utilize them as forecasted load data.
he photovoltaic production data is derived from the same dataset,
eaturing profiles for various sizes of photovoltaic units but consistent
olar irradiance (i.e., identical shape but varying amplitude due to the
anel sizes used). Similarly, photovoltaic production serves as a forecast
n this scenario as well. As in [6], when evaluating the methods,
e randomly selected 100 pairs of load demand and photovoltaic
roduction forecasts.

We generate synthetic WSMC data following a set of guidelines that
llow us to obtain realistic instances. For the availability matrix, we
ollow the procedure described in [43]: every column covers at least
ne row and every row is covered by at least two columns. Additionally,
he availability matrix has a density of 2%, indicating the number of 1
n the matrix. The set costs are randomly generated in the range [1, 100]
ith a uniform probability distribution. The penalties 𝑝 are computed
s follows: 𝑝𝑖 = max 𝑗∈𝐽

𝑎𝑖,𝑗=1
𝑐𝑗 ⋅ 10

The equation shows that the penalty for the 𝑖th product is calcu-
ated as the maximum set cost among those covering the 𝑖th element,
ultiplied by 10. This basically ensures that covering an element is

lways more convenient than receiving a penalty. When using the SAA
lgorithm of Eqs. (35)–(41), penalties are the same for all the scenarios.
he observable variables vectors 𝑥 and the coefficients 𝑎 are randomly
enerated with a uniform probability distribution respectively in the
ange [1, 5] and [1, 10]. We generate 1000 instances, each with 1000 sets
nd 200 elements, and we uniformly split them between training and
est sets.

For our experimentation, the demands are generated according
o a Poisson distribution, and we assume the existence of a linear
elationship between an observable variable 𝑥 ∈ R and the Poisson
ates 𝜆 for each product, i.e. 𝜆𝑗 = 𝑎𝑗𝑥 ∀𝑗 ∈ 𝑁 . In this case, the
istorical data is represented by a dataset {𝑥𝑖, 𝑦𝑖}𝑖=1,…,𝑚, where 𝑦 are
he demands and 𝑚 is the dataset size.
11
.3. Offline/online integration using unify

In this section, we demonstrate that unify can replicate the of-
fline/online integration approach based on the idea of tuning virtual
parameters, which we discussed in Section 4. Experiments are run on
the EMS use case, where we employ a myopic CO solver and introduce
an anticipatory behavior by means of a virtual cost associated with the
storage unit. Intuitively, by associating a negative cost to storage we
can provide an incentive for the CO problem to accumulate energy, in
preparation for forthcoming spikes in the grid energy price.

We consider both the sequential and the all-at-once versions of the
problem described in Section 5.1. As a reminder, in the sequential
formulation, values for the virtual storage cost are generated based on
all available information, including the actual load and RES generation
observed at the beginning of each decision step. In the all-at-once
version, a full schedule for the virtual costs (i.e. a value for {𝑦𝑘}𝑇𝑘=1) is
enerated before the actual decision process starts, i.e. in an ‘‘offline’’
hase. This approach is similar to what is typically done by an Algo-
ithm Configuration method, except that the focus here is on tuning
odel parameters rather than algorithm parameters. Each decision

tage is 15 min long, and the process runs for one full day (i.e. 𝑇 = 96).
We use unify to solve both versions of the problem and refer to

he two approaches respectively as unify-all-at-once and unify-sequential.
he two methods are equivalent to those we proposed in [6], which

ndeed can be considered an application-specific grounding of the unify
ramework. As a baseline, we use the state-of-the-art tuning approach
rom [5], which solves the all-at-once version of the problem by relying
n a Mathematical Program. Notably, this approach provably converges
o the best possible non-clairvoyant solution, as the number of samples
sed to approximate uncertainty grows. However, scalability issues
revent its usage with a large number of samples. The method also
equires the online decision problem to be convex, thus limiting its
pplicability.

We also compare the performance to that of a clairvoyant solu-
ion (referred to as oracle), to provide an optimistic reference for the
olution quality. This approach is obtained by simply instantiating
qs. (26)–(27) for all decision stages, replacing all parameters with
heir actual historical values. Similarly to [6], we compare the methods
y ensuring that they have access to the same computation time. Given
hat the execution time of tuning is constant, we select this value as
he time limit for training the other methods and plot its results as a
orizontal line. In Fig. 6, we show the ratio to true optimal w.r.t. the
omputation time. As also noted in [6], we cannot have clear benefits
y leveraging the sequential nature of the problem, possibly due to
suboptimal training solution, so that unify-sequential yields slightly

ower-quality solutions compared to unify-all-at-once.
Both the unify approaches performed remarkably well, with unify-

ll-at-once beating the state-of-the-art tuning method. Intuitively, the
dditional scalability provided by our framework enables collecting a
uch higher variety of samples, which was enough to compensate for

he use of a suboptimal approach (Reinforcement Learning) to tackle
he training problem. Additionally, unify does not require convexity for
he online problem, making it more broadly applicable.

.4. Constraints in RL

In Section 4 we showed how unify can be used to deal with hard
onstraints and combinatorial decision spaces in Reinforcement Learn-
ng. Similarly to safety-layer approaches, unify handles constraints by
pplying a Constrained Optimization step on top of the output of a ML
odel. Unlike safety layer approaches, however, the ML model is not

n charge of producing a decision vector, but rather of ‘‘piloting’’ the
O solver by adjusting the values of virtual parameters.

For this experiment, we rely again on the EMS benchmark. In
his case, any feasible solution policy must satisfy hard constraints
t each decision stage, i.e. the flow bounds and the power balance

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
Fig. 6. Ratio to true optimal of tuning (the state-of-the-art approach) and the unify
methods w.r.t. the computational time.

Fig. 7. This figure shows how demanding constraints satisfaction to the downstream
solver is able to improve over a full end-to-end RL method and safety-layer.

restrictions. We compare the unify-sequential from Section 5.3 with two
approaches from the literature, plus the clairvoyant oracle that serves
as an optimistic reference. In particular, we train a full end-to-end deep
RL algorithm to generate a solution, focusing on learning constraints
satisfaction solely from the reward signal (i.e. through reward shaping);
we denote this approach as rl. Designing the reward function is a
non-trivial task, as it should provide a balance between exploring
the feasible space and finding good solutions. Projection-based deep
RL algorithms (e.g., Safety Layer) provide an alternative to complete
end-to-end methods when handling constraints: we have conducted
experiments using a Safety Layer implementation [8] for the EMS and
which we will denote as safety-layer.

As discussed in Section 4, both unify-sequential and safety-layer can
be considered instances of our unify framework but they have a crucial
distinction: in safety-layer, during the projection step, it is possible to fix
infeasible decisions. However, this is done in a cost-agnostic manner,
and the RL agent must still produce a vector in the same space as the
problem decisions. Conversely, in unify-sequential the CO problem is
capable of handling, at least partially, much of the problem elements,
including the cost and constraints for a single stage. The ML model
needs to guide such a problem-specific solver by means of the virtual
storage costs, which can be a much simpler task for well chosen virtual
parameters.
12
Table 8
Average optimality gap, single epoch duration and inference time to solve a problem
instance on the EMS benchmark. unify-single-step provides the best results and it out-
performs the SOTA tuning method. Conversely, while learning to satisfy the constraints
rl-safety-layer and rl provide suboptimal solutions. In terms of epoch runtime, rl is
the fastest method since it does not involve solving any optimization problem. The
methods that rely on the sequential formulation of the problem (rl-safety-layer and
rl-sequential tend to be slower since we use a larger batch size for them, as we explain
in the technical details section.

Method Opt. gap Epoch time (s) Inf. time (s)

unify-single-step 𝟎.𝟎𝟎𝟐 ± 𝟎.𝟎𝟎𝟐 9.86 ± 5.09 0.171 ± 0.055
unify-sequential 0.004 ± 0.003 19.28 ± 1.57 0.224 ± 0.050
tuning 0.003 ± 0.002 – –
rl-safety-layer 0.118 ± 0.063 19.16 ± 15.59 0.291 ± 0.078
rl 0.117 ± 0.071 𝟕.𝟎𝟓 ± 𝟏.𝟑𝟏 𝟎.𝟏𝟓𝟗 ± 𝟎.𝟎𝟑𝟗

Fig. 8. The Poisson rates MAPE of the ML model employed in the predict-then-optimize
approach for each of WSMC item (i.e. product).

In the upper and lower parts of Fig. 7, we respectively show the
ratio to true optimal of all the approaches and the frequency of failed
episodes of rl caused by constraints violations. In the first stages of
training, rl fails to complete a full episode. It then start learning
to satisfy the constraints but, in contrast, the cost of the solutions
increases. safety-layer converges rapidly, but the final solution cost is
very similar to the one produced by rl. Also unify-sequential rapidly
converges, by also improving the previous methods by a significant margin.

As shown in Table 8, all the methods are comparable in terms of
runtime during inference. However, rl is the fastest method since it
does require to solve an optimization problem but simply to evaluate
the cost function.

These experiments show that Reinforcement Learning can benefit from
a policy decomposition that properly balances optimization and learning.

5.5. Generalization of DFL

In this set of experiments, we investigate whether unify can be
used as a DFL method compared with a predict-then-optimize method.
We performed our analysis on the WSMC previously described. In
this unify formulation, the RL policy ℎ is a probabilistic model, i.e. a
gaussian distribution: during the estimated demands are sampled from
this distribution whereas at inference we take the mean. The estimated
demands are then inserted into the optimization model, and the policy
𝜋𝜃 is trained for the minimization of the solution cost. Differently
from the unify implementation, applying traditional DFL approaches
is challenging due to the non-linear and non-differentiable nature of
the cost function. In the predict-then-optimize approach, we train a
probabilistic model to maximize the likelihood of the observed de-
mands. We assume that this model has access to the true shape of the
underlying distribution, i.e. the Poisson distribution, although the rate
remains unknown. We have deliberately chosen this setup to further
demonstrate the effectiveness of our unify solution. During the inference
step of the evaluation, we used the estimated Poisson rate as prediction.

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
Fig. 9. This figure shows the mean cost and standard deviation for both the unify and
the Predict-then-optimize methods w.r.t. the optimal values.

Fig. 10. Results on the WSMC problem. Upper figure: average ratio to true optimal
(low is better) w.r.t. the number of sampled scenarios for unify, stochastic algorithm and
predict-then-optimize (PTO). unify is plotted as an horizontal line it requires to sample
a single virtual scenario. Lower figure: average normalized runtime (w.r.t. unify) for
stochastic algorithm and PTO. When increasing the number of scenarios the runtime
exponentially increases, limiting the applicability of the methods.

To train and test the methods, we utilized two distinct sets of
instances. As evident from Fig. 8, the Mean Absolute Percentage Error
(MAPE) is low for each rate 𝜆𝑖 ∀𝑖 ∈ 𝐼 , indicating the ML model is
accurate. However, despite this accuracy, as illustrated in Fig. 9, the
i.e. the solution cost, that is the true task loss, remains far from optimal.
In contrast, the unify implementation which is trained to directly min-
imize the task loss significantly outperforms the predict-then-optimize
method and it is notably closer to the optimal cost. Therefore, we
can conclude that unify provides a valid alternative to traditional DFL
approaches, in cases where they cannot be easily applied.

5.6. Stochastic optimization

Solving stochastic optimization problems can be incredibly chal-
lenging. As discussed in Section 4, while SAA methods are commonly
13
Fig. 11. Ratio to true optimal on the WSMC problem and the solution time w.r.t. the
number of scenarios. The blue dashed line highlights the number of scenarios required
by predict-then-optimize to beat unify.

used in this domain, they can be computationally demanding. In this
section, we demonstrate how unify can enhance the robustness of the
downstream solver by conducting a series of experiments on the WSMC
(see Fig. 10).

As a baseline approach to ensure robustness, we employ the SAA
algorithm based on Monte Carlo sampling that relies on the following
optimization model:

min
∑

𝑗∈𝐽
𝑐𝑗𝑧𝑗 +

1
|𝛺|

∑

𝜔∈𝛺

∑

𝑖∈𝐼
𝑝𝑖𝑠𝑖,𝜔 (35)

∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑧𝑗 ≥ 𝑦𝑖,𝜔(1 −𝑤𝑖,𝜔) (36)

∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺

𝑤𝑖,𝜔 = 1 ⟹ 𝑠𝑖,𝜔 ≥ 𝑦𝑖,𝜔 −
∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑥𝑗 (37)

∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺

𝑧𝑗 ≥ 0 (38)

𝑤𝑖,𝜔 ∈ [0, 1] (39)

𝑠𝑖,𝜔 ≥ 0 (40)

𝑧,𝑤 ∈ Z (41)

where 𝜔 ∈ 𝛺 are the sampled scenarios. If we increase 𝛺 we also
increase robustness but, at the same time, we drastically increase the
computational complexity and thus reduce scalability.

In detail, we compare three methods:

• Stochastic Optimization: Scenarios are sampled directly from
the training set. This method lacks contextual information and
does not provide instance-dependent scenarios.

• Predict-then-optimize: This method provides instance-specific
samples by querying an ML model to obtain the rate of the Poisson
distribution, and then sampling from it. This approach has an
advantage over simple stochastic optimization as it utilizes the
ML model, but its robustness improves with an increase in the
number of sampled scenarios.

• unify Implementation: unify is trained to minimize the expected
cost (accounting for the recourse actions) and is inherently more
robust. The actual reason is that the ‘‘single scenario’’ used in unify
is optimized to lead to the best expected behavior (in our terms,
it is a virtual scenario, and not any real scenario).

As we mentioned in the previous section, it is worth highlighting
that the comparison favors the predict-then-optimize method since

M. Silvestri et al.

{

t
t
r

r
r

t

Knowledge-Based Systems 303 (2024) 112383
Table 9
Detailed comparison of unify, stochastic algorithm and predict-then-optimize on the
WSMC. As one would expected, methods that rely on sampling provide better optimality
ratio with the increasing of the number of scenarios, at the price of a higher runtime.
Due to computational limits, we managed to experiment with at most 100 scenarios.
Predict-then-optimize (PTO) requires at least 50 scenarios to provide a better optimality
ratio than unify, at the cost of two orders of magnitude higher runtime. Conversely,
even 100 scenarios are not enough for allowing the stochastic algorithm to improve
over unify.

Method Optimality ratio Runtime w.r.t. unify

unify 1.97 ± 0.08 –
Stochastic algo. (10 scenarios) 5.82 ± 2.03 25.12 ± 8.29
Stochastic algo. (20 scenarios) 3.66 ± 0.85 56.13 ± 27.55
Stochastic algo. (30 scenarios) 3.18 ± 0.23 102.90 ± 47.62
Stochastic algo. (50 scenarios) 2.79 ± 0.04 238.06 ± 80.61
Stochastic algo. (75 scenarios) 2.60 ± 0.05 471.08 ± 75.78
Stochastic algo. (100 scenarios) 2.48 ± 0.11 861.78 ± 334.81
PTO (10 scenarios) 3.62 ± 0.12 31.14 ± 9.83
PTO (20 scenarios) 2.41 ± 0.08 62.25 ± 22.96
PTO (30 scenarios) 2.09 ± 0.07 98.99 ± 37.71
PTO (50 scenarios) 1.89 ± 0.10 268.44 ± 54.90
PTO (75 scenarios) 1.81 ± 0.08 590.85 ± 165.96
PTO (100 scenarios) 𝟏.𝟕𝟕 ± 𝟎.𝟎𝟖 1053.32 ± 324.26

it is designed by assuming exact knowledge of the type of proba-
bility distribution whereas the unify implementation makes no such
assumption.

Results are shown in Fig. 11. In the upper part of the figure, we
present the ratio to true optimal of the three methods on a distinct
set of instances w.r.t. the number of sampled scenarios. Both the sim-
ple stochastic algorithm and predict-then-optimize approaches benefit
from increasing the number of sampled scenarios. On the contrary,
the implementation of unify is independent of the number of sampled
scenarios, as it directly predicts the demand values inserted into the
optimization model (i.e. the virtual scenario). Despite the previously
mentioned advantage, the predict-then-optimize approach outperforms
unify only when utilizing at least ∼ 50 scenarios in the downstream
stochastic optimization model. In the lower section of the figure, we
illustrate the runtime required by the predict-then-optimize method as
a multiple of the runtime of unify, w.r.t. to the number of scenarios.
To achieve better results, we can clearly see that the predict-then-
optimize approach needs more than 200 times the computation of
unify. Therefore, it can be concluded that a smart implementation of
unify represents a cost-effective alternative to employing SAA methods for
enhancing the robustness of the solver when tackling stochastic optimization
problems (see Table 9).

5.7. Experimental settings

Below we introduce some technical details about the experimental
settings of Reinforcement Learning environments and hyperparameter
settings.

5.7.1. Reinforcement learning environments
In the EMS use case we used the same environment variants as

those proposed in [6]. For unify-all-at-once, the observations are the
day-ahead photovoltaic generation and electric demand forecasting and
the actions are the set of virtual costs 𝑦(𝑘) for all the stages 𝑘 ∈ {1,… , 𝑛}
and thus the policy is a function 𝜋 ∶ R𝑛×2 ←←→ R𝑛. Once the whole set
of 𝑦(𝑘) is provided, a solution {𝑥(𝑘)𝑔 }𝑛𝑘=1 is found by solving the online
optimization problem defined in Eq. (21) and the reward is the negative
real cost computed as: −∑𝑇

𝑘=1
∑𝑚

𝑖=2 𝑐
(𝑘)
𝑖 𝑧(𝑘)𝑖

For unify-sequential the policy 𝜋 is a function 𝜋 ∶ R𝑛×3+1 ←←→ R.
At each stage 𝑘, the ML model prediction is the virtual cost 𝑦(𝑘) and
the corresponding online optimization problem is solved. The set of
observations is the battery charge 𝑥(𝑘)𝑠𝑡𝑜𝑟𝑎𝑔𝑒, the set of forecasts and a
one-hot encoding of the stage 𝑘. The reward is again the negative real

∑𝑚 (𝑘) (𝑘)
cost but for the only current stage 𝑘: − 𝑖=2 𝑐𝑖 𝑧𝑖 g

14
In the full end-to-end RL approach, the policy provides a (|𝑚| − 1)-
dimensional vector corresponding to the power flows for a single stage.
The output of the policy is clipped in the range [−1, 1] and then each
decision variable 𝑧𝑖 is rescaled in its feasible range

[

𝑙𝑖, 𝑢𝑖
]

for 𝑖 ∈
1,… , 𝑚}. Since one of the power flows has no upper bound, we have

set its value so that the power balance constraint of Eq. (21) is satisfied,
reducing the actions space and making the task easier. We refer to this
power flow as 𝑧2. Despite adopting these architectural constraints, the
decisions provided by the policy may still be infeasible: the storage
constraint of Eq. (21) and the lower bound 𝑙2 can be violated. The
reward is non-zero solely for the last stage, calculated as the negative
cumulative real cost. Given the solution cost falls within the range
[0, 3000], selecting infeasible actions is rewarded with a value of −10 000
o encourage the search for feasible solutions. As the last detail, for all
he environments described above the observations are rescaled in the
ange [0, 1] by dividing by their maximum values.

For the production scheduling use case, the policy is a function 𝜋 ∶
R ←←→ Z𝐼 where 𝐼 is the set of the elements. Since the RL agent outputs
eal numbers, we convert its actions to the closest integer values. The
eward is computed as the negative total cost: −∑

𝑗∈𝐽 𝑐𝑗 �̂�𝑗 −
∑

𝑖∈𝐼 𝑝𝑖𝑦𝑖,
and 𝑑𝑖 = max

(

0, 𝑦𝑖 −
∑

𝑗∈𝐽 𝑎𝑖,𝑗𝑧𝑗
)

where �̂� is the solution found using
he predicted demands, 𝑦 is the vector of not satisfied demands and 𝑝

is the vector of penalties.

5.7.2. Hyperparameters setting
As RL algorithm we chose the Advantage Actor-Critic (A2C)5 for

its robustness and ability to handle continuous action spaces. Since
hyperparameter search was outside the scope of the paper, we opted
for a fairly standard architecture. The policy is modeled as a Gaussian
distribution for each action dimension, parametrized by a feedforward
fully-connected neural network with two hidden layers, each of 32
units and a hyperbolic tangent activation function. The critic is again a
deep neural network with the same hidden architecture of the policy.
Parameter updates are performed using the Adam optimizer. In the EMS
use case experiments, we selected a learning rate of 0.01 (larger than
usual), as it enhances convergence speed without compromising the
final results.

For the predict-then-optimize approach of WSMC problem, we em-
ploy a linear regression model: the ground-truth relation is indeed a
linear relation and, since the accuracy of the model is high, there is no
need to overcomplicate the architecture.

For unify-all-at-once in the EMS use case and the unify implemen-
tation for the WSMC, we used a batch size of 100 whereas for unify-
sequential, rl and safety-layer we preferred a larger batch size of 9600 to
have a comparable number of episodes for each training epoch. For the
EMS experiments, unify-all-at-once, unify-sequential, rl and safety-layer
have been trained for respectively 37, 19, 52 and 19 epochs. We chose
these values because we want to provide the same computation time
required by tuning algorithm. The unify implementation for the WSMC
was trained for 10 000 epochs.

Experiments on the EMS were performed on a laptop with an Intel
i7 CPU with 4 cores, 1.5 GHz clock frequency and 16 GB of memory.
Experiments on the WSMC were conducted on a AMD EPYC 7272 16-
Core Processor with 2.8 GHz clock frequency and 512 GB of memory.
Despite the availability of multi-core processors, we do not exploit
multi-threading and all experiments were executed on a single core to
keep the setup the simplest as possible and simplify reproducibility.

5 A2C algorithm was implemented with the TensorFlow version of the
arage [44] library.

M. Silvestri et al.

t
l
i
C

Knowledge-Based Systems 303 (2024) 112383
6. Concluding remarks

In this paper, we propose unify, a flexible framework for solving CO
problems with ML. In a similar spirit to ours, [45] proposes a high-
level framework that alternates between solving a CSP and using ML to
correct and update the CP model, with an emphasis on Human-in-the-
Loop settings. Our framework is much more structured and closer to a
direct implementation, with the key idea of decomposing a constrained
policy in two modules and using virtual parameter to enable their
communication. Our approach provides a versatile solution to address
a variety of problem, while relying on standard ML and CO tools for
the implementation. Our method also provides unified perspective on
various approaches, which we hope will improve cross-fertilization
by highlighting previously unrecognized connections. Finally, we con-
ducted an comprehensive experimental evaluation of two practical
problems to highlight the advantages of our approach.

We hope this work will also encourage future research in this
direction. For instance, RL has been recently used to build a solution
for combinatorial optimization problems or inside the search process
of already existing solvers [19]. With some effort, it may be possible to
reformulate these methods in the unify framework.

While our approach has excellent inference-time scalability, the
raining process can be computationally expensive; this is due to the
imited sample efficiency of RL algorithms [46] and the cost of each
nteraction with the environment, which in the trivial requires solving a
O problem. We view improving the training-time scalability of unify as

a key area for future research, for which actor-critic approaches or sam-
ple re-utilization solutions seem particularly promising. The versatility
of the unify, and the ability to choose which virtual parameters to use,
also allows for some unusual design choices: for example, in problems
with a complex cost functions 𝑓 , one may want to use a simpler

Finally, problems characterized by decision space fluctuations based
on observable variables or constraints defined over multiple steps pose
challenges for traditional DFL approaches. In future works, we aim to
investigate how unify can also address these issues.

CRediT authorship contribution statement

Mattia Silvestri: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Conceptualization. Allegra
De Filippo: Writing – review & editing, Writing – original draft, Soft-
ware, Methodology, Conceptualization. Michele Lombardi: Writing
– review & editing, Writing – original draft, Supervision, Software,
Methodology, Formal analysis, Conceptualization. Michela Milano:
Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We shared the link with code and data in the paper.

Acknowledgments

Research partly supported by European ICT-48-2020 Project TAI-
LOR - g.a. 952215, the Horizon Europe project TUPLES g.a. 101070149,
and by PNRR - M4C2 - PE00000013 -‘‘FAIR - Future Artificial Intel-
ligence Research‘‘ - Spoke 8 ‘‘Pervasive AI’’, funded by the European
Commission under the NextGeneration EU program.
15
References

[1] Y. Liu, A. Halev, X. Liu, Policy learning with constraints in model-free
reinforcement learning: A survey, in: Proceedings of IJCAI, 2021, pp. 4508–4515.

[2] J. Kotary, F. Fioretto, P. Van Hentenryck, B. Wilder, End-to-end constrained
optimization learning: A survey, 2021, arXiv preprint arXiv:2103.16378.

[3] M. Lombardi, M. Milano, A. Bartolini, Empirical decision model learning,
Artificial Intelligence 244 (2017) 343–367.

[4] A. De Filippo, A. Borghesi, A. Boscarino, M. Milano, HADA: An automated tool
for hardware dimensioning of AI applications, Knowl.-Based Syst. 251 (2022)
109199.

[5] A. De Filippo, M. Lombardi, M. Milano, Integrated offline and online decision
making under uncertainty, J. Artificial Intelligence Res. 70 (2021) 77–117.

[6] M. Silvestri, A. De Filippo, F. Ruggeri, M. Lombardi, Hybrid offline/online
optimization for energy management via reinforcement learning, in: Proceedings
of CPAIOR, Springer, 2022, pp. 358–373.

[7] J. Mandi, J. Kotary, S. Berden, M. Mulamba, V. Bucarey, T. Guns, F. Fioretto,
Decision-focused learning: Foundations, state of the art, benchmark and future
opportunities, 2023, arXiv preprint arXiv:2307.13565.

[8] G. Dalal, K. Dvijotham, M. Vecerík, T. Hester, C. Paduraru, Y. Tassa, Safe
exploration in continuous action spaces, CoRR abs/1801.08757, 2018, arXiv:
1801.08757.

[9] E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier, K.
Tierney, A survey of methods for automated algorithm configuration, J. Artificial
Intelligence Res. 75 (2022) 425–487.

[10] W.B. Powell, A unified framework for stochastic optimization, European J. Oper.
Res. 275 (3) (2019) 795–821.

[11] W.B. Powell, S. Meisel, Tutorial on stochastic optimization in energy—Part I:
Modeling and policies, IEEE Trans. Power Syst. 31 (2) (2015) 1459–1467.

[12] W.B. Powell, S. Meisel, Tutorial on stochastic optimization in energy—Part II: An
energy storage illustration, IEEE Trans. Power Syst. 31 (2) (2015) 1468–1475.

[13] S.C. Graves, Uncertainty and production planning, in: Planning Production and
Inventories in the Extended Enterprise: A State of the Art Handbook, Vol. 1,
Springer, 2011, pp. 83–101.

[14] A. De Filippo, M. Lombardi, M. Milano, Methods for off-line/on-line optimization
under uncertainty., in: Proceedings of IJCAI, 2018, pp. 1270–1276.

[15] I. Ashlagi, A.E. Roth, Kidney exchange: An operations perspective, Manage. Sci.
67 (9) (2021) 5455–5478.

[16] J. Dickerson, A. Procaccia, T. Sandholm, Dynamic matching via weighted myopia
with application to kidney exchange, in: Proceedings of AAAI, Vol. 26, 2012, pp.
1340–1346.

[17] U. Ritzinger, J. Puchinger, R.F. Hartl, A survey on dynamic and stochastic vehicle
routing problems, Int. J. Prod. Res. 54 (1) (2016) 215–231.

[18] K.K. Vu, C. d’Ambrosio, Y. Hamadi, L. Liberti, Surrogate-based methods for
black-box optimization, Int. Trans. Oper. Res. 24 (3) (2017) 393–424.

[19] N. Mazyavkina, S. Sviridov, S. Ivanov, E. Burnaev, Reinforcement learning for
combinatorial optimization: A survey, Comput. Oper. Res. 134 (2021) 105400.

[20] P. Donti, B. Amos, J.Z. Kolter, Task-based end-to-end model learning in stochastic
optimization, Adv. Neural Inf. Process. Syst. 30 (2017).

[21] H. Liu, P. Grigas, Online contextual decision-making with a smart predict-then-
optimize method, CoRR abs/2206.07316, 2022, arXiv:2206.07316.

[22] M.V. Pogančić, A. Paulus, V. Musil, G. Martius, M. Rolinek, Differentiation of
blackbox combinatorial solvers, in: Proceedings of ICLR, 2020.

[23] B. Wilder, B. Dilkina, M. Tambe, Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization, in: Proceedings of AAAI, Vol.
33, 2019, pp. 1658–1665.

[24] J. Mandi, T. Guns, Interior point solving for LP-based prediction+optimisation,
in: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (Eds.), Proceedings
of NeurIPS, 2020.

[25] M. Mulamba, J. Mandi, M. Diligenti, M. Lombardi, V. Bucarey, T. Guns,
Contrastive losses and solution caching for predict-and-optimize, in: Z. Zhou
(Ed.), Proceedings of IJCAI, ijcai.org, 2021, pp. 2833–2840.

[26] A.N. Elmachtoub, P. Grigas, Smart ‘‘predict, then optimize’’, Manage. Sci. 68 (1)
(2022) 9–26.

[27] X. Hu, J.C. Lee, J.H. Lee, Predict+ optimize for packing and covering LPs with
unknown parameters in constraints, in: Proceedings of AAAI, Vol. 37, No. 4,
2023, pp. 3987–3995.

[28] X. Hu, J. Lee, J. Lee, Two-stage predict+ optimize for MILPs with unknown
parameters in constraints, Adv. Neural Inf. Process. Syst. 36 (2024).

[29] A. Paulus, M. Rolínek, V. Musil, B. Amos, G. Martius, Comboptnet: Fit the right
np-hard problem by learning integer programming constraints, in: Proceedings
of ICML, PMLR, 2021, pp. 8443–8453.

[30] T.-Y. Yang, J. Rosca, K. Narasimhan, P.J. Ramadge, Projection-based constrained
policy optimization, in: Proceedings of International Conference on Learning
Representations, 2019.

[31] N. Parikh, S. Boyd, et al., Proximal algorithms, Found. Trends® Optimiz. 1 (3)
(2014) 127–239.

[32] A. De Filippo, M. Lombardi, M. Milano, The blind men and the elephant:
Integrated offline/online optimization under uncertainty., in: Proceedings of
IJCAI, 2020.

http://refhub.elsevier.com/S0950-7051(24)01017-7/sb1
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb1
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb1
http://arxiv.org/abs/2103.16378
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb3
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb3
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb3
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb4
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb4
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb4
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb4
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb4
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb5
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb5
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb5
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb6
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb6
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb6
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb6
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb6
http://arxiv.org/abs/2307.13565
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1801.08757
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb9
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb9
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb9
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb9
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb9
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb10
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb10
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb10
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb11
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb11
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb11
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb12
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb12
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb12
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb13
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb13
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb13
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb13
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb13
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb14
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb14
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb14
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb15
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb15
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb15
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb16
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb16
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb16
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb16
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb16
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb17
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb17
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb17
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb18
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb18
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb18
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb19
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb19
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb19
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb20
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb20
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb20
http://arxiv.org/abs/2206.07316
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb22
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb22
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb22
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb23
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb23
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb23
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb23
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb23
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb24
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb24
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb24
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb24
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb24
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb25
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb25
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb25
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb25
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb25
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb26
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb26
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb26
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb27
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb27
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb27
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb27
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb27
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb28
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb28
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb28
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb29
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb29
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb29
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb29
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb29
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb30
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb30
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb30
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb30
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb30
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb31
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb31
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb31
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb32
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb32
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb32
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb32
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb32

M. Silvestri et al. Knowledge-Based Systems 303 (2024) 112383
[33] A.J. Kleywegt, A. Shapiro, T. Homem-de Mello, The sample average approxima-
tion method for stochastic discrete optimization, SIAM J. Optim. 12 (2) (2002)
479–502.

[34] R.M. Van Slyke, R. Wets, L-shaped linear programs with applications to optimal
control and stochastic programming, SIAM J. Appl. Math. 17 (4) (1969) 638–663.

[35] G. Laporte, F.V. Louveaux, The integer L-shaped method for stochastic integer
programs with complete recourse, Oper. Res. Lett. 13 (3) (1993) 133–142.

[36] P.V. Hentenryck, R. Bent, Online stochastic combinatorial optimization, The MIT
Press, 2006.

[37] L. Mercier, P.V. Hentenryck, Amsaa: A multistep anticipatory algorithm for online
stochastic combinatorial optimization, in: Proceedings of CPAIOR, Springer,
2008, pp. 173–187.

[38] F. Hutter, L. Xu, H.H. Hoos, K. Leyton-Brown, Algorithm runtime prediction:
Methods & evaluation, Artificial Intelligence 206 (2014) 79–111.

[39] A. Biedenkapp, H.F. Bozkurt, T. Eimer, F. Hutter, M. Lindauer, Dynamic
algorithm configuration: foundation of a new meta-algorithmic framework, in:
Proceedings of ECAI, IOS Press, 2020, pp. 427–434.
16
[40] D. Aloini, E. Crisostomi, M. Raugi, R. Rizzo, Optimal power scheduling in a
virtual power plant, in: Proceedings of IEEE PES ISGT, 2011, pp. 1–7.

[41] A. De Filippo, M. Lombardi, M. Milano, How to tame your anticipatory algorithm,
in: Proceedings of IJCAI, 2019, pp. 1071–1077.

[42] S. Bianchi, A. De Filippo, S. Magnani, G. Mosaico, F. Silvestro, Virtus project:
a scalable aggregation platform for the intelligent virtual management of
distributed energy resources, Energies 14 (12) (2021) 3663.

[43] T. Grossman, A. Wool, Computational experience with approximation algorithms
for the set covering problem, European J. Oper. Res. 101 (1) (1997) 81–92.

[44] The garage contributors, Garage: A toolkit for reproducible reinforcement
learning research, 2019, https://github.com/rlworkgroup/garage.

[45] C. Bessiere, L. De Raedt, T. Guns, L. Kotthoff, M. Nanni, S. Nijssen, B. O’Sullivan,
A. Paparrizou, D. Pedreschi, H. Simonis, The inductive constraint programming
loop, IEEE Intell. Syst. 32 (5) (2017) 44–52.

[46] Y. Yu, Towards sample efficient reinforcement learning., in: Proceedings of IJCAI,
2018, pp. 5739–5743.

http://refhub.elsevier.com/S0950-7051(24)01017-7/sb33
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb33
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb33
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb33
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb33
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb34
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb34
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb34
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb35
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb35
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb35
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb36
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb36
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb36
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb37
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb37
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb37
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb37
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb37
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb38
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb38
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb38
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb39
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb39
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb39
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb39
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb39
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb40
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb40
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb40
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb41
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb41
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb41
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb42
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb42
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb42
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb42
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb42
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb43
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb43
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb43
https://github.com/rlworkgroup/garage
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb45
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb45
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb45
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb45
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb45
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb46
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb46
http://refhub.elsevier.com/S0950-7051(24)01017-7/sb46

	UNIFY: A unified policy designing framework for solving integrated Constrained Optimization and Machine Learning problems
	Introduction
	Context and Motivation
	Key Problem Elements and Notation

	The unify Framework
	Applicability of unify to Different Problem Classes
	Decision Focused Learning (DFL)
	Constrained RL
	Integrated Offline/Online Optimization
	Stochastic Optimization
	General Remarks

	Empirical Evaluation
	Use Cases and unify Groundings
	Energy Management System
	Weighted Set Multi-cover

	Technical details on Dataset generation
	Offline/Online Integration using unify
	Constraints in RL
	Generalization of DFL
	Stochastic Optimization
	Experimental Settings
	Reinforcement Learning environments
	Hyperparameters setting

	Concluding Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

