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Taming edge computing for hard real-time
advanced control of mechatronic systems

Luca Orciari, Davide Raggini, and Andrea Tilli.

Abstract— In novel mechatronics enabled by smart
structures and materials, servomechanisms are becoming
increasingly complex, requiring computationally-intensive
advanced control algorithms and diagnostic tools to fully
exploit their potential. This calls for a significant increase in
computational power while guaranteeing hard real-time fea-
tures. In this work, we propose to address such an issue by
adopting recently-emerged edge-computing solutions ex-
ploiting low-cost multicore that combine microcontrollers
and microprocessors to boost the computational capability.
However, such platforms are usually endowed with non-
real-time software infrastructure, assigning a dominant role
to microprocessors and leading to large overheads and un-
predictability. Therefore, to tame them for hard real-time, we
first lighten the infrastructure to enable one or more micro-
processors to handle computations with minimal overhead
and jitter. Then, we designate a microcontroller as the plat-
form master of time and tasks, off-loading the heavy com-
putations to the “relieved” microprocessor cores, acting
now as computational slaves. We assess the potentials of
this approach with a basic test using a demanding control
algorithm as a benchmark, choosing the STM32MP157 as
the reference platform and using the Jailhouse hypervisor
to adapt one of its microprocessor cores for hard real-time
tasks.

Index Terms— Automatic control, Benchmark testing,
Edge computing, Embedded software, Mechatronics, Mi-
croprocessors, Platform virtualization, Real-time systems,
Servosystems.

I. INTRODUCTION

In the field of mechatronics, servomechanisms are pivotal
components. Within high-performance motion architectures,
they function as mechatronic chains, combining electric drives
(i.e. the union of control and power electronics with electric
motors) with specialized mechanisms designed to move along
periodic or asynchronous trajectories with one or multiple
degrees of freedom.

In this domain, embedded microcontroller units (MCUs),
tailored explicitly for operating electric drives, are commonly
employed [1]. These MCUs feature high-resolution timers and
ADC units, to provide fast control actions. In addition, they
operate within hard real-time (HRT) constraints, related to
periodic tasks, whose periods span from tens to hundreds of
µs, with no tolerance on expected response instants to drive
power electronics properly. However, such MCUs are, more
often than not, single-core units with limited computational
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capabilities. Hence, they predominantly lead to simple control
solutions complemented at most with basic feedforward, self-
tuning, and loop-shaping functions.

Nowadays, the complexity of servomechanisms is increas-
ing [2], which means that advanced control methods are
necessary to turn their potential in true performance. Addi-
tionally, it is crucial to identify faults, wear, and inefficien-
cies in more intricate systems. As a result, diagnostic and
prognostic tools have become almost mandatory in today’s
industry. Features like on-the-edge condition monitoring can
lead to substantial cost savings, extending equipment lifespans
and reducing downtimes by promptly identifying anomalies.
However, the MCUs currently used in the mechatronics field
lack the computational power required to implement these
essential functionalities. As a result, to effectively integrate
these features, bounded mainly by HRT constraints, there is
a need for greater computational capabilities, ”at the edge”,
or better ”at the embedded edge”, which requires to keep the
overall cost and footprint as low as possible.

In the world of Internet of Things (IoT), innovative plat-
forms have emerged bringing together different kinds of
processor cores, such as Microprocessor Units (MPUs) and
MCUs. These heterogeneous computing platforms offer an
opportunity to fulfill the increasing need for computational
power in advanced servomechanisms by combining the real-
time capabilities of MCUs with the performance metrics akin
to those of low-power PCs thanks to MPUs. Additionally, the
MCU greatly facilitates interfacing with sensors and actuators.
However, there is one significant drawback: the computational
power of MPUs often cannot be fully utilized to meet the
requirements of servomechanisms. This issue arises because
MPUs on these platforms typically use Operating Systems
(OS) like Linux, which are unsuitable for periodic tasks with
HRT constraints like those requested in advanced mechatronics
with significant computations and cycle times of few tens of
µs. Additionally, in standard software setups, MCUs have a
dominant role over the MPUs, making their collaboration in
addressing such tasks very complex. As a result, effectively
leveraging the power of these platforms for advanced ser-
vomechanisms remains a challenge.

Given all the above considerations, the main objectives of
this work are:

• Introduce a novel paradigm for the management of IoT-
oriented heterogeneous platforms that enables the MPU
to handle HRT tasks efficiently. This approach aims to
fully exploit the MPU’s computational power to support
the MCU in HRT advanced mechatronic applications
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properly (i.e. with 10-100µs task periods)
• Maintaining cost-efficiency, focusing on platforms with

low cost and low energy consumption, harnessing their
full potential.

As for the first point, unlike the traditional software configu-
ration, where the MCU is subordinate to the MPU, we suggest
giving the MCU a more prominent role as the controller of
time and tasks, directing one or more MPU cores. These MPU
cores could efficiently handle computations for demaning HRT
tasks with a proper low overhead software infrastructure,
complementing the MCU’s capabilities. In particular, we are
targeting heterogeneous computing platforms with at least
two MPU cores and one MCU. With multiple MPU cores,
it becomes possible to maintain at least one core hosting a
conventional operating system with all its functionalities. It is
worth noting from the very beginning that one major challenge
in our approach is minimizing the interference between the
MPU cores to reduce the overhead and enhance predictability
in the MPU assigned to HRT tasks.

Moving to the second point, oriented to cost-efficiency,
we are considering heterogeneous computing platforms like
STM32MP157 [3] from STMicroelectronics and I.MX 7 [4] by
NXP Semiconductors. These platforms boast dual-core MPUs
based on the ARMv7-A architecture, and they show cost-
effectiveness and low energy requirements.

In this context, crucial preliminary steps to apply the above
approach to a chosen platform include:

• Identifying the essential components to enable the MPU
cores to handle HRT tasks with minimal system overhead.

• Assessing the extent of time saved when transitioning
HRT tasks from the MCU to the MPU equipped with the
identified software infrastructure.

• Evaluating the magnitude of jitter, as the worst-case time
savings must be considered for HRT applications [5].

This work will address these essential preliminary bench-
marking steps. Specifically, we will consider as a starting
example:

• The STM32MP157, as the platform of choice, selected
for its affordability, robust performance, user-friendly
software ecosystem, and features relevant to our proposed
paradigm.

• Jailhouse, a lightweight hypervisor chosen for its ability
to enable the MPU core to handle HRT tasks by splitting
the system resources.

• A benchmark rooted in an advanced control application
to fully grasp the benefits of leveraging such platforms
for advanced servomechanisms.

A. Related works
To the best of our knowledge, no existing work has ad-

dressed our specific objective regarding the proposed paradigm
for heterogeneous computing platforms applied to modern
mechatronics. Nonetheless, significant efforts have been made
to achieve real-time functionalities on MPU cores within
open-source commercial-off-the-shelf (COTS) platforms to
concurrently execute both non-critical activities and real-time
control tasks on the same platform. Without the ambition to

be exhaustive, we present some threads carried out in this
framework.

Several hypervisors have been thoroughly analyzed to en-
hance system predictability in an real-time context. Notable
studies include those focusing on automotive applications,
such as [6], and performance measurements specifically on
embedded ARM processors, such as [7] and [8]. These studies
have used hypervisors like Jailhouse, Xen, and BAO. [9] intro-
duces the BlueVisor hypervisor, a scalable real-time hardware
hypervisor for many-core embedded systems, showcasing its
design and real-time capabilities. [10] presents Sypher an
embedded hypervisor optimized for mixed-criticality systems,
highlighting its real-time performance and hierarchical re-
source isolation, and its advancement over traditional hyper-
visors through improved VM scalability and efficiency using
novel virtualization techniques for secure and efficient mixed-
criticality management. In the context of Industry 4.0, [11]
proposes RunPHI, an application that integrates partitioning
hypervisors with OS-level orchestration systems for improved
management of distributed resources. The potential of Xen and
KVM as real-time hypervisors is evaluated in [8].

Regarding memory predictability and memory concerns for
multi-core embedded systems. In [12], the authors address
the predictability issues of multi-core embedded systems aris-
ing from shared memory access contention and propose a
software framework to enhance memory access determin-
ism. Meanwhile, [13] offers a comprehensive evaluation of
shared memory’s impact in multi-core mixed-criticality real-
time applications on platforms with ARMv8-A and ARMv7-R
processors.

Several studies have focused on enabling platforms to
perform mixed-criticality tasks in the PC-based industrial au-
tomation domain, with hypervisors being the primary enabling
technology. In [14], Cinque et al. offer an in-depth review of
virtualization trends and challenges in the industry. In [15],
Queiroz et al. assess general-purpose hypervisors in real-time
control systems, while [16] discusses the application of embed-
ded virtualization for industrial edge computing. Additionally,
[17] and [18] explore the impact of virtualization, focusing
on flexibility, scalability, and the development of modular
platforms.

To conclude this subsection, it is worth recalling the distance
between our proposal and the above literature. This work
addresses a specific strategy to tackle the enhanced computa-
tional requirements of modern mechatronic servomechanisms
by employing low-cost MCU-MPU heterogeneous platforms.
It aims to boost the MCU’s performance by exploiting the
MPU, without completely replacing the MCU. Thus, our target
is very specific, focusing on a streamlined architecture. In con-
trast, the above-mentioned works consider a different scenario.
On one hand, they consider either no control applications or
industrial control applications (like PLC-based machine/plant
control) having a scope and a time scale far from the one
characterizing our mechatronic servomechanism domain. On
the other hand, the above works revolve around platforms
exploiting only MPUs (usually high-performance MPUs in the
industrial PC domain) without introducing MCUs. Owing to
the above characteristics, direct comparison of our proposal
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with the above solutions looks inappropriate and potentially
misleading.

B. Paper Organization

To provide clarity on the structure of this work, we offer a
brief overview of its various sections:

• Section II: This section delves into the key features of the
STM32MP157 platform, emphasizing the pivotal aspects
concerning the proposed software infrastructure.

• Section III: We discuss the different methods to enable
the proposed paradigm, exploring various methodologies
enabling the MPU core to handle HRT tasks.

• Section IV: We provide an overview of the software
architecture, outlining the functions and features that can
be implemented on the platform.

• Section V: Representing the core of our work, we eval-
uate the viability of the proposed method. We focus on
assessing its potential in processing complex control al-
gorithms, optimizing computation time, and maintaining
minimal jitter mandatory for HRT tasks.

• Section VI: It remarks the results of our work and
highlight possible future direction.

II. SYSTEM ARCHITECTURE

A. Hardware description

As previously noted, the STM32MP157 was selected as the
heterogeneous computing platform of choice to implement and
assess the validity of our proposed paradigm. This platform
is ideal for our purposes since it features all the neces-
sary hardware components while preserving cost-effectiveness.
Moreover, it comes with a rich, well-documented, and easy-
to-use software ecosystem.
Key features of the STM32MP157 platform are reported,
highlighting their exploitation in our new architecture:

• MPU: Dual-Core Cortex-A7: Operating at a clock speed
of 650MHz and based on the ARMv7-A architecture, the
inclusion of at least two cores satisfies one of the minimal
requirements for our approach. While one core will be
tasked with high-level, not time-sensitive operations via
Linux, the other, given the proper software infrastructure,
will serve as a computational slave to the MCU for HRT
tasks.

• MCU: Single-Core Cortex-M4: This core, operating at
a speed of 200MHz, is part of the ARMv7E-M family.
In our architecture, it will manage all HRT processes,
establishing its authority as the master over the Cortex-
A7.

• IPCC (Inter-Processor Communication Controller):
The IPCC menages data transfers between all processors
cores. Employing a non-blocking signaling technique
ensures prompt data transfers, exploiting shared memory
buffers. Both Cortex-M4 and Cortex-A7 cores can access
these memory buffers located in the MCU SRAM.

• Timer: This peripheral, synchronized with the Cortex-
M4’s frequency and featuring a 32-bit resolution will
be essential to manage HRT tasks in our architecture.

Besides, it ensures precise measurement of execution time
for our evaluation benchmarks.

• Additional Peripherals: These devices include Ethernet
interface, a USB hub, a serial interface, and other com-
ponents. Beside providing additional features, they can
also create disruptions when conducting benchmark eval-
uations, which helps determine appropriate core isolation.

Considering these characteristics, the STM32MP157
emerges as a viable choice for the abovementioned purposes.
In addition, this platform is equipped with a viable and
user-friendly ecosystem, making development smoother.
Nevertheless, while we selected the STM32MP157 to validate
our proposed paradigm, it is important to highlight that
the platform serves only as an example. The architectural
framework and operational insights provided here, although
demonstrated through the STM32MP157, are intended to be
adaptable to other heterogeneous computing platforms that
meet the essential criteria for implementing efficient edge
computing solutions.

III. SW MODULES FOR HRT AND EFFICIENT
COMPUTATIONS

A primary target for the proposed orchestration is to opti-
mize the computational capabilities of one of the available A7
cores, making it:

• Highly efficient, ensuring minimal system overhead.
• Predictable, hence maintaining a low jitter for HRT

purposes.
To this end, we explore available software modules and

strategies, discussing their advantages and drawbacks:
• Real-time Linux: This version of Linux has been im-

proved with patches to make the kernel more pre-
dictable. These modifications make the kernel fully pre-
emptible and include a real-time CPU scheduler, which
was introduced in release 3.14 [19]. However, despite
these enhancements, real-time Linux may only sometimes
meet performance expectations, especially when dealing
with computationally demanding control tasks commonly
found in modern automation. In particular with periodic
HRT tasks with cycle times of few µs [19].

• Bare-metal Programming: This approach entails cre-
ating software that directly interacts with the hardware,
bypassing the requirement for an operating system. While
it provides unparalleled control over system resources,
implementing this method can be complex and could
require a significant time investment to fully utilize all
available system resources.

• Hypervisor: Partitioning hypervisors have emerged as
particularly promising solutions, enjoying considerable
favor in the automotive sector. These hypervisors facil-
itate the creation of isolated partitions where resources
are statically allocated to each virtual machine (VM).
Consequently, every VM is empowered to operate its own
distinct operating system or a bespoke real-time environ-
ment. With robust isolation, interference from other cores
is minimized, promoting improved predictability. Hence
providing the ability to meet HRT constraints.
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After considering the above options, we decided to go
for the hypervisor approach. This choice strikes a balance
by offering the efficiency of bare-metal programming while
providing an organizational framework that simplifies the
development process.

To find a suitable hypervisor solution, we evaluated several
type-1 hypervisors, also known as ”bare metal” hypervisors.
These hypervisors operate directly on the host hardware with-
out relying on an operating system. Our evaluations focused on
three options: Xen ( its dom0less variant), Jailhouse, and Bao.
We chose these options because they are widely adopted with
an active community and open source, making them promising
candidates for our needs.

1) Xen: Xen is a hypervisor that can manage multiple
VMs on a single physical host, ensuring strong isolation
and optimal performance. In its traditional setup, Xen
employs a VM called ”Dom0” to handle administrative
tasks. This special domain has exclusive access to the
hardware. Takes charge of activities such as launch-
ing and managing unprivileged VMs (DomU), interfac-
ing with hardware components, and managing specific
drivers. However, there’s now a ”dom0less” mode in Xen
where it can operate without relying on this domain [20].
This mode is particularly useful for embedded systems
and automotive applications where minimizing size and
complexity is crucial.

2) Bao: Bao is a hypervisor specifically designed for embed-
ded systems [21]. Its main goal is to ensure isolation be-
tween partitions while keeping the performance impact as
low as possible. It adopts a static configuration approach,
where resources are allocated to partitions at compile
time. Bao’s emphasis on efficiency and security makes
it ideal for constrained environments where performance
and safety are paramount.

3) Jailhouse: Jailhouse is a partitioning hypervisor designed
for static partitioning of a system’s resources [22]. It aims
to create isolated environments, known as cells, on mul-
ticore systems without the need for a full-fledged tradi-
tional hypervisor stack. Instead of virtualizing hardware,
Jailhouse focuses on separating workloads running on the
same physical machine. One distinguishing feature is its
simplicity: Jailhouse eschews complex functionalities like
overcommitment, aiming to reduce overhead.

We chose the Jailhouse hypervisor because it is simple and
efficient. We ruled out two other options for the following
reasons:

• Bao: It has similarities to Jailhouse, such as its
lightweight nature and focus on resource partitioning with
minimal overhead. Additionally, Bao offers flexibility
by not requiring a Linux-based root cell, which can be
beneficial for platforms with fewer CPU cores. Anyhow,
it was excluded due to its ongoing development for
ARMv7 architecture support.

• Xen: Despite being compatible with the ARMv7 archi-
tecture, Xen did not have support for our specific board.
Integrating Xen into the ST Microelectronics ecosystem
would have required considerable effort.

The motivations mentioned above are closely tied to the
heterogenous platform chosen to demonstrate our proposed
paradigm. For heterogeneous platforms featuring different
architectures, alternative hypervisors can be a viable solution.

IV. THE ADOPTED SW ARCHITECTURE

Additional details about the proposed software architecture
and its deployment on the STM32MP157 platform are outlined
here. As previously mentioned, according to our proposed
paradigm:

• The Cortex-M4 serves as the central unit, overseeing all
real-time operations as the master.

• One Cortex-A7 core, which hosts the Jailhouse root cell
running Linux, manages tasks that aren’t time-sensitive.

• The other Cortex-A7 core, operating the Jailhouse sec-
ondary cell, assists the MCU with HRT tasks. It runs
pseudo-bare-metal code with minimal infrastructure given
by the hypervisor. Hence, its primary role is to reduce the
computational burden on the Cortex-M4, aiding it, when
triggered, to deal with computationally heavy tasks. It
is worth noting that in general is not possible to shift
HRT Control and Diagnosis tasks to MPU completely,
since sensor and actuator interfacing is carried out by the
master MCU which fits such task best.

Moreover, the platform under consideration is conceived to
be integrated into an advanced electric drive for innovative
mechatronic chains. Therefore, the following modules are
foreseen for both the MCU and the Linux-mastered MPU to
harness the system’s full capabilities:

• MCU: Besides HRT control tasks based on interfacing
with secondary cell MPU. It will oversee fieldbus com-
munications such as EtherCAT [23] and manage sensor
acquisition and power actuation.

• MPU featuring Linux: This will handle data management,
including remote data exchange, a human-machine inter-
face, and a command-line interface.

It is also important to highlight the important role of
the IPCC introduced in Section II. This controller oversees
communications between all the processors. By leveraging
shared memory resources, the IPCC ensures rapid and precise
data transfers between cores. Hence, allows for the exchange
of data, such as control inputs and outputs, as well as sensor
data, between cores, thus enabling the implementation of the
proposed methodology.

In summary, the proposed architecture is depicted in Fig.1.

V. TEST DEFINITION AND PERFORMANCE EVALUATION

Considering the proposed paradigm, we aim to evaluate the
overall computational time we can preserve by transitioning
resource-intensive control or diagnostic tasks from the MCU to
the MPU. Since these tasks are subjected to HRT constraints,
paying particular attention to the maximum elaboration time is
crucial, given that when dealing with this kind of application,
it is mandatory to meet deadlines even in the worst-case
scenario. Moreover, this assessment should also address data
management time as the control algorithms elaboration is split
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Fig. 1: Overall software architecture.

among multiple cores, and diagnostic tools require a large
amount of data to be transferred.
It is worth underlining that, according to the above targets,
we do not need to rely on a standard testing suite, as we
are not aiming to rate the performance of our methodology
with the selected platform as a whole in comparison to
other multicore and SW platforms. Moreover, we intend to
compare the performance between the MCU and MPU with
a benchmark that is deeply rooted in control applications of
advanced servomechanisms to evaluate control computation
time and control and diagnostic data transfer time. Therefore,
standard test suites like MiBench [24], which cover a wide set
of general applications, are not suited to our specific domain.
Furthermore, other suites like Cilictest1, which offer insights
into real-time scheduler latency and responsiveness, do not test
what is of our interest at this stage of development.

Consequently, we propose two kinds of specific tests:

• The first test focuses on determining the time required to
transfer data between the MCU and isolated MPU back
and forth. It is crucial to assess the speed of data trans-
mission for batches of different sizes as smaller chunks
are significant for control application purposes, while
larger ones are more relevant for condition monitoring
and diagnostic tasks.

• The second test considers a benchmark to assess the
overall computational time needed to perform complex
elaborations. We anticipate that moving the calculation
from the MCU to the MPU will result in a reduction in
average computational time. Nevertheless, it is crucial to
assess the jitter. MPUs embodied in a multicore structure
show a complex and dynamic computational architecture,
which might lead to substantial variance in the execution
time of a given code chunk. As reported above, we use a
servomechanism control-specific code (described later) to
run such a test. In order to stimulate the adoption of this
kind of benchmarking for similar configurations on other
platforms, we provide our code in the supplementary
material.

In the following, we report the detailed arrangement of
the proposed tests on the considered platform and the related
results, along with comments and considerations.

1https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

A. Test descriptions

As anticipated, the first test consists of a loopback test.
Its aim was to properly assess the overhead introduced by
transmitting and retrieving data to the isolated Cortex-A7 core.

More specifically, the test entails the following steps:
1) The Cortex-M4 generates a random data package of fixed

size.
2) This data package is copied to the shared memory with

the Cortex-A7.
3) A notification is sent via the IPCC to indicate the

presence of the data package.
4) The isolated bare-metal Cortex-A7 core then copies this

data package to its local memory.
5) Subsequently, the data package is sent back through the

shared memory.
6) A notification is sent again via the IPCC to confirm the

return of the data package.
7) Go back to step 1).
Our performance metric evaluates the duration taken for

the data package to make this round trip. We performed the
test with various data package sizes, starting from 0 bytes,
where we only assessed the overhead introduced by the IPCC
notification mechanism up to 1024 bytes. Data packages on
the lower-size end are essential to grasp how much time is
lost when offloading part of the Cortex-M4’s computations to
the Cortex-A7. Larger data packages are meaningful to know
how much time is required to transmit larger data chunks
present in diagnostic and prognostic applications. To establish
a meaningful benchmark for comparison, we also conducted
the same test without Jailhouse, opting instead for the real-
time Linux patches discussed in Section II.
We augmented the loopback test by adding an interference
application to evaluate the core’s isolation better. Throughout
the entire duration of the test, the Cortex-A7 hosting Linux
was kept occupied. Specifically, it continuously transmitted a
file located in the SD card memory of the board to a pen
drive connected to a PC via SSH protocol. By doing this, we
thoroughly tested the core isolation and how the jitter behaves
in different operating conditions, particularly considering the
utilization of various peripherals and continual access to the
system memory.

Following the loopback test, we next focused on evaluating
the computational speed-up potential obtained by offloading
calculations to the MPU. In this effort, we focused on a
computationally intensive controller as our benchmark. This
choice was motivated by the assumption that a resource-
heavy controller would more clearly highlight the benefits of
leveraging the Cortex-A7. Specifically, we favored a controller
based on the internal model principle [25] [26]. In a nutshell,
the internal model principle posits that to achieve perfect
tracking or disturbance rejection in a feedback control system
(without effective feed forward actions), the controller must
incorporate an internal representation (or model) of the exter-
nal signal to be tracked or rejected and a proper asymptotically
stabilizing unit. By exploiting such ”internal model”, after
a suitable convergence transient, the system can generate a
proper control action for tracking and disturbance rejection
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without any non-null tracking error input ( see [25], [26]
for details). Internal models usually adopted in mechatronic
applications are a composition of integrators and oscillators to
compensate for constant and harmonic signals. In our test, we
considered a control algorithm endowed with 20 harmonics
and an integrator (i.e the controller state space model has 41
state components). The high number of harmonics results in
significant computational requirements, thereby qualifying it
as an apt choice for our assessment.
The above mentioned control algorithm is part of a larger
control architecture for an electric drive moving a nonlinear
complex mechanism, and it was designed with the assistance
of MATLAB and simulated through MATLAB Simulink [27].
We used Simulink’s Embedded Coder toolbox to generate the
C code required to run the program on our platform, ensuring
accuracy and optimization. The controller was implemented in
both fixed-point and floating-point precision. The fixed-point
implementation was used to have a fair comparison with the
Cortex-M4 since the latter features an unoptimized Floating-
Point Unit (FPU). In contrast, the floating-point format was
used to highlight the benefits of leveraging the FPU of the
Cortex-A7. We used a sample set of inputs (motor position
reference and measurement) and corresponding outputs ob-
tained from a Simulink simulation to benchmark the system
and provide realistic inputs and outputs for the controller. As
anticipated, the overall code and data set will be released in
the supplementary material. The test comprises the following
steps:

1) The Cortex-M4 sends the reference position and motor
position to the isolated bare-metal Cortex-A7 through the
IPCC and shared memory regions.

2) The Cortex-A7 uses these inputs to compute the controller
output.

3) The computed output is then sent back through the shared
memory and notified via the IPCC.

4) The resulting output is checked to ensure it matches the
simulated values obtained from the Simulink simulation.

5) Return to step 1).
The interference application, introduced during the loopback
test and running on the A7 core with Linux, was maintained
active for the entire duration of this test to assess the com-
putational speed-up obtained by exploiting the MPU under
unfavorable operating conditions.

B. Test results and comments
We begin by presenting the results of the loopback test.

We conducted 1 million iterations of the test for each data
packet size. In Table I, we provide key statistics comparing the
performance of the core isolated via the Jailhouse hypervisor,
both with and without the interference application active, to
that of a Linux system employing real-time patches without
active interference.

From the results, we immediately note that the maximum
execution time for the loopback aligns closely with the average
execution time when using the core isolated through the
Jailhouse hypervisor. This holds true whether the interference
application is active or not, suggesting a reliable core isolation.

TABLE I: Loopback Test Results in µs

Size(Bytes) Jailhouse Jailhouse with interferance ON Linux RT
Min Max Mean Min Max Mean Min Max Mean

0 0.91 1.07 1.01 0.92 1.18 1.01 0.91 2.48 1.01
1 1.20 2.41 1.25 1.21 1.76 1.25 1.20 2.71 1.26
8 2.83 4.28 2.90 2.84 4.23 2.90 2.83 4.5 2.91

16 2.91 5.09 3.05 2.91 5.09 3.05 2.91 5.09 3.05
32 4.81 7.21 4.97 4.81 7.08 4.96 4.81 7.30 4.96
64 8.51 10.47 8.76 8.52 10.73 8.75 8.50 10.90 8.75
128 16.01 18.52 16.44 16.01 18.87 16.39 15.99 69.42 16.39
256 30.87 33.26 31.71 30.97 36.98 31.59 30.91 119.56 31.59
512 60.95 63.73 62.28 60.95 73.40 62.02 60.81 132.20 61.86

1024 120.87 125.10 123.42 120.87 134.48 122.29 120.63 296.54 122.258
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Fig. 2: Performance analysis when transferring data using
Jailhouse

In contrast, while the mean execution time remains relatively
stable when running the loopback test on the core with
Linux using real-time patches, the maximum execution time is
significantly higher. Considering we are addressing HRT tasks
where deadlines must be met at each iteration, the maximum
execution time becomes our primary concern. The test using
real-time Linux was not repeated with the active interference
application, as the results were already unpromising without
it.
As observable from Fig.2, transmitting larger data packages
yields improved performances in terms of throughput. This can
be attributed to the constant overhead time associated with the
notification mechanism, which remains unchanged regardless
of the size of the data packet being transmitted. While this
overhead plays a significant role when transmitting smaller
data packets, it becomes increasingly negligible with larger
packets.

After having validated the communication mechanism be-
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tween cores and confirming that it introduces an acceptable
overhead, we turned our attention to the second type of
benchmark introduced. In this evaluation, we determine the
potential computational speed-up obtained by offloading the
calculation to the core isolated with Jailhouse. Hence, we
compared the execution time of the previously described
controller on the isolated core to that of the Cortex-M4.
We performed the test using 2000 controller inputs obtained
from the Simulink simulation looped for a total of 2 million
iteration of the controller. We measured the execution time on
the isolated core, including and excluding the communication
time. While assessing the potential speed-up, it is essential to
account for the communication time. However, we also wanted
to benchmark the standalone performance of the application.
We showcase the results in Fig.3, where we detail the mini-
mum, maximum, mean, and median execution times.
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Fig. 3: Histograms representing execution times of the control
algorithm

As expected, concerning the fixed-point precision implemen-
tation of the controller, we found promising results on the
isolated core. It outperforms the M4, even when accounting
for communication time overhead. However, we observed
significant spikes in execution time. These are outliers, as
evidenced by the low mean and median. However, despite
their infrequency, such spikes are unacceptable in real-time
applications where missing a deadline is unacceptable. There-

fore, implementing this controller on the A7 would not provide
a computational speed-up compared to the M4. Nevertheless,
when looking at the execution time of the code in floating point
precision on the A7, this offers a speed-up of approximately
21%, accounting for the worst case. We measure the speed-up
against the M4 executing the controller code again in fixed-
point precision, as the latter features only a basic FPU unit
and, as anticipated, execution times would be at least 4 times
higher. It is worth stressing that, the capability of the A7 to
efficiently run floating point code will greatly impact design
time for control applications since converting the latter in
fixed-time precision with good precision requires a significant
amount of time.

The spikes in the execution time are almost certainly
memory-related. In particular, the Last Level Cache (LLC)
is shared in this software configuration between the two A7
cores, leading to mutual eviction events. Next, we will explore
two potential solutions to address this issue:

1) Partition the cache using cache partitioning techniques,
such as cache coloring [28].

2) Disable the data cache and consequently the unified cache
in the Linux core

Cache coloring is a technique that divides memory pages
into sections called ”colors.” Each color represents a group
of cache sets, and by assigning them to designated cores,
we can ensure that the data used by these cores is stored in
cache sets that don’t overlap. This helps reduce competition
for cache resources and makes the behavior of the system more
consistent and predictable.

Unfortunately, the cache partitioning mechanism provided
by cache coloring is not available in Jailhouse for ARMv7
architectures. Given that cache partitioning occurs dynamically
in the current implementation of Jailhouse, its execution is
challenging without an input–output memory management unit
(IOMMU) [29], which is absent in ARMv7 architectures.
While static cache partitioning is feasible and has been accom-
plished by other hypervisors on ARMv7 architectures, we have
deemed its implementation unnecessary for our study. This
decision stems from the fact that the STM32MP157 platform is
employed as an illustrative case rather than a definitive answer.
Our future endeavors will shift focus to newer, more advanced
architectures, where dynamic cache partitioning can be more
easily implemented.

Therefore, we decided to turn off the cache on the A7 core
hosting Linux for this benchmark.

We present the results of the same test with cache disabled
in Fig.4.
The spikes observed are significantly reduced in height but
still present, likely due to some additional interactions related
to the memory. While memory is partitioned between cores,
it’s worth noting that both processors access the same mem-
ory bank. Nonetheless, even when considering the maximum
execution time, we achieve a speed-up of about 32% with the
fixed-point implementation and of 66% with floating-point im-
plementation (again, against Fixed Point for MCU), indicating
the viability of the isolated core to act as a computational slave.
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Fig. 4: Histograms representing execution times of the control
algorithm with LLC cache disabled on linux A7 core

VI. CONCLUSION

We have introduced a benchmarking procedure to evaluate
the advantages of moving complex computations from the
MCU to the MPU. This is a crucial step toward the software
architecture we propose to sustain HRT control and diagnostic
applications for advanced mechatronics exploiting edge com-
puting heterogeneous platforms.

We applied the proposed benchmark to the STM32MP157
platform, highlighting the advantages and disadvantages of
exploiting it. In particular, it is worth noting that the current
solution to turn off the cache in the non-HRT dedicated core in
such a platform is a suboptimal fix since it considerably slows
down such core. However, alternatives like dynamic cache
coloring are not readily applicable to the STM32MP157’s
architecture when using Jailhouse. Since the system lacks an
IOMMU and the coloring procedure occurs while activating
the hypervisor, ongoing memory translators are unaware of
the new memory mapping due to cache coloring. By resetting
the system MMU after the dynamic cache coloring procedure,
the problem could be easily solved, making the overall system
aware of the new memory mapping.

Looking forward, we aim to transition to platforms with
ARMv8-A architecture, which includes an IOMMU, like
the upcoming STM32MP2, maintaining a good balance be-

tween computational power and cost-effectiveness. This shift
could effectively address the limitations encountered with
the STM32MP157, especially concerning cache management
issues.
Additionally, for more demanding applications, exploring
higher-performing platforms featuring alternative architectures
becomes pertinent. The HULK-V [30] platform, for example,
is distinguished by its utilization of RISC-V architecture.
RISC-V, known for its open-source nature, offers the advan-
tage of keeping costs down. Such exploration aligns with our
aim to enhance resource usage across various computational
environments for industrial automation applications.
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