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Abstract
Pharmaceuticals are among the most challenging products to assess by life cycle assessment (LCA). The main drawback 
highlighted by LCA practitioners is the lack of inventory data, both regarding the synthesis of active pharmaceutical ingre-
dient (API) precursors (upstream) and the details concerning the downstream phases (use and end of life). A short critical 
review of pharma-LCAs found in the literature is here proposed, with discussion of several tools and models used to predict 
the environmental impacts derived from the life cycle of pharmaceuticals, emphasizing current strengths and weaknesses, and 
exploring the possibilities for improvements. The case of antibiotics is selected as a representative class of pharmaceuticals, 
due to their massive use worldwide and the growing related issue of antimicrobial resistance enrichment, which is generally 
not included in most of LCAs. Also, we comment on drafting product category rules (PCRs) in the relevant field to develop 
standard methodologies and enhance the comparability of the studies, ultimately advocating collaboration with companies 
and improving inventory data quality and availability for the whole value chain of products.
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Introduction

Over the last 40 years, the European Union (EU) has been 
strongly committed to implement the concept of sustain-
ability in the chemical industry, reducing greenhouse gas 
(GHG) emissions in the sector by 54% since 1990, equal to 
154 Mt of  CO2eq. In addition, from 2007 the total amount 
of waste was reduced of nearly one-third, the accidental pol-
lutant releases were dropped by at least 40% and the emis-
sion of water pollutants was nearly halved (CEFIC 2023). 
The concept of green chemistry (GC) was first introduced 
in 1991 by Paul Anastas and Roger Garrett and was later 
emphasized by the establishment of the 12 GC principles by 

Anastas and Warner (1998), driving the research in the field 
toward alternative, more efficient technologies with the aim 
to minimize the hazards derived from chemical processes 
and related wastes generated. In 2006 the REACH legisla-
tion was introduced under the EU’s regulation, to improve 
knowledge on the possible dangers and risks that could arise 
from existing and new chemical substances, maintaining the 
competitiveness and innovation capacity of the EU chemical 
industry (ECHA 2023). However, a review recently pub-
lished by the European Court of Auditors addressed the fact 
that the amount of hazardous wastes generated by EU coun-
tries continued to increase in the years from 2004 to 2020 
(ECA 2023).

In this context, the pharmaceutical industry plays a criti-
cal role mainly for two reasons. Firstly, it produces specific 
drugs, usually through complex synthetic pathways with a 
depletion of resources and generation of wastes that are sig-
nificantly high compared to the low amounts of final product 
obtained (Health Care Without Harm 2019). This relates 
with the upstream phase, i.e., the early stages of the life 
cycle of pharmaceuticals, typically including the extrac-
tion of raw materials and the production of chemical pre-
cursors that are later employed in the core phase for final 
product manufacturing. Secondly, the active pharmaceutical 
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ingredients (APIs) synthesized could severely affect the eco-
system if released into the environment, being specifically 
designed to be biologically active (Moermond et al. 2022). 
This factor instead deals with the downstream phase of the 
life cycle, which involves the activities related to products 
use and end-of-life (EoL) considerations. The raising aware-
ness of these issues in our society is driving the research in 
the field toward a comprehensive evaluation of the impacts 
of products, in order to formulate plans and actions for a sus-
tainable fine chemicals and pharmaceutical industry. To this 
aim, life cycle assessment (LCA) (ISO2006a; ISO 2006b) 
is recognized as a preferred methodology to evaluate the 
potential environmental impacts related to the value chain 
of products “from cradle to grave” (Anastas and Lankey 
2000), and its implementation by pharmaceutical compa-
nies is constantly increasing, following a general trend in 
the manufacturing sector.

However, an examination of the existing LCA studies 
highlighted some important shortcomings in the method-
ologies and in the approach followed, deriving from the 
complex value chain of pharmaceuticals, which involves a 
broad range of factors beyond direct companies’ burdens. 
A great limitation that has been recognized is the lack of 
accurate, compliant, and consistent inventory data regard-
ing product life cycle, something that is strongly connected 
to both the upstream and downstream phases and poses a 
serious limit to achieving the goal of a more sustainable 
production. Thus, a short review of the application of LCA 
to the pharma sector is presented, focusing on the current 
methodologies and on the main challenges that scientists 

are facing in this topic, by also highlighting the need for 
the development of common product category rules (PCRs) 
to be widely accepted. The advantages and drawbacks of 
LCA application to pharmaceuticals are discussed in detail 
in the next section, and the key aspects are summarized and 
ranked in Table 1. The discussion of these aspects is divided 
into two separate sections due to the different natures of the 
factors involved in the two phases, with particular emphasis 
placed on antibiotics as a case study, among the APIs more 
used in medicine (Cook and Wright 2022) and whose harm-
ful effect on the environment is largely debated in literature 
(Kümmerer 2009; Polianciuc et al. 2020). Moreover, their 
use gives rise to a serious concern globally for human health 
due to the occurrence of antimicrobial resistance (AMR) 
(WHO 2020, an aspect that is still missing in pharma-LCA 
since a model to quantify the impacts of AMR in LCA 
studies of products associated with the use of antibiotics 
does not exist yet. Thus, the last part discusses two possible 
approaches to include AMR enrichment in pharma-LCA, 
as proposed by Nyberg et al. (2021). The two approaches 
are presented in detail and commented on, highlighting the 
strengths and weaknesses of each approach and the possibili-
ties for application and improvement.

Life cycle of pharmaceuticals: background

Pharmaceutical industries generate more waste per unit 
product compared to any other chemical sector such as oil 
refining, bulk, and fine chemical industries (Phan et al. 2015; 

Table 1  Short summary of the main advantages and disadvantages of LCA application to pharmaceuticals

Stars represent the rating of importance, from the highest (★★★) to the lowest (★)

Advantages Drawbacks

Formulation of plans and actions for a sustainable pharmaceutical and 
fine chemicals industry.

★★★

Lack of accurate LCI data, especially in large scale, due to confidenti-
ality issues.

★★★
Identification of the most impactful stages of the supply chain of phar-

maceuticals.
★★★

Value chain complexity, due to the great variability of regulations and 
production processes between different regions.

★★★
Preservation of human healthcare without affecting the environment.
★★

Lack of general and universally accepted rules to perform LCA studies 
of pharmaceuticals.

★★★
Improvement of quality communication between companies (B2B) and 

toward consumers (B2C).
★★

Insufficient quality and quantity of data regarding APIs emission into 
the environment.

★★
Comparative LCA studies for the development of sustainable synthetic 

routes for APIs.
★★

Lack of any model to implement AMR into LCA studies of products 
related with the use of antibiotics.

★★
Conscious choice between equivalents medications for the treatment of 

a disease, driving the purchase towards more sustainable options.
★

Disagreements in the healthcare sector on the use of the ATC clas-
sification system.

★
Overcoming of limitations of green metrics.
★

Definition of burdens and/or system boundaries not straightforward.
★
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Sheldon 2007). Companies shall employ a holistic approach, 
implementing a life cycle perspective in their procedures 
to consider the direct/indirect emissions and resource 
consumption, as well as the production of hazardous/non-
hazardous waste among the whole supply chain from raw 
material extraction (cradle) and production of precursors 
to manufacturing, use, and EoL phase (grave) (Jiménez-
González and Overcash 2014). In a general LCA three main 
bulk phases can be identified, the upstream, core, and down-
stream, although a clear distinction is not always straight-
forward. Usually, the upstream phase includes the extrac-
tion and further processing of the starting resources (e.g., 
from fossil or bio sources), their supply to the facilities (e.g., 
inbound transportation), and the synthesis of precursors. The 
core phase generally covers the stages in which the synthesis 
and isolation of the API of interest, the galenic formulation 
with the incorporation of additives, and the final packaging 
of the product may occur. Finally, the downstream phase 
consists of the distribution, use, and EoL of the final prod-
uct, including the analysis of the possible impacts derived 
from a release into the environment (Siegert et al. 2019a). 
With this schematization in mind (Fig. 1), some shortcom-
ings in the LCAs of pharmaceuticals may often affect the 
modeling of chemical precursors production (upstream) and 
the EoL phase (downstream), as we discuss below.

Upstream processing

The first issue relates to the definition of the system bound-
aries of the upstream phase since pharmaceutical compa-
nies often do not directly produce the chemical precursors 
but purchase them from trade partners. In these cases, the 
emissions and environmental impacts associated with the 
raw materials supply are seldom considered, resulting in 
an underestimation of environmental burdens of the final 

product (Milanesi et  al. 2020; Jiménez-González et  al. 
2004a). Therefore, it becomes important for pharmaceutical 
industries to broaden their system boundaries incorporat-
ing the first stages of the supply chain of products in their 
LCAs. To minimize the impacts derived from the synthesis 
of chemical precursors, the application of the GC princi-
ples in the synthesis of fine chemicals has become essential. 
The use of common green metrics such as E-factor (Shel-
don 1992; Sheldon 1997), atom economy (Trost 1991), and 
process mass intensity (Curzons et al. 2001) could help in 
assessing the environmental drawbacks associated with 
organic processes and supporting the selection of the most 
sustainable production routes (Sheldon 2018; Anastas et al. 
2018). The American Chemical Society’s Green Chemistry 
Institute established in 2005 the ACS GCI Pharmaceutical 
Roundtable with the aim to stimulate the integration of GC 
in the pharmaceutical industry, defining PMI as the key 
parameter to express sustainability (Jiménez-González et al. 
2011a; Jiménez-González et al. 2013). However, the poten-
tial impacts derived from toxicity and safety of the prod-
ucts and wastes are not considered by green metrics (Rose 
et al. 2022; Jiménez-González et al. 2011b); therefore, it is 
strongly recommended to conduct a comprehensive LCA to 
analyze and quantify the potential environmental impacts of 
chemical processes and products (Cespi et al. 2015; Cespi 
et al. 2020).

The use of huge amounts of volatile organic solvents plays 
an important role in the environmental impacts of chemical 
processes (Raymond et al. 2010), and much effort goes into 
replacing them with greener options (Sheldon 2005; Byrne 
et al. 2016; Clarke et al. 2018). Scientists from GlaxoSmith-
Kline plc (GSK) developed in 1999 an internal guideline 
for the selection of the best solvent for each reaction (Cur-
zons et al. 1999), further extended to reagents only in 2013 
(Adams et al. 2013). As reported in the literature (Alder 

Production 
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chemicals

API 
synthesis

Galenic
formulation Packaging Distribution Use EoL
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Cradle to API
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Fig. 1  Generic life cycle of a pharmaceutical product, adapted from Siegert et al. (2019a)
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et al. 2016), this procedure was later integrated with the 
usage of a simplified LCA tool to facilitate and support the 
users to choose sustainable alternatives (Jiménez-González 
et al. 2004a; Curzons et al. 2001; Jiménez-González et al. 
2004b). The ACS GCI has also developed its own reagent 
and solvent selection guide publicly available, together 
with a solvent selection tool that provides a broad range 
of information about solvent properties to assist practition-
ers in choosing the best option (ACS 2023). The tool was 
originally developed by AstraZeneca plc and recreated by 
experts in pharmaceutical processes, and this special atten-
tion given confirms the great importance of organic solvents, 
as emphasized previously, due to their large impact and the 
variety of factors involved in the selection.

Many studies through the last 20 years suggest that the 
use of ionic liquids (ILs) could be revolutionary in that 
sense (Rogers and Seddon 2003; Zhao et al. 2005; Melo 
et al. 2013), being considered “green solvents” since they 
are non-volatile, stable, non-flammable, and having broad 
range of applicability (Choudhary et al. 2023; Yoo et al. 
2017). However, a comparison between ILs and homolo-
gous organic solvents by means of a comprehensive life-
cycle approach could give results different than expected 
(Zhang et al. 2008), since the “green” properties of ILs 
sometimes become negligible when considering the envi-
ronmental impacts derived from the life cycle of the solvent 
itself (Chang 2020; de Jesus and Maciel Filho 2022; Maciel 
et al. 2019). For instance, a cradle-to-gate LCA study was 
conducted on the production of acetyl salicylic acid (ASA), 
comparing the process using toluene with the same pathway 
using [Bmim]Br (1-butyl-3-methylimidazolium bromide) as 
solvent, revealing that the production of ASA using the IL 
has dramatically higher life cycle impacts in all the nine 
categories considered (global warming potential, eutrophica-
tion potential, acidification potential, photochemical ozone 
creation potential, human toxicity potential, depletion of abi-
otic resources, aquatic ecotoxicity potential, terrestrial eco-
toxicity, ozone layer depletion potential), especially due to 
the production of hydrogen bromide, butanol, methylamine, 
and glyoxal needed for the preparation of [Bmim]Br (Amado 
Alviz and Alvarez 2017). In the end, considering the whole 
life cycle, the production of ASA using toluene was the best 
option, considering the current recycling technologies of ILs 
as novel solvents (Sklavounos et al. 2016; Ren et al. 2021). 
This example indicates the strength of LCA methodology in 
assessing the environmental impact of chemical processes, 
demonstrating that a life-cycle approach is fundamental, 
and that any product, method, or technology should not be 
defined intrinsically “green,” but instead should be evalu-
ated and contextualized in the relevant value chain. In the 
next sections, a focus on antibiotics is provided to support 
the discussion on the factors involved in the upstream phase 

and the approaches, methods, and tools that can be adopted 
in pharma-LCA.

Chemical synthesis: fluoroquinolones

In the case of upstream processing, the synthetic pathway 
chosen to prepare a chemical precursor can significantly 
affect the environmental impact of the overall system. A 
critical obstacle in pharma-LCA is the lack of inventory data 
about plant operations on a large scale (Jiménez-González 
et al. 2004a; Kralisch et al. 2015), which could be confi-
dential and therefore not publicly available, as well as syn-
thetic methodologies protected by industrial patents (Siegert 
et al. 2019b; Huber et al. 2022). In this context, LCA stud-
ies performed by pharmaceutical companies are beneficial 
to highlight the most impactful factors of the production 
(i.e., core phase), but they give only a partial picture of the 
actual environmental impact of the entire value chain. The 
upstream and downstream stages may be outside the physi-
cal boundaries of the company, but they could still influence 
the decision and management of the production by driving 
the purchase of the chemical precursors toward the most 
sustainable option(s) (Liou et al. 2021; Koenig et al. 2019).

For instance, Anastas and colleagues highlighted the 
lack of LCI data for large-scale production of pharmaceuti-
cal drugs and their precursors, performing a comparative 
cradle-to-gate analysis of different anesthetic APIs using a 
bottom-up approach (Parvatker et al. 2019). Starting from 
synthesis data at the lab-scale, these authors used chemi-
cal engineering methods for process design and scale-up 
to calculate the carbon footprint of 20 different anesthetic 
drugs, obtaining results ranging from 11 to 3000 kg  CO2eq/
kg of drug. However, the inventory data extrapolated from 
lab-scale experiments could produce emission values signifi-
cantly overestimated, due to the large number of variables 
related to the scaling-up procedures (Piccinno et al. 2016; 
Simon et al. 2016; Thonemann and Schulte 2019; Elginoz 
et al. 2022). Another factor that needs to be emphasized 
is the choice between many different synthetic pathways 
available for the same drug, which was done arbitrarily by 
Parvatker et al. (2019), but it should be conducted accord-
ing to the common materials and procedures applied in the 
region of interest. Despite these limitations, the LCI data 
obtained in this study could be used by LCA practitioners 
in future works, with the necessary adjustments needed by 
the case, offering a methodology to possibly develop simi-
lar inventories for other pharmaceutical drugs and chemical 
precursors. Moreover, it is worth highlighting that the results 
demonstrated poor correlations with the molecular weight 
and complexity of the substances studied, while the number 
of steps of the synthesis was a key parameter in determining 
the intensity of GHG emission released from the process.
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When discussing the specific case of antibiotics, some 
important distinctions have been made, since these prod-
ucts are divided into several classes characterized by differ-
ent mechanisms of action and chemical structures (Gould 
2016). For instance, based on anatomical therapeutic chemi-
cal (ATC) therapeutic classes, a classification system used 
by the World Health Organization (WHO), antibacterial 
drugs fall in the macro category J (anti-infective for sys-
temic use) and they are further divided into 10 sub-classes 
(WHO 2023). The chemical structures and production pro-
cedures differ from class to class, but a general distinction 
can be made between fully synthetic and biotechnological 
processes. In the case of synthetic antibiotics such as fluoro-
quinolones (J01MA), the synthesis of chemical precursors is 
generally very important and it should be included in cradle 
to grave LCA. The case of ciprofloxacin hydrochloride is 
commented below as an example of LCA application within 
the pharmaceutical sector (Yang et al. 2021), also conducted 
following the PCR document defined by Siegert et  al. 
(2019a). PCR is a technical document that collects all the 
fundamental rules to perform a LCA study, in accordance 
with ISO 14040 and ISO 14044 (ISO 2006a; ISO 2006b), for 
the specific class of product they are developed for (in this 
case pharmaceuticals). PCRs are often used in type III label 
(ISO 2010) such as the Environmental Product Declaration 
(EPD) (Hunsager et al. 2014; Minkov et al. 2015; Ibáñez-
Forés et al. 2016).

Ciprofloxacin hydrochloride is a fluoroquinolone antibi-
otic with a market size of 152.24 million USD in 2022 and 
an expected CAGR of 5.4% (Zion Market Research 2022). 
Yang et al. (2021) analyzed by LCA the core phase of the 
production of ciprofloxacin, and the results of the impact 
assessment stage showed that the API synthesis had the larg-
est contribution to environmental impact (42.9%), followed 
by galenic formulation (41.9%), and packaging (15.2%). The 
higher impacts came from the energy consumption (mainly 

electricity from coal, since the study is located in China) and 
from the large amount of polyols used as solvent. The func-
tional unit was the production of 280 million ciprofloxacin 
tablets and the system boundaries were set considering only 
the last step needed for the API synthesis starting from the 
quinolone carboxylate, which was not present in the ecoin-
vent database v.3.4 (Ecoinvent Centre 2021) and therefore 
placed under a relevant category (organic acid) to allow for 
software operation. Nevertheless, the synthesis of the qui-
nolone involves at least three or four transformations with 
the common procedure, and even more if other pathways 
are used (Arava and Umareddy 2018). This means that con-
sidering all the processes needed to obtain the precursor the 
contribution to the environmental impact would be signifi-
cantly higher; indeed other studies highlight the fact that the 
API synthesis generates more environmental impacts than 
galenic formulation and packaging (Jiménez-González et al. 
2011b; Jung et al. 2021). For this reason, the optimization 
of chemical processes is recommended for reducing the 
overall footprint, and a great effort is put into finding new 
routes or optimizing the existing ones (Rose et al. 2022; Kar 
et al. 2022; Dunn 2012) as well as to track the improvements 
over the years. Ciprofloxacin was first synthesized by Bayer 
AG during the 1980s, thanks to Grohe’s cycloaracylation 
(Fig. 2), a multi-step method for the preparation of fluoro-
quinolones well described in a dedicated report by Bayer 
(2020). This route is still today the best option to produce 
ciprofloxacin and other quinolone antibiotics, e.g., enroflox-
acin (Kong et al. 2021), while other routes developed by 
Natco Pharma Limited and Bayer AG present more steps for 
the synthesis and therefore are not convenient in economic 
terms and in terms of environmental impact (Muddasani and 
Nannapaneni 2001; Grohe et al. 1987).

Another procedure was developed by Suven Life Sciences 
Ltd. exploiting a Gould-Jacobs reaction to produce 3-qui-
nolone carboxylate in one step but only afforded a 50:50 

Fig. 2  Traditional Grohe’s cycloaracylation route for the synthe-
sis of fluoroquinolones. The procedure involves 1) benzoyl chloride 
condensation with an aminoacrylate derivative, 2) substitution of the 

N-terminal side chain, 3) cyclization obtaining the quinolone carbox-
ylate structure, and 4) ester hydrolysis and piperazine addition
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mixture of the desired product and a co-product (Arava and 
Bandatmakuru 2013). Later Bayer AG scientists managed 
to improve the original Grohe’s cycloaracylation starting 
from the same raw materials, designing a two-step pro-
cess to significantly reduce the operations and chemicals 
needed (Zerbes et al. 1997). Following studies focused on 
the improvement of the selectivity of Grohe’s cycloaracyla-
tion, but these procedures involve the use of metals  (FeCl3, 
Raney Ni, and CuCl) and the production of inorganic salts 
as waste, strongly increasing the environmental impact of 
the overall process (Muddasani and Nannapaneni 2001; Rao 
et al. 2012). More recent studies focused on the development 
of a continuous one-pot synthesis exploiting flow chemistry, 
with excellent results in terms of yield and greenness grade 
(Lin et al. 2017; Tosso et al. 2019). Moreover, another recent 
study described an efficient procedure for the late-stage addi-
tion of the piperazine derivative, exploiting a recyclable 
nano-zirconia catalyst in water, avoiding the use of organic 
solvents (Nakhaei et al. 2018).

The PMI-LCA tool (ACS 2023), available from the ACS 
Green Chemistry Institute Pharmaceuticals Roundtable, pro-
vides a calculation of PMI based on experimental data and 
an estimation of life cycle information based on ecoinvent 
database, allowing to carry out a preliminary assessment of 
the environmental performance of processes for the synthe-
sis of APIs, considering all the starting materials, solvents, 
reagents, catalysts, and other materials used. Employing the 
tool with experimental data from the referenced documents, 

it is possible to compare the results obtained by Bayer AG in 
the improvement of the cycloaracylation route, starting from 
the traditional method (Grohe and Heitger 1987) requiring 
five transformations and getting to the optimized two-step 
process (Zerbes et al. 1997). It should be noticed that the tool 
was planned for large-scale production of pharmaceuticals, 
indeed it provides PMI results in “kg of materials used/kg 
of packaged API produced,” but the packaging step is only 
a calculation made by the system to normalize steps on the 
production of 1 kg of API; therefore, the galenic formulation 
and the packaging stage are not considered in this assess-
ment. Another consideration is that the two processes can 
be only evaluated separately, and after that the single results 
can be discussed. To make a reliable comparison, the scale 
of the two methods must be similar to avoid the intrinsic 
differences in the efficiency of procedures and technologies 
at different scales. In this case, both methods used approxi-
mately 30 g of benzoyl chloride and aminoacrylate (0.25 
moles of each) as starting materials, enabling a consistent 
comparison and assessment of the two processes with the 
help of graphs and tables directly provided by the tool. As 
reported in Fig. 3a, which was adapted from the PMI results, 
it is revealed that a significantly higher impact is generated 
by the traditional process (Grohe and Heitger 1987) com-
pared to the optimized two-step process (Zerbes et al. 1997), 
especially due to the higher amount of solvents (in yellow) 
and reagents (raw materials and reagents, in red) employed. 
The PMI was reduced from 74 to 24 kg/kg of API (− 68%), 

Fig. 3  a Comparison of the PMI 
(process mass intensity) of the 
two processes, adapted from the 
results of the PMI-LCA tool; b 
PMI of each step of the tradi-
tional process, obtained using 
the PMI-LCA tool
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with the most important decrease detected in the quantity 
of organic solvents (almost 90% reduction) needed for the 
extraction and purification procedures. Figure 3b shows the 
most impactful steps of the traditional process in terms of 
material consumption, highlighting the great amount of sol-
vents needed for the purification in benzoyl condensation 
and cyclization (steps 1 and 3) and the high amount of water 
needed for dilution of acids in the final ester hydrolysis. On 
the other hand, the PMI of the optimized process without 
considering water is just 8 kg/kg API, confirming the lower 
contribution derived from solvents (17%, in yellow) and rea-
gents (raw materials and reagents, 17%, in red) as depicted in 
Fig. 4. After the calculation of the amounts of materials used 

(i.e., PMI) and the breakdown of these quantities, the tool 
provides also an estimation of the life cycle impacts of these 
materials, finally putting together all the resulting process 
metrics as reported in Tables 2 and 3. The graphs gener-
ated display the contribution of steps and materials to each 
of the six life cycle impact assessment (LCIA) categories 
(i.e., mass net, energy consumption, global warming poten-
tial, acidification potential, eutrophication potential, water 
depletion). Observing the results, the impact of the organic 
solvents in the traditional process is evident, especially 
due to the negative contribution of dioxane in the energy 
consumption, global warming potential (GWP), and water 
depletion categories, while DMF (dimethylformamide) is by 
far the biggest contributor to eutrophication. These impacts 
were revealed by contribution analyses made by the tool, 
highlighting the most impactful materials and steps for each 
of the six impact categories. For example, the contribution 
analysis for eutrophication potential of the traditional pro-
cess is provided in Fig. 5. It can be appreciated the great 
contribution of DMF to the eutrophication potential of the 
overall synthetic route. The solvents used in the optimized 
process instead are toluene and NMP (N-methyl-2-pyrro-
lidone). Toluene is a better option compared to dioxane, 
while NMP appears as much hazardous as DMF; therefore, 
in more recent studies (Lin et al. 2017; Tosso et al. 2019) the 
choice has shifted to the more preferable dimethyl sulfoxide 
(DMSO). A great limitation is that the impacts derived from 
organic compounds used as reagents and raw materials could 
be underestimated, since they are processed by the software 
as “organic reagents” with the only distinction between bulk 
and fine chemicals (based on innovation green aspiration 
level, iGAL) (Roschangar et al. 2018). Still, this tool could 
be helpful to make a general analysis of a product life cycle 
that goes beyond a simple PMI calculation, and it could be 
further implemented with molecular structure-based distinc-
tions for organic compounds.

The case of ciprofloxacin shows the importance of GC 
in improving the environmental performance of organic 
syntheses, with many other examples of API green path-
ways existing in literature (Kar et al. 2022; Dunn et al. 2010; 
Erythropel et al. 2018). The main motivations include i) 

Fig. 4  Breakdown of the PMI 
(process mass intensity) by class 
for the two processes, obtained 
using the PMI-LCA tool

Table 2  LCA results of optimized process, obtained using the PMI-
LCA tool

Process metrics per kg API Total Reagent Solvent Water

PMI 23.77 4.01 4.08 15.67
Mass net (kg) 55.04 45.22 9.79 0.02
Energy (MJ) 1291.76 949.48 341.98 0.30
GWP (kg  CO2 eq.) 101.26 86.56 14.68 0.02
Acidification (kg  SO2 eq.) 0.74 0.70 0.05 0.00
Eutrophication (kg phosphate 

eq.)
0.27 0.10 0.17 0.00

Water (kg) 113.88 43.27 50.82 19.79

Table 3  LCA results of traditional process, obtained using the PMI-
LCA tool

Process metrics per kg API Total Reagent Solvent Water

PMI 73.94 18.65 30.91 24.37
Mass net (kg) 292.05 233.05 58.96 0.04
Energy (MJ) 6993.44 4953.44 2039.54 0.46
GWP (kg  CO2 equ.) 533.43 448.68 84.73 0.02
Acidification (kg  SO2 eq.) 4.00 3.61 0.39 0.00
Eutrophication (kg phosphate 

eq.)
0.97 0.51 0.46 0.00

Water (kg) 575.59 229.98 314.81 30.79
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the reduction of the synthetic steps, ii) the development of 
more converging routes, and iii) the minimization of the use 
of hazardous organic solvents such as dioxane, DMF, and 
dichloromethane (DCM). In the context of green synthesis 
of drugs, it could be also interesting to introduce the case of 
sildenafil citrate, which has been studied extensively (Dunn 
et al. 2004; Ouranidis et al. 2021) and comprehensively from 
cradle to API (Cespi et al. 2015). Scientists from Pfizer Inc. 
afforded a massive result in the process optimization from 
the medicinal chemistry route to the commercial process, 
leading to a reduction of impacts between 50 and 65% in 
terms of sustainability indicators such as PMI, cumulative 
energy demand (CED,  MJeq) (Frischknecht et  al. 2007; 
Frischknecht et al. 2015), GWP (kg  CO2eq/kg API), and 
human health endpoint indicator. Starting from simple PMI 

and E factor determination, a more comprehensive impact 
assessment was performed using ReCiPe 2008 (v1.11) 
(Goedkoop et al. 2013) at midpoint and endpoint indicators. 
As commented above in this work, the lack of inventory data 
(LCI) constitutes a serious drawback in the assessment of the 
upstream phase. In this study, the inventory was improved by 
exploiting the FineChem tool, a molecular structure-based 
model developed by Wernet et al. (2012), used to estimate 
key production and emission parameters starting from chem-
ical structures. This kind of tools could be very useful to 
fill the data gap, together with data and correlations from 
research papers, public bodies, databases, and reports. In 
this perspective, a strong collaboration with pharmaceutical 
companies would be the key to performing a study aimed at 
including also the upstream stages.

Fig. 5  Contribution analysis to eutrophication potential of the traditional process, obtained using the PMI-LCA tool. a Materials; b steps
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Biotechnology: penicillins

Some classes of antibiotics like tetracyclines (ATC code 
J01AA), penicillins (J01C), and cephalosporins (J01D) are 
mainly produced by fermentation from bacteria or molds, 
and further chemically modified (Hook 2006). The LCI 
stage is different compared to synthetic antibiotics, due 
to the absence of intricate multi-step synthetic processes. 
Unfortunately, the low number of publications relevant to 
the application of LCA to pharmaceuticals (and fine chemi-
cals in general) prepared through biotechnological processes 
makes the generation of the LCI a challenging task (Sec-
chi et al. 2016), with the main inconsistencies and burden 
shifts encountered in the production of the feedstocks (Pie-
trzykowski et al. 2013; Renteria Gamiz et al. 2019). Usually, 
the raw materials are crop biomasses; therefore, their envi-
ronmental performance strongly depends on the agriculture 
techniques and practices used as well as the water consumed 
and chemicals/nutrients applied to soil (i.e., NPK fertilizers 
and pesticides). The key substances typically used in the 
core phase of these processes are carbon sources and energy 
sources for the microbes (e.g., carbohydrates from renewable 
sources), a medium constituted of proteins and salt minerals, 
solvents for the extraction, and other auxiliaries if further 
modifications are necessary (Tufvesson et al. 2013; Mout-
ousidi and Kookos 2021). For example, researchers at the 
Centre for Bioprocess Engineering Research (CeBER) of 
Cape Town University have performed a LCA of bio-syn-
thetic penicillin V production exploiting penicillium fungi 
(Harding et al. 2018). These microorganisms normally pro-
duce common natural penicillin G (benzylpenicillin) but by 
providing a different lateral chain in the medium a similar 
drug can be obtained, with a different acyl-residue in the 
amino group in position 6. Following this strategy, bulky 
side chains are typically exploited to make the penicillin 
more resistant to hydrolysis by β-lactamase enzymes, obtain-
ing a variety of compounds with better pharmacological 
properties and easier to administrate (Oshiro 1999). In the 
case of penicillin V, the lateral chain is obtained provid-
ing phenoxyacetic acid in the medium. This chemical is 
prepared from fossil resources, and it accounts in the LCI 
together with the reagents for the synthesis and its precursors 

(i.e., phenol, chloroacetic acid). However, the final LCIA of 
the study demonstrates that phenoxyacetic acid contribution 
to environmental impact is marginal, being between 5 and 
10% in most of the impact categories (Harding et al. 2018). 
On the other hand, electricity, which is mainly provided 
from coal in the investigated system (i.e., South Africa), 
gives the biggest contribution to most of the impact catego-
ries, especially acidification (73%), eutrophication (37%), 
photochemical oxidation (72%), abiotic depletion (75%), and 
global warming (61%). Glucose production is the second 
contributor to acidification (12%), eutrophication (32%), and 
photochemical oxidation (7%), but it has also a negative con-
tribution (− 9%) in global warming due to the  CO2 uptake 
during the sugarcane growing. The contribution derived 
from glucose could be reduced using other carbon/energy 
sources from waste material (e.g., second-generation bio-
mass), since the intensive monocultures of sugarcane replace 
natural habitat, leading to several issues such as decreased 
yield, soil acidification, and alterations in the microbial com-
munities (Cespi et al. 2016).

Another strategy is the production of semi-synthetic peni-
cillins, exploiting biocatalysis (Volpato et al. 2010). Immobi-
lized enzymes (biocatalysts) are considered a very promising 
tool in green organic synthesis to avoid the use of metallic 
systems and the related hazards to the environment (Tao and 
Xu 2009; Sheldon and Woodley 2018). LCA studies dem-
onstrate that biocatalytic routes have some key advantages 
compared to chemical catalysis, mainly the recyclability of 
the biocatalyst and the high specificity of enzymes (Hen-
derson et al. 2008; Becker et al. 2023). Additionally, enzy-
matic reactions are typically performed in aqueous medium 
and under mild conditions, even if a considerable amount of 
organic solvents could be needed for extraction and purifica-
tion (Delgove et al. 2019). Another drawback is that gener-
ally the production of immobilized enzymes could be energy 
intensive (Kim et al. 2009; Nielsen et al. 2007).

The enzyme penicillin acylase has been revolutionary in 
the field of antibiotic production, allowing chemists to pre-
pare penicillins with various sidechains through a hydrolysis 
reaction that would be very challenging to do synthetically 
(Bruggink et al. 1998), and different mutants of the same 
enzyme are also capable of catalyzing the next reaction, the 

Fig. 6  Preparation of semi-synthetic penicillins. The route consists of the production of natural penicillin G, then hydrolyzing the side chain 
obtaining the basic β-lactam structure 6-aminopenicillanic acid, which is then condensed with another sidechain
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addition of the new sidechain (Xue et al. 2016). Through this 
strategy (Fig. 6), few synthetic chemicals and reagents are 
used, with a small contribution to the overall environmental 
impact of the supply chain. In the end, the production of 
penicillins has different issues regarding the upstream phase, 
and they are not strictly related to chemical synthesis. A 
possible drawback instead results in the downstream phase, 
since bio- and semi-synthetic penicillins are less sensitive to 
degradation by microbial enzymes and could be more per-
sistent in the environment compared to natural ones (Xiao 
et al. 2021). This fact gains more importance considering 
that the occurrence of antibiotics (and APIs in general) in 
the environment is a serious concern for human health and 
for ecosystems, as stressed before in this review, and the 
assessment of this part of the life cycle of pharmaceuticals 
is discussed in the next section.

Downstream processing

In the previous section, a description of the challenges 
related to the upstream phase has been commented, high-
lighting the use of GC principles in planning organic syn-
thesis without going too deep into the LCA methodologies, 
setting the basis for a discussion about the sustainable pro-
duction of APIs. The downstream phase, instead, presents 
different issues related to the fate and possible hazards 
derived from the release of drugs into the environment, 
focusing more on the actual pharma-LCA methodologies, 
the shortcomings, inconsistencies, and the main approaches 
emerging to overcome these challenges.

Use and end‑of‑life phase of pharmaceuticals

In the case of pharmaceuticals, the use and EoL phase have 
a crucial impact on the LCIA, since the biological activ-
ity of the APIs produced could cause severe damage to the 
ecosystems if released into the environment. Moreover, 
the complexity and variety of the flows and emission path-
ways involved (Siegert et al. 2020) make the assessment of 
downstream processing a challenging task. These concerns 
become more severe considering the massive and continu-
ous increase in the market of APIs worldwide. The research 
on the topic increased significantly in the last 20 years: the 
number of publications in the field of pharma-LCA during 
the 2011–2022 period was almost eight times higher than 
that of 2000–2011, describing a clear trend following the 
increasing interest in academic research in the subject of 
LCA application in the production and manufacturing sec-
tor, with the establishment of journals entirely devoted to the 
topic (Sabour et al. 2023).

Considering the existing pharma-LCAs, there are still 
many challenges to face in the methodology such as the 
data gap due to confidential information or the complexity 

of the supply chains, as commented above. These and simi-
lar limitations lead to a general lack of harmonization in 
the LCA studies for fine chemicals and more specifically 
for APIs, with the consequence of inadequate identification 
of the potential environmental impact of the life cycle of 
products. As we saw before, the main inconsistencies in the 
upstream phase regard the setting of the system boundaries 
when assessing chemical syntheses. For the downstream, 
instead, we will see that the quantification of API emissions 
in the environment is a crucial factor (Jiménez-González 
and Overcash 2014; Pålsson et al. 2019; Siegert et al. 2020). 
Several companies developed their own simplified tools to 
evaluate processes, for example, the SEEbalance® by BASF 
SE (Saling et al. 2002; Shonnard et al. 2003; Saling et al. 
2005; Schmidt et al. 2004; Illner et al. 2014), but much 
information is not publicly available and there is still the 
need for general and universally accepted rules to perform 
LCA. Siegert et al. (2019a) developed some guidelines for 
drafting PCRs for pharma-LCA, setting some generic “hor-
izontal” rules for pharmaceutical products and processes, 
which could be complemented by more specific “vertical” 
guidelines for each class of drugs such as antibiotics (J01), 
vasoprotectives (C05), or anesthetics (N01), based on the 
second level of ATC classification system (WHO 2023).

However, there are some disagreements about this cat-
egorization and the level of detail that these rules should 
reach, as highlighted by a survey taken by the European 
Commission’s Joint Research Center toward healthcare sec-
tor stakeholders, including industries, academic research-
ers, policy makers, and non-governmental organizations (de 
Soete et al. 2017). The majority of the participants in this 
survey claims that a product-specific approach is preferred 
to a group-oriented approach, mainly due to the differences 
in production processes and pharmacological effects of the 
different APIs. For example, all antibiotics could be framed 
within the same “vertical” PCRs or they could be separately 
considered based on, for instance, the third level of ATC 
classification, which distinguishes tetracyclines (J01AA), 
penicillins (J01C), and quinolones (J01M) into subcatego-
ries. Going further, the fourth level considers the chemi-
cal properties (e.g., fluoroquinolones J01MA), and finally 
the APIs are listed in the fifth level (e.g., ciprofloxacin 
J01MA02) (WHO 2023). Following the Guidance for Prod-
uct Category Rule Development (GPCRD), Siegert et al. 
(2019a) proposed draft PCRs with the aim of stimulating the 
production of type III Environmental Product Declarations, 
based on established parameters according to ISO 14025 
and ISO/TS 14027 (ISO 2010; ISO 2017). The EPD can be 
developed, in the end, for all types of products and groups 
with the aim of developing univocal LCA rules and meth-
odologies to improve communication between producers, 
retailers, public administration, and customers, ultimately 
enabling consistent comparison between studies (Hunsager 
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et al. 2014; Minkov et al. 2015; Ibáñez-Forés et al. 2016; 
Pålsson et al. 2019). The main issues to be discussed in 
drafting PCRs are the setting of the system boundaries, the 
definition of the functional unit (FU), and the assessment of 
the fate of products (EoL phase).

The mass-based FU (a.k.a. “declared unit,” kg of API or 
defined daily dose), commonly used to assess the upstream 
and the production processes, could be substituted by an 
effect-related FU, which considers the treatment of a patient 
with a certain disease for a certain period of time in a certain 
area (i.e., downstream). The need to expand the aim of the 
FU has been highlighted in different reviews and becomes 
more important in those LCA studies intended to assess the 
potential environmental impact of a product in the down-
stream phase of its life cycle, considering also eventual 
medical devices, auxiliaries, and drug delivery systems for 
the administration, in addition to the EoL stages (de Soete 
et al. 2017). As anticipated above, in the downstream stages 
(mainly use and EoL) lie the most significant gap in pharma-
LCA, and the reason could be identified in the broad range 
of factors involved. Some of these factors could be quanti-
fied, such as the biodegradability of the API or its ecotoxicity. 
However, some other factors are very difficult to measure or 
even impossible without some kind of prediction or estima-
tion related, for instance, to the amount of unused tablets and 
their effective disposal rate. An important contribution to the 
environmental impact comes from the possible ecotoxicologi-
cal effects of APIs when released into the environment (Ortiz 
de García et al. 2017): municipal wastewater is pointed as 
the main source of these emissions, with particular attention 
placed on hospital effluents (Golbaz et al. 2021; Ulvi et al. 
2022). Different public and private bodies are committed to 
provide ecotoxicological data and guidelines for environmen-
tal risk assessment of all the classes of chemicals (EPA in 
the USA, ECHA and CSTEE in EU, OECD aquatic toxicity 
classification), following the standard testing schemes and 
evaluation criteria of ISO standard specifications, for example, 
ISO 17088 and ISO 23517 (ISO 2021a; ISO 2021b). These 
data are then collected into ecotoxicological databases like 
ECOTOX (Olker et al. 2022) and characterized by predictive 
models such as USEtox® (Fantke et al. 2015) or the eco-
logical structure activity relationships (ECOSAR, EPA 2023a) 
predictive model, providing tools for scientists to determine 
human and ecotoxicological impacts of chemicals and sug-
gesting evidence for quantitative structure-activity relation-
ships (QSAR, Sanderson et al. 2004).

However, to our knowledge, only a few existing studies 
fully considered the effects of drug emissions in their LCIA, 
and a comprehensive model for the evaluation of API flows 
in the downstream phase has not been properly developed 
yet. What is missing is the LCI data about the quantity of 
API that is likely released into the environment, especially 
from the wastewater (WW) effluent and sewage sludge (if 

used as fertilizer), which depends on the excretion and 
metabolization rates of APIs and of the different metabo-
lites derived. This lack of information is generally related 
to an insufficient systematic monitoring of API occurrence 
in the WW treatment plant effluents and to the great vari-
ability of the available measured environmental concentra-
tions (Arnold et al. 2014; Morais et al. 2014; Emara et al. 
2019; Sanusi et al. 2023). Consequently, when carrying out 
an impact assessment, these variables should be modeled 
based on the geographical scope considering the disposal 
procedures, the local ecosystem, and the WWTP technology 
(Golbaz et al. 2021; Emara et al. 2019). A useful approach 
to estimate chemical emissions from WWTPs and exposure 
in surface water is the emission model SimpleTreat (v4.0), 
which estimates concentrations of contaminants in effluents 
and sludge, and the corresponding discharges through air 
(volatilization), solid, and liquid flows from the plant (Struijs 
2014; Struijs 2015). SimpleTreat is a freely accessible soft-
ware that has been exploited in a LCA study to assess emis-
sions of amoxicillin, ciprofloxacin, and clarithromycin from 
WWTPs in Germany using an effect-related FU (Schulte 
et al. 2022). In this study a LCI previously developed by 
these authors was applied to estimate the flows of APIs 
in the use and EoL phase. First, research data and predic-
tions from public sources are used to estimate the rates of 
administration, metabolization, excretion, and disposal of 
the pharmaceuticals. Second, quantitative determination 
of the three antibiotics in the WWTP inflow is carried out. 
Then, the SimpleTreat software enables to estimate the fate 
of the APIs, providing the rates of effluent discharge, bio-
degradation, and accumulation in sewage sludge based on a 
mass balance approach. With this additional information, the 
LCI model provides a general assessment of the flows and 
emission pathways of the APIs in the use and EoL phase. 
However, the model is still incomplete, especially regarding 
the antibiotic metabolites formed in the human body, and the 
final prediction strongly depends on the quality of input data.

In study of Schulte et al. (2022), the sources of the data about 
the physicochemical and environmental fate of the APIs (e.g., 
solubility and Henry constant) were extrapolated from research 
papers or predicted from EPI (Estimation Programs Interface) 
Suite™ (EPA 2023b), a software developed by US EPA. The 
absorption, excretion, and metabolization rates were taken from 
data sheets provided by pharmaceutical companies, and they are 
useful to estimate the rates of discharge of APIs into the influent. 
For pharma-related data like DDD, treatment period, or regular/
irregular disposal rates, the source was the ATC index suggested 
by the WHO, providing the rates of administration. A loss rate 
of 5% was set by default due to the lack of comprehensive data, 
based on the EU Guidance for the Development of Product 
Environmental Footprint Category Rules (PEFCRs) published 
by the European Commission (2017), while the remaining part 
of the API administrated was assumed to be actually consumed 
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by the patients. Finally, the SimpleTreat calculations estimated 
the fate of the three antibiotics entering the WWTP. The study 
shows how the ciprofloxacin is 50% discharged in the sewage 
treatment plant (STP in the figure) effluent, almost 25% accu-
mulated in the sewage sludge, and a significative part (10–20%) 
assumed to be transformed into metabolites in the human body. 
In general, the limit of theoretical approaches like this one lies 
in the fact that different classes of pharmaceuticals might have 
different behaviors in terms of degradation and pharmacokinetic 
properties, ultimately affecting the model created.

Despite this, such an approach is appreciable to make a 
general estimation of API flows in the EoL phase but the 
actual emissions into the environmental compartments could 
be different since other processes occur after the WWTP efflu-
ent. Indeed, comparing the results of these estimations with 
empirical data is challenging due to the great variability of 
measured concentrations of contaminants in the environment. 
Thus, more investigations are needed to assess the fate of APIs 
after discharge, with further transformations and biological 
interactions happening in surface water, together with the 
implications of sludge treatment and its use as fertilizer. In the 
case of antibiotics these last considerations gain much more 
importance since the release of these APIs contributes to the 
enrichment of antimicrobial resistance (AMR) in microbial 
communities, which is discussed in the following section.

Antimicrobial resistance in life cycle assessment

As previously underlined, the case of antibiotics deserves 
special attention in LCA modeling, since the interest in their 
release in the environment is not only limited to toxicological 
effects in the ecosystems. Rather, there is an additional impact, 
that in the last decades has become a serious concern in the 
sector of pharmaceuticals and generally in the field of medi-
cine: the enrichment of AMR (Polianciuc et al. 2020). Since 
the discovery of penicillin by A. Fleming, humanity faced a 
dramatic increase in well-being thanks to β-lactam antibiot-
ics, opening possibilities for medical solutions to several dis-
eases, and after the end of the Second World War antibiotics 
became widely available, with hundreds of new drugs devel-
oped worldwide (Gould 2016; WHO 2020; Cook and Wright 
2022). In the recent times, antibiotics have been crucial for 
medicine, with more than 269 million antibiotic prescriptions 
in the USA only in 2015 (Centers for Disease Control and 
Prevention 2015). Same trend was observed in the EU: accord-
ing to a 2019 census, an average consumption of antibiotics 
for systemic use (ATC group J01) was estimated to be 19.4 
DDD per 1000 inhabitants per day (ECDC 2020). Therefore, 
the WHO defined AMR as one of the top 10 global public 
health threats facing humanity, since the misuse and overuse 
have favored the development of resistant populations through 
mutation, and their resistance-coding genes can be horizontally 
transferred and imported to other bacteria, generating issues in 

the treatment of certain diseases and consequently damage to 
human health, commonly measured in disability-adjusted life 
years (DALYs) (Jian et al. 2021). An important source of anti-
biotic emission are the wastewater effluents, like all the APIs 
(Kümmerer 2009), with most attention being placed on hospi-
tal wastewater monitoring (Yao et al. 2021; Canan-Rochenbach 
et al. 2023). Pharmaceutical’s production sites could also act 
as hotspots for AMR enrichment and as reservoirs for resistant 
genes due to emissions from effluents, and the lack of aware-
ness about this contribution increases dramatically the urgency 
for standard methods and practices to mitigate the problem 
(Kotwani et al. 2021; Bombaywala et al. 2021).

Moreover, human consumption is not the only potential 
source, since globally the largest portion of antibiotics and anti-
mycotics are used in animals for food production (van Boeckel 
et al. 2019), with dramatic consequences in the ecosystem, 
severely increasing the spreading of resistance-coding genes 
(Sanderson et al. 2004). Hence, the problem does not concern 
exclusively the application of LCA in the pharmaceutical indus-
try, as the awareness on this topic is growing in all the sec-
tors related to the use of antibiotics such as crop and livestock 
farming (Manyi-Loh et al. 2018) or aquaculture (Hossain et al. 
2022), following the approach of One Health response for AMR 
emphasized by the WHO (2017). For instance, a recent study 
about rainbow trout production in the Spanish region of Galicia 
(Sanchez-Matos et al. 2023) included the AMR enrichment as 
a midpoint impact category in the LCIA to explore the conse-
quences of antibiotics release in freshwater using USEtox®, 
and to date, this study is still the only reported in the literature 
that considers AMR in a life cycle evaluation.

As well known, USEtox® is a LCIA model based on sci-
entific consensus developed by the UNEP and by the Society 
for Environmental Toxicology and Chemistry (SETAC) in 
the context of the life cycle initiative (Fantke et al. 2015). 
It provides midpoint and endpoint characterization factors 
for human toxicological  (CFhum) and freshwater ecotoxico-
logical  (CFeco) impacts of chemical emissions in LCIA, to 
calculate the impact score (IS) based on the weighted sum-
mation of the potential contribution of the mass (m) of the 
emitted substance x released into compartment i.

CFs are derived from the product of three matrices 
including fate factors (FF), human exposure factors (XF), 
and human and ecotoxicological effect factors (EF). Then, 
to arrive at endpoint level, the midpoint CFs are multi-
plied by a severity factor, and the whole schematization is 
represented in Fig. 7 together with the units for the CFs at 
midpoint and endpoint level.

(1)IS =

∑

x,i

CFx,imx,i

(2)CF = FF ∗ XF ∗ EF
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In their study, Sanchez-Matos et al. (2023) based the anal-
ysis on the model implemented by Nyberg et al. (2021). To 
our knowledge, this is the first attempt to include AMR in the 
pharma-LCA framework. The work carried out by Nyberg 
et al. (2021) presented a short review of the LCA-related 
studies in the literature dealing with antibiotics. These stud-
ies focus on freshwater ecotoxicity, calculating characteriza-
tion factors  (CFeco) with USEtox® or using available ones to 
conduct LCA of wastewater treatment. Nyberg et al. pointed 
out that the AMR phenomena are usually not considered 
or just mentioned in few of them. Then, starting from the 
USETox® framework, they proposed a viable strategy to 
characterize AMR enrichment by the definition of a new 
 CFAMR specifically designed for this purpose. They sug-
gested two possible approaches: (A) characterizing AMR 
enrichment in the environment as a midpoint indicator and 
(B) characterizing impacts for AMR enrichment in human 
health endpoint indicator.

The first approach (A) is based on a methodology previ-
ously developed (Rico et al. 2017) for environmental risk 
assessment, in which minimum selective concentrations 
(MSCs) are inferred from minimum inhibitory concen-
trations (MICs). From MICs of antibiotics for pathogenic 

bacteria listed in the EUCAST database (European Commit-
tee on Antimicrobial Susceptibility Testing 2020), MSCs can 
be extrapolated, defined as the lowest concentration at which 
resistant strains manifest a competitive advantage toward 
analogous sensitives. It should be noticed that MSCs are 
lower than MICs, which means that resistance is promoted 
even at sublethal concentrations, and the authors defined 
by default an extrapolation factor of 10 (MSC/MIC ratio 
of 0.1). Then, the geometric mean of MSC data is used to 
extrapolate the  HC50: the hazardous substance concentration 
that, at a given time, would promote AMR in 50% of species 
exposed. Similarly to what is done for the ecotoxicity, the 
effect factor for AMR enrichment  (EFAMR) in environmental 
bacteria can be calculated by the USEtox® model as EF = 
0.5/HC50, based on a linear extrapolation from the concen-
tration-response curve and assuming that the acquisition of 
resistance at the community level increases with antibiotic 
concentration increase. The EF in ecotoxicity  (EFeco) relates 
to the change in PAF (potential affected fraction of species) 
in response to an increase in contaminant concentration, 
while in the proposed model the  EFAMR refers to the change 
in the fraction of bacterial populations that acquire a signifi-
cant increase in resistance after an increase in contaminant 
concentration. Finally, utilizing the established USEtox® 

Fig. 7  Framework for characterization of human toxicity and freshwater ecotoxicity in USEtox® 2.0 (Fantke et al. 2015)
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framework based on Eq. (2), the authors introduced the new 
 CFAMR to characterize AMR enrichment in environmental 
bacteria as a midpoint indicator modifying only the EF. The 
MSCs are extrapolated from thousands of data about dif-
ferent bacteria found in the EUCAST database, rather than 
single dose-response experiments, assuming sufficient statis-
tical robustness in the methodology. However, the extrapo-
lation factor of 10 chosen to infer MSCs was based on a 
limited set of data about MSC/MIC ratios.

Emara et al. (2023) recently proposed a more comprehen-
sive methodology to determine CFs for AMR, determining 
specific MSC/MIC ratios for each of the 2984 antibiotic-
species combinations present in EUCAST database. This 
method used a more complex procedure involving a compe-
tition model that considers the fitness differences between 
sensitive and resistant strains (Greenfield et al. 2018). The 
MSC/MIC ratios estimated varied between 0.14 and 0.19 
across the 2984 combinations included in the analysis, which 
means MICs are approximately five to eight times higher 
than MSCs, while Nyberg et al. (2021) assumed an extrapo-
lation factor of 10 (ratio of 0.1) for all the antibiotics and 
species considered. Then, from these specific MSC data, 
Emara et al. (2023) derived for 128 antibiotics the specific 
 RSC5 values (rather than  HC50), defined as resistance selec-
tion concentrations that would promote AMR enrichment 
in 5% of exposed species. Finally,  RSC5 data are used to 
calculate the EF and then the CFs for AMR enrichment 
in microbial communities. Moreover, these data could be 
used as a minimum threshold and compared to measured 
environmental concentrations in different compartments 
to determine the necessity of mitigation strategies. There 
are some limitations in this midpoint approach, related to 
the actual mutation dynamics, which depend strongly on 
the different levels and especially durations of contaminant 
exposure, rather than the concentration only. In fact, this 
approach seems to be better for monitoring small-scale sys-
tems with continuous emissions such as WWTP or other 
aquatic compartments, rather than more variable ones or 
regional scale systems. Moreover, in this approach, there 
is a lack of connection between the use of antibiotics and 
the possible human health impacts derived from resistance, 
due to the complex biological pathways and mechanisms 
involved.

In the second approach (B), proposed by Nyberg et al. 
(2021), this drawback is avoided by assuming that any use of 
antibiotics will contribute to resistance development in the 
bacteria community, enabling a characterization of potential 
impacts on a regional scale only based on the total use. The 

endpoint human health impacts of AMR are expressed as 
DALYs, the common unit used in LCA. The Joint Intera-
gency Antimicrobial Consumption and Resistance Analysis 
(JIACRA) report (ECDC 2021) was used as data source, 
suggesting statistical correlations between consumption 
of antibiotics and AMR enrichment in human pathogens, 
together with other publications such as Cassini et al. (2019), 
reporting resistant pathogens and related impacts measured 
in DALYs. The model developed was based on the odds 
ratio (OR) from the JIACRA report, expressing a correla-
tion coefficient ∂x,p,sect,reg explaining the relationship between 
the use in a certain sector and resistance development by a 
certain pathogen p toward a certain antibiotic x in the region 
of interest.

Then, such a correlation coefficient was used together 
with EU data on antibiotic use (ABU), to express the total 
resistance by each pathogen (ABFx, p, reg) as the total (human 
+ veterinary) resistance developed by a pathogen p toward 
a certain antibiotic x (Eq. 4). Finally, the ABFx, p, reg is cor-
related to the data about impacts derived from resistant 
pathogens, and through a mass balance approach all the 
impacts from resistant pathogenic bacteria can be summed 
up, obtaining the DALYs per kg of antibiotic x used in a 
certain region of interest (Eq. 5).

An example of application is presented using the case 
of third-generation cephalosporins (3GC) in the EU, being 
crucial antibiotics for human medicine and making a big 
contribution to resistance-related mortalities, with 3GC-
resistant Escherichia coli as the most critical pathogen. The 
OR from the JIACRA report and the annual data on anti-
biotics use from EU agencies (ABU, 270 tons for humans 
and 14 tons for veterinary) are used as input in the model, 
obtaining the ABF (resistance per kg per year). Then, with 
data on mortality caused by 3GC-resistant E. coli (37.2 
DALYs per 100,000 population, corresponding to 191,883 
DALYs across Europe the given population of 515.8 million 
in the year examined), Eq. (5) can be written in a simpli-
fied manner (Eq. 6), since it is considered only a class of 
antibiotics (3GC) and a pathogen (E. coli).

(3)�x,p,sect,reg =

√

ln
(

ORx,p,sect,reg

)

(4)ABFx,p,reg = ABUx,hum,reg
∗ �x,p,hum,reg

+ ABUx,vet,reg ∗ �x,p,vet,reg

(5)
DALY

kg ABx used
=

DALYx,p1,reg

ABFx,p1,reg

+

DALYx,p2,reg

ABFx,p2,reg

+⋯ +

DALYx,pn,reg

ABFx,pn,reg

(6)DALY

kg 3GC used
=

DALY
3GC,E.coli,EU

ABU
3GC,hum,EU

∗ �
3GC,E.coli,hum,EU

+ ABU
3GC,vet,EU

∗ �
3GC,E.coli,vet,EU
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The final value of 0.87 DALY per kg of 3GC used is 
several orders of magnitude higher than values considering 
only direct toxicity impact (Ortiz de García et al. 2017), 
highlighting the importance of including AMR in the LCA 
of antibiotics. The limits of this approach are in the lack of 
data about AMR impacts, since the source used to develop 
this model (Cassini et al. 2019) only describes 16 pathogen-
resistance combinations and the OR in the JIACRA report 
are limited as well. Moreover, the economic and nutritional 
losses from livestock mortality are not considered, together 
with the emissions of antibiotics derived from the core phase 
and from the transport.

Notwithstanding these limitations, the research described 
proposes two valuable approaches to deal with AMR, each 
one suitable for different time and spatial scales. The first 
approach seems to be more suitable for small-scale systems 
with continuous emissions (for example, a WWTP), but 
the connection with human health effects caused by resist-
ant pathogens is lacking. In the second approach, instead, 
the endpoint human health impacts of AMR are expressed 
as DALYs, making it more suitable for system analysis at 
the regional scale, but it needs a strong background of data 
regarding AMR enrichment in human pathogens and related 
mortality rates in the region of interest. Starting from these 
concepts, many improvements could be made to make these 
models more accurate and adaptable to the different possible 
applications, considering the extensive use of antibiotics in 
various value chain of products. These improvements could 
lead to the development of more comprehensive and com-
plementary environmental risk assessment methodologies. 
These approaches could be then commonly implemented as 
routine procedures when performing LCA studies of antibi-
otics, following the One Health framework stressed by the 
WHO (2017). This achievement, however, inevitably comes 
through an increase in the quality and quantity of monitoring 
data on antibiotic emissions, ultimately supporting a grow-
ing understanding of the relationships between the usage of 
antibiotics and resistant pathogens, as well as the complex 
dynamics of AMR enrichment in the microbial community. 
This knowledge could also provide the basis for quantita-
tive estimation of threshold concentrations and define the 
urgency for remediation actions.

Conclusion

In this short review, different challenges generally faced in 
pharma-LCA studies are discussed. We selected antibiotics 
as a case of discussion, given their importance in the field 
of pharmaceutical products. They represent among the 
classes of APIs more used in medicine and whose harm-
ful effect on the environment is largely debated in litera-
ture. In the case of the upstream phase, the implementation 

of green metrics revolutionized the industry, driving the 
design of chemical processes toward more sustainable 
methods. However, comprehensive LCA studies are still 
necessary to quantify the environmental impacts of the 
whole supply chain of products. The lack of publicly avail-
able data related to large-scale operations for many chemi-
cals sets serious limits to the implementation of LCA for 
pharmaceuticals. High-quality LCI data are crucial to 
assess the environmental impact of products considering 
the whole value chain “from cradle to grave.” About the 
downstream phases, the drawbacks related to the use and 
EoL stages derive from the complexity of flows and emis-
sion pathways involved. The approaches proposed to deal 
with these challenges suffer from the great variety of drug 
classes, each with different properties and interactions, 
hampering the development of a generalized framework 
for pharmaceuticals. The lack of systematic monitoring 
of drug emissions from WWTP effluents has been empha-
sized, together with a limited knowledge about the fate of 
human metabolites of APIs consumed.

In the field of pharma-LCA, we encourage the enhance-
ment of collaboration and communication between pro-
ducers, public administrations, and customers, defining 
common PCRs and supporting the development and adop-
tion of universally accepted methodologies to minimize 
inconsistencies and facilitate the comparison of results. 
As underlined by WHO, the AMR enrichment is a global 
development threat, and a model to implement its conse-
quences into pharma-LCA does not exist yet. Consequently, 
an important impact is excluded from the assessment of all 
the sectors related to the use of antibiotics. A recent study 
(Nyberg et al. 2021) proposed two different approaches to 
implement AMR as a midpoint or endpoint indicator, each 
one with different strengths and weaknesses that are dis-
cussed previously. The researchers have introduced inter-
esting models with much space for improvement and dis-
cussion, and we suggest that it could be the starting point 
toward the development of a comprehensive methodology 
that is generally recognized and included in the LCA of 
products related with the use of antibiotics. The need of 
better knowledge regarding the causes and consequences 
of AMR enrichment has been stressed extensively, together 
with a more general lack of available data regarding emis-
sions of antibiotics in the downstream phase.

Finally, it should be noted that these linear dose-response 
models do not consider the beneficial aspects of antibiotics 
use, being a pillar in modern medicine with millions of lives 
saved and many hospitalizations avoided each year, making 
the sustainability of antibiotics (and this is true in general 
for pharmaceuticals) a very complex topic that needs much 
more discussion to find a common consensus and the inclu-
sion of further analysis to address all the social benefits (e.g., 
social-LCA). 
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