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ABSTRACT In the pharmaceutical industry, bins need to be cleaned up to a critical level because the products
that they contain are often incompatible with each other, and their mixture can facilitate the formation of
bacterial fauna. In this work, a strategy is presented to fully automatize the procedure of cleanliness quality
inspection of a pharmaceutical bin through a robotic arm and the use of both traditional and artificial-
intelligence-based computer-vision techniques. An autonomous mobile robot is used to mimic the approach
of a manipulator to a bin inserted in a washing cabin with an uncertain position. The manipulator is equipped
with an eye-on-hand color camera and it carries out the binary classification of the bin surface status (e.g.
clean vs dirty) through a convolutional neural network based on ResNet. The viewpoints from which the
images are taken are the result of an optimization that, starting from the digital three-dimensional model of
the bin and exploiting a virtual-twin-based planning scene, minimizes their number while maximizing the
visible area of the bin from the current location of the robot. The results of this optimization are used to set
up a pipeline that is entirely bin-independent. The same procedure may also be employed to generate the
best washing trajectories to be performed by the cleaning robot, by simply replacing the inspection camera
mounted on the robot end-effector with a washing nozzle. Though a complete tuning session is still required,
preliminary experimental results are very promising, reaching a classifier accuracy (namely a capability of
distinguishing clean and dirty surfaces) of 98% on conditioned data, showing that this work has the potential
of becoming an effective and versatile industrial product.

INDEX TERMS Artificial intelligence, computer vision, object scanning, quality inspection, robotics,
surface cleanliness, trajectory planning.

I. INTRODUCTION
In the pharmaceutical industry, the containers used for
storing, manipulating or mixing powders that will eventually
become pills or tablets are called bins.
Pharmaceutical bins need to be cleaned up to a level known

as critical, because the products that they contain are often
incompatible with each other, and their mixture can facilitate
the formation of bacterial fauna.

The associate editor coordinating the review of this manuscript and

approving it for publication was Davide Patti .

To avoid exposure to contaminants harmful to humans,
as well as to speed up the process, it is preferred to automate
the cleaning of the bins by means of specialised fully
automatic washing booths, where the external and internal
surfaces of the bin are cleaned by conveniently located
washing nozzles. This solution guarantees high levels of
cleanliness and repeatability, but it is poorly reconfigurable
and can handle a limited number of bin types. This is
a problem, since, in the absence of specific regulations
or standards, every company uses bins with customized
shapes and dimensions, adapted to its production department.
A more flexible solution is a mobile module associated with
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a cleaning room where an operator manually carries out the
cleaning operation with a washing nozzle. However, this
solution decreases the efficacy of the procedure (which is
not fully automatised) and increases the risk for the human
operator.

Darragjati [1] proposed the use of a robotic manipulator
to automate the manual operation within the cleaning room,
proving that this solution is as economically viable as
a washing booth, but with increased flexibility and the
possibility to intensify cleaning in the critical areas of the
bin, such as corners and junctions. A virtual layout of the
envisioned setup is shown in Fig. 1, where a bin located
in a washing cabin is cleaned by a robotic arm installed
on the cabin ceiling. The robot handles the washing nozzle
connected by a hose to the mobile module containing all
cleaning and drying hardware (pumps, heaters, etc.). In [1],
however, washing trajectories were manually calculated
based on the unique shape of a single bin, which is a long
and tedious job for the programmer in charge. Moreover, the
system is unable to recognize whether the bin surface is clean
or dirty; thus, it is not capable of autonomously assessing the
quality of the cleaning operation.

FIGURE 1. Washing module with a cleaning robotic arm inside a washing
cabin [1].

This article aims to extend the autonomy and flexibility of
the robotic system in Fig. 1, by introducing vision sensors and
artificial-intelligence-based algorithms, in the perspective of
making the cleaning and quality-inspection operations fully
autonomous. The presented framework can cope with an
arbitrary location of the robotic arm with respect to the bin,
so as to cover a completely generic configuration of the
robotized cell and thus increase versatility.

The complete cleaning process comprises five stages to
automatize: identification of the bin type and pose; bin
scanning to generate suitable trajectories for cleanliness
inspection; classification of bin surface areas as dirty or clean;
planning of robot trajectories for washing; bin cleaning. The
current paper is focused on the first three stages, though it sets
the basis for effectively solving the fourth stage too.

The main original contributions of the paper are:

• the implementation of a procedure for the automatic
generation of a scanning path given a CAD model of
a pharmaceutical bin, while accounting for visibility
constraints, robot kinematic limitations and collision
avoidance;

• the realization of a deep-learning-based binary classifier
for assessing whether a bin (internal or external) surface
is clean or dirty.

Accordingly, the main novelty lies in developing an inte-
grated robotic vision system, which combines path-planning
techniques (using the CAD model of the object to scan)
with an AI-based surface inspection module (using deep
learning on camera images). The application to autonomous
cleanliness inspection of pharmaceutical bins is presented as
a case study to validate the proposed framework.

Though the actual cleaning of the bins goes beyond the
scope of the paper, the proposed path-planning procedure
can easily be adapted to generate the washing trajectories to
be performed by the cleaning robot, by simply replacing the
inspection camera mounted on the robot end-effector with a
washing nozzle and changing the camera pin-hole model with
with the model describing the nozzle frustum of action.

Since the presented framework can cope with an arbitrary
location of the robotic arm with respect to the object to
be inspected and cleaned, the robot can be installed on an
autonomous mobile platform [2], [3]. This allows the robot
to approach the object from different sides and thus always
guarantee optimal relative positioning, also allowing the
robot to serve different robotized cells to increase versatility.
To minimize execution time, a dual-arm setup could also
be envisioned, so that operations could be shared between
multiple robots and completed faster [4], [5].

The framework presented in the paper does not depend
on the bin type and shape, thus it can be extended to any
other inspection/cleaning problem, provided that the CAD
model of the object to scan is available. The proposed
solution can be especially favourable in all those sectors
where stringent cleanliness standards apply, and the presence
of human operators is discouraged, such as in medical and
pharmaceutical industries, food processing and packaging,
electronics and aerospace manufacturing. Other relevant
applications can be found whenever an object or product
needs to be scanned to assess its manufacturing quality
(mechanical pieces, ceramics, etc.).

As far as the organization of the paper is concerned, Sec-
tions II introduces the adopted materials and methods. Sec-
tions III, IV and V describe, respectively, bin identification,
surface scanning and cleanliness classification, presenting
software framework, implementation and validation. Finally,
Section VI draws conclusions and outlines future research
directions.

II. MATERIALS AND METHODS
As mentioned in the Introduction, the complete cleaning
process comprises five stages:
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1) Bin identification: assuming a discrete and known
number of bins available to a pharmaceutical company,
and assuming that a 3D CAD model exists for each one
of them, the automatic system autonomously identifies
the bin type and where the bin is positioned with respect
to the robotic arm inside the cleaning room.

2) Bin-surface scanning: the CADmodel of the identified
bin and its pose relative to the robot are exploited to
automatically generate suitable trajectories allowing the
robot to scan the inner and outer bin surfaces via an
eye-in-hand colour camera, taking into account visibility
constraints, robot kinematic limitations and collision
avoidance.

3) Cleanliness binary classification: a pre-trained convo-
lutional neural network establishes whether the areas
framed in the scanned image are dirty or clean (this
operation involves collecting sample images showing
dirty and clean surfaces to train the algorithm).

4) Trajectory planning for bin cleaning: the output of
the surface-cleanliness classification is used to plan the
robot trajectories for the washing operation.

5) Bin cleaning: the robot cleans the inner and outer bin
surfaces via a hand-held washing nozzle.

Though this paper focuses on the first three stages only (in
Sections III, IV and V, respectively), the procedures set up for
the second and third stages can easily be adapted to generate
the washing trajectories to be performed by the robot in the
fourth stage, by replacing the inspection camera mounted on
the robot end-effector with a washing nozzle and changing
the camera pin-holemodel with themodel defining the nozzle
frustum of action.

Pharmaceutical bins exhibit a great variety of shapes
and dimensions. The bin used in this paper is represented
in Fig. 2 as a case study: it is 1.030 mm high and has
a roughly rectangular footprint with dimensions 880 ×

740 mm. However, the procedures that will be conceived and
developed will be completely bin-independent, provided that
a CAD model of the bin is available. The bin is usually made
of stainless steel, extensively polished inside. This means that
the internal surface is much more reflective than the external
one, which appears more opaque. This feature motivates the
need for two neural networks to distinguish dirty and clean
areas in the two scenarios (see Section V).
For simulation and experimental testing of the procedures

related to the first three stages mentioned above (bin
identification, scanning and cleanliness classification), the
robotic platform shown in Fig. 3 is used, consisting of a
6-DOF robotic arm (UR10e by Universal Robots) equipped
with an eye-in-hand 2D RGB colour camera (RealSense
D435 by Intel) and mounted on an autonomous guided
vehicle (MiR500 by MiR), so that an arbitrary location of
the robot with respect to the bin can be reproduced. The
robotic platform in Fig. 3, borrowed from the European
project ROSSINI [6], has two robotic arms. Still, only one
arm is used for the simulations and experiments described in
the paper.

FIGURE 2. A pharmaceutical bin.

All computations reported in Sections IV and V were
performed by a PC equipped with an Intel 11th-Gen
i7-11800H Processor with 8 cores and 16GB RAM,
and a NVIDIA GeForce RTX3060 graphic card with
6GB VRAM.

FIGURE 3. Robotic platform used for simulation and experiments.
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III. BIN IDENTIFICATION
A. METHODOLOGY
The main requirement for the bin-identification procedure is
to be independent of the type of bin that is loaded inside the
washing cabin. Two methods based on computer vision were
evaluated: point cloud registration and pose estimation from
a 2D image. The goal is to quickly define the exact shape
of the bin at hand and its relative pose with respect to the
inspection/cleaning robot.
Point cloud registration is the name used in literature to

address the process of matching a polygon mesh1 obtained
from a 3D CAD model of an object with a measured point
cloud representing the same object as seen from a 3D sensor
such as a stereo camera or a laser scanner [7], [8], [9].
Pose estimation is generally the task of detecting the

6D pose of an object, which includes its location and
orientation, from a single 2D image. Because a traditional
2D camera is essentially a bearing sensor, given an object
in a framed scene, it is not possible from a single image
to extrapolate its pose using only the bare data (i.e.
the pixels) without additional external information or by
resorting to complex and computational demanding neural-
network techniques [10], [11], [12]. Feature matching and
homography are common techniques that allow estimating
the pose of a template object of known dimension in a
cluttered scene where the object appears in an arbitrary pose.

The approach chosen in this paper belongs to the pose-
estimation methodology and is based on visual markers
(or tags), such as chessboards, that may be easily and
distinctively recognized in an image. Markers have known
size and dimensions and, once detected in the image, their
pose can be immediately calculated with respect to the frame
of the camera. Differently from point cloud registration and
feature-based matching, subject to the effect of noise, light
and clutter of the scene, visual-tag-based pose estimation
usually yields millimetric accuracy at short ranges (i.e. <

2 m) with little computational effort, low cost and very fast
response. Moreover, markers can provide information not
only about the pose but also about the object type, thus
allowing its precise identification.

B. IMPLEMENTATION
As a first step, the mobile robot moves must move close to the
bin, located in a fixed position in the work cell. The approach
motion is subject to uncertainty due to drift and mapping
errors and can lead to a positional error of a few centimetres.
This inaccuracy is actually helpful to mimic a possible error
in the placement of the bin inside the washing cabin (indeed,
the latter operation can be performed by a human operator and
small positioning errors are possible if a mechanical guide is
not present).

1A polygon mesh in 3D computer graphics and solid modelling is a
collection of vertices, edges and faces that compose a polyhedral object. The
faces are usually triangles (triangle mesh), quadrilaterals (quads) or other
simple convex polygons (n-gons).

A ChArUco board, namely a combination of a chessboard
pattern and an ArUco board, is chosen as marker type
and applied on one of the vertical sides of the bin. The
marker is framed by the industrial 2D camera mounted at the
end-effector of the robot, and its precise position is measured
with millimetric accuracy (< 2 mm positioning error [2]),
thus allowing the identification of both the bin type and
its location in space. This knowledge makes it possible to
retrieve the bin CAD model from a remote database and
spawn it in the planning scene, as shown in Fig. 3a.

IV. BIN SCANNING
A. METHODOLOGY
The algorithm used for this phase is inspired by the recent
work from [13], which puts together the results from [14]
about a non-voxel2 approach for viewpoints generation, and
from [15] for viewpoints sorting. Suggestions and insights
from [16] are also used to obtain satisfactory results in a
realistic pipeline.

The viewpoints generation is realized mainly using two
open-source libraries for Python, which is the language used
for these implementations: Open3D [17] and PyMesh [18].
This section describes the main steps that compose the

algorithm as well as the introduction of new kinematic
constraints related to the use of a robotic manipulator to reach
the computed viewpoints, which is the main contribution to
this stage. For greater generality, a more challenging scenario
is considered with respect to that shown in Fig. 1: the location
of the robotic manipulator can be arbitrary with respect to the
bin, not necessarily centred with its upper hole, as shown in
Fig. 3a, where the robot is mounted on an autonomous vehicle
that can approach the bin from any side, but not from above.

1) VIEWPOINTS GENERATION
Given a CAD 3D model of the bin, the latter is loaded as
a mesh with triangular faces and converted into a uniform
point cloud. The numberN of points can be arbitrarily defined
as a percentage pSP of the number of faces. The bin mesh
reference system OXYZ has its origin O in the centre of the
circular upper hole of the bin and is assumed to have the Z -
axis pointing upwards, as shown in Fig. 4.
Each point in the cloud, called seed point, is identified by

the position vector si in OXYZ and is associated with the
closest triangular face of the original mesh, called seed face,
whose normal direction is ni. Seed points and faces are used
to compute each ViewPoint (VP) pose, namely the pose of
the camera that will be used to perform the bin scanning.
Each viewpoint is identified with a reference systemOixiyizi,
whose location with respect to OXYZ is expressed in the
form of a homogeneous transformation H ∈ R4. Two
different scenarios can be analysed, respectively for internal
and external scanning.

2In 3D computer graphics, a voxel is a value on a regular grid in three-
dimensional space.
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FIGURE 4. Bin mesh with the reference system OXYZ .

FIGURE 5. Internal viewpoints (132) irradiating from the bin mesh
origin O.

In the case of internal scanning, all poses irradiate from a
fixed point located at the originO of the bin reference system
(Fig. 5). Then, the direction ki of each pose is oriented such
that it points towards a different seed point (only the internal
surface is used to generate the seed points in this case). In the
case of external scanning, the zi-axis of each pose is aligned
with the opposite direction of the corresponding seed-face
normal, namely ki = −ni, as shown in Fig. 6.
Once ki is identified, the overall rotation matrix between

OXYZ and Oixiyizi is computed as [19]:

Ri = I + ⌊Z × ki⌋ +
⌊Z × ki⌋2

1 + pi · ki
, (1)

where Z is the Z -direction of the mesh coordinate frame and
⌊·⌋ is the skew-symmetric matrix operator.

A suitable number D of viewpoints is associated with each
orientation Ri, all sharing the same zi-axis and having their
origins ti,j located at constant distances d0, . . . , dD−1 from
the seed point, namely:

ti,j = si − djki, i = 0, . . . ,N − 1, j = 0, . . . ,D− 1. (2)

The distances dj must be selected within the range of valid
field depths of the sensor and should appear in the list in order
of preference because, in the end, only the first reachable
viewpoint along each direction ki will be kept.

Two examples of a viewpoint resulting from this process
are shown in Fig. 7.

a: VIEWPOINTS FILTERING
Each viewpoint can then be kept or discarded according to
any combination of the following conditions, listed in order
of increasing computational effort:

FIGURE 6. External viewpoints (406) aligned with seed-faces normals ni .

1) height check: it excludes all those viewpoints whose
origin is below a certain threshold, resembling the
impossibility of placing the camera underground or
below a certain height;

2) distance check: it excludes all viewpoints whose origin
is farther than a given distance from a convenient 3D
point expressed in the coordinate frame of the bin; this
helps, for instance, to discard all those points beyond the
reach of a manipulator by placing the reference point at
the origin of the robot base frame;

3) occlusion check: it excludes a viewpoint if a ray, starting
at the viewpoint origin and ending at the centroid of
the corresponding seed face, intersects any other triangle
belonging to the mesh;

4) collision check: after loading the mesh of the camera
and positioning it according to each viewpoint pose, the
viewpoint is discarded if a collision between the camera
mesh and the bin mesh is detected.

b: REACHABILITY CHECK
Once this initial filtering is complete, a simulation environ-
ment is used to test the actual feasibility of the remaining
viewpoints. This is possible by spawning the bin and the robot
in a realistic relative position and using a dynamic planner
for online collision-free trajectory generation. After including
the robotic platform and the collision objects (e.g. the bin),
as shown in Fig. 3a, the virtual planning scene is kept updated
using proprioceptive information, such as the manipulator
joints angles, and external information, such as the location of
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FIGURE 7. Bin mesh with normals and a viewpoint example. Coloured
dots are the seed points obtained from the point cloud. The dark blue dot
is the seed point used for the current viewpoint Oi xi yi zi . The magenta
triangle around the seed point is the corresponding seed face.

the bin with respect to the robot, obtained through computer
vision techniques as described in Section III. Given a target
in either joint or Cartesian space and an updated planning
scene that incorporates the starting robot state, a collision-
free trajectory is dynamically generated on the fly based
on the Open Motion Planning Library (OMPL) [20] and,
in particular, on the RTT* algorithm [21]. The procedure
may be long, but it is a readily available solution to exclude
unreachable poses considering both overall dimensions and
the robot kinematic constraints. It is based on the simple
evidence that if a pose is reachable, the planner will find
a solution to the planning problem. If not, that pose is
discarded.

An example of the application of the filtering procedures
described in this subsection is shown in Fig. 8 (where the
virtual twin of the robotic platform in Fig. 3a is used).
The kinematic constraints and the interference problems of

the robot with the bin play a major role in excluding the
viewpoints facing one side of the internal surface (Fig. 8a).
Likewise, the external surface of the bin that lies on the
opposite side of the robot cannot be reached, and thus no
viewpoints appear there (Fig. 8b). In general, for the same
point-cloud-sampling resolution, more viewpoints remain for
the external surface, due to a higher number of faces and the
larger freedom of movement that the robot has compared to
the narrow space inside the bin.

FIGURE 8. Resulting viewpoints after filtering and reachability check.

c: VISIBLE FACES
The last step of this phase consists of computing the visible
faces from each remaining viewpoint. This is done by
collecting all visible faces inside the camera frustum using
ray casting techniques (the camera intrinsic parameters are
used to define the cone of view according to the camera
pin-hole model). A face is considered properly visible if its
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distance from the camera origin is within a predefined range
expressing the depth of field of the sensor, and the glancing
angle is above a threshold heuristically defined according to
the characteristics of the sensor and the inspected surface (see
an example in Fig. 9). This helps ignore faces that are too far
or too close and, therefore, probably out of focus or too tilted
to be properly observed.

FIGURE 9. Bin mesh with visible faces from a viewpoint. The viewpoint is
represented by the magenta arrow indicating the zi -axis direction, and
whose base coincides with the viewpoint origin. Green triangles are the
valid visible faces. Cyan triangles are faces with an invalid glance angle.
Yellow triangles are the faces that are outside the visible range. Grey
triangles are the faces which are not visible from the viewpoint.

2) VIEWPOINTS SELECTION
The viewpoints selection is based on two optimization algo-
rithms, called Greedy Area (GA) and Simulated Annealing
(SA), respectively, better discussed in [13].
Both methods rely on the existence of a measurability

matrix, C ∈ Rm×n, a two-dimensional binary array where
the m rows correspond to all the faces of the mesh and the n
columns to the viewpoints from the original set, i.e. the set of
viewpoints that are left after the filtering and the reachability
check. Each entry ci,j is equal to 1 if the i-th face is properly
visible from viewpoint j; otherwise, it has a value of 0. This
matrix can also be used to calculate the total visible area from
all viewpoints and the visible area from every viewpoint.

In the GA method, the viewpoint that maximizes the
objective function is selected at each iteration. The objective
function, in this case, is the sum of the area of the visible faces
from a single viewpoint. Therefore the selected viewpoint
is the one from which it is possible to measure the largest
surface, hence its name (Greedy Area). After the selection,
the rows corresponding to the faces that were already
measured by the latest best viewpoint are zeroed, so that
those faces will play no role in the next iteration. The same
routine continues until the measurability matrix is filled with
only zeros. Consequently, this optimization process outputs
the minimum number of viewpoints necessary to cover the
entire surface that would be visible using the whole original

set of viewpoints. An example of the application of this
optimization is illustrated in Fig. 10.

FIGURE 10. External viewpoints selected by the GA method (61/218). The
colour map describes how many times a face was seen from a different
viewpoint. The maximum value depends on the mesh and the settings.

Instead, the SA method, starting from the subset obtained
by the GA method, aims to reduce it further by a desired
percentage. Let A be the set of all the n viewpoints left after
the filtering and the reachability check, and C the subset A
obtained by the GA method, with dimension nGA ≤ n. B
is a subset of C initialized as a desired percentage pSA of
randomly picked elements in C ; the dimension of B is thus
nSA = pSA nGA/100.
At each iteration k , nswap viewpoints are swapped between

the set B∗, which is the current best combination of
viewpoints found, and the set of unused viewpoints 1 =

A \ B∗, thus obtaining a new solution Bk , which is evaluated
through a cost function that calculates the loss of visible area
with respect to A:

Cost(Bk ) = 1 −
Area(Bk )
Area(A)

, (3)

where Area(·) is a function that computes the total amount
of visible area using the viewpoints in the given set. Clearly,
Cost(Bk ) is bounded between 0 and 1, since Bk ⊂ A. If the
new set of viewpoints contained inBk provides a larger visible
surface (i.e. a lower cost) with respect to B∗, it replaces it, i.e.
Bk 7→ B∗. On the contrary, if the cost is higher, Bk is kept or
discarded depending on the so-called MAC value [22]. The
latter is given by:

0 < MAC = e
δ
Tk < 1, δ = Cost(Bk ) − Cost(B∗) > 0,

(4)

with Tk being the temperature parameter at iteration k ,
usually heuristically chosen or resulting from an optimal
tuning session. The MAC value is then compared to a
real number randomly sampled from a uniform distribution
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from 0 to 1, and the new solution Bk replaces the current one
B∗ if the random number is lower than the MAC value.
Both the values of nswap and T follow an exponential decay

γ ∈ R+ to allow a higher exploration at the beginning,
namely

nswap,k = nswap,0 e−γ k , Tk = T0 e−γ k . (5)

The algorithm stops after a number of iterations predefined
by the user, unless a zero cost is obtained at any step.
The SA method decreases the number of viewpoints at the
expense of a very small loss of visible area (ideally 0%),
but its efficacy strongly depends on the tuning parameters
of the MAC number. An example of application of the SA
optimization is illustrated in Fig. 11.

FIGURE 11. Viewpoints selected by SA method with 15% reduction
(51/61). The colour map describes how many times a face was seen from
a different viewpoint. The maximum value depends on the mesh and the
settings.

3) VIEWPOINTS SORTING
Given the resulting subset of viewpoints, the last step consists
of finding the best order in which they should be visited
to minimize the overall path length. This problem is known
in the literature as the Traveling Salesman Problem, and
there are several solutions to it [23], [24]. The chosen one
is the same as proposed by [13], that is, the Ant Colony
Optimization (ACO) [15].
This optimization only requires a distance matrix as input

which registers the cost of moving from viewpoint i (row-
wise) to viewpoint j (column-wise). To populate this matrix
the procedure is similar to the reachability test carried
out resorting to the simulation environment. In fact, all
combinations i-to-j and vice-versa are tested, and the length
of the planned path covered by the end-effector in the
Cartesian space is used as the cost and, thus, the entry value.

Given the distance matrix, the outcome of the ACO is the
order of filtered and selected viewpoints that provides the
shortest path passing through all viewpoints only once.

B. IMPLEMENTATION AND RESULTS
For a particular bin, the viewpoints can, in principle,
be computed once and for all. However, the integration of
robot kinematics and obstacle avoidance in the reachability
of those configurations requires the knowledge of the relative
pose between the robot and the bin. This pose is subject to
changes since the location of the bin in the robotized cell is
not always the same. As a consequence, a hybrid method was
considered. When the robot finds the bin for the first time,
it aborts the operation and requests the offline generation
of the view poses and optimal path considering the bin in
that specific location. The offline procedure may last several
minutes (or even more than one hour) according to the user
settings and the computing power, and it saves a model that
can then be loaded and used online. At the next iteration,
the process checks for the presence of this model, and if
found, it compares the current measured relative pose of
the bin with the one used in the offline simulation. Up to a
certain tolerance, the viewpoints are adjusted according to
the new bin location, whereas if the pose difference is too
large, the process aborts and requires a new round of offline
simulation. The reason for this latter behaviour is due to the
fact that when the pose difference is large, the optimal path
calculated offline may be sub-optimal since it was originally
generated considering the bin obstacle in a different location
with respect to the robotic arm base.

In short, in the offline mode, the viewpoints are generated,
filtered and optimized, and the shortest path passing through
the resulting ones is calculated. In the online mode, instead,
the viewpoints are adjusted, and the robot moves to each view
pose, possibly in the optimal order, to shoot a picture of the
bin surface and, if desired, request the classification of the
visible surface. The parameters involved in the two modes
and the corresponding results are discussed in Sections IV-B1
and IV-B2.

1) OFFLINE MODE
The first viewpoints computation, which is independent
of robot kinematics and dimensions, is based on a few
user-defined parameters used in the steps described in
Sect. IV-A1.
The point-cloud sub-sampling step takes a given percent-

age value pSP to sample a subset of uniformly distributed seed
points from the set of points obtained through direct mesh-to-
point conversion: the larger the value, the more seed points
(and therefore seed faces and viewpoints) will be considered.
While including more viewpoints can improve surface
coverage, it also significantly increases computational time,
particularly during optimal path searches.

Increasing D (see Sect. IV-A1) also linearly increases the
number of viewpoints to be tested, but it may be beneficial
according to the application. In fact, recalling that the order
of d0, . . . , dD−1 is relevant, it may be convenient to prioritize
closer or farther perspectives, but at the same time, those
positions may entail a collision or generally be unfeasible.
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For this reason, more options, i.e. D > 1, increase the chance
of using each direction ki.
The filtering steps described in Sect. IV-A1a may apply up

to four filters:
• height check: to implement the impossibility of the cam-
era being underground, all viewpoints whose origin’s z-
component is below the mesh bottom-most coordinate
minus the maximum dimension3 of the camera mesh (if
given) are removed;

• distance check: the reference point for the distance
calculation is the origin of the robot (base) frame
expressed in the bin coordinate system;

• occlusion check: this is particularly useful when dealing
with concave objects;

• collision check: from a physical point of view, each
viewpoint coincides with the optical frame of the
camera; this filter may use the homogeneous transfor-
mation matrix that expresses the optical frame location
with respect to the camera mesh frame; if this matrix
is unknown, the camera mesh frame is considered
coincident with the optical frame.

During the reachability check described in Sect. IV-A1b,
the virtual robot tries to align the optical frame of the camera
with each view pose. Since the camera orientation about the
z-axis is irrelevant, the planner is free to reach that pose with
any rotation around it. If the pose is reached with a different
orientation than the ideal one, the view pose is updated.

The viewpoint selection process in Sect. IV-A2 begins with
this new set of filtered and reachable view poses. The first
two parameters involved at this stage are the Distance of
View (DoV), which defines the visible range of the sensor
in terms of depth, and the maximum glance angle (αg,max),
which defines the maximum inclination that a view ray
may have with respect to a surface to see it properly. With
this information, it is possible to compute the measurability
matrix used by the GA method. With the parameter pSA, the
user may define the percentage of viewpoints that should be
removed by the SA method from the viewpoints resulting
from the previous GA method. If the value is set to 0,
the SA optimization is skipped. From experience, when the
viewpoints obtained with the GA method are an adequate
number (e.g. ≥ 15), a reduction of 15% usually entails a loss
in the visible surface of less than 1%, which is a reasonable
trade-off.

The last step discussed in Sect. IV-A3 consists in sorting
the viewpoints according to the best path. This is the most
time-consuming stage since it must test all motions from pose
i to pose j, with i = 0, . . . ,Nopt − 1, and j = 0, . . . ,Nopt −

1, with Nopt being the number of viewpoints selected by the
previous optimization steps.

An extensive simulation campaign was conducted in
order to find the optimal parameter tuning, providing the
best trade-off between computational time and accuracy.

3The term dimensions refers to the sizes of the 3D object in the Cartesian
space, often addressed as height, width, and depth.

Table 1 provides the parameters value used in a meaningful
application of the approach. Table 2 shows the effect of
viewpoint decimation due to filtering, reachability check and
selection. It can be noticed that filtering plays a major role in
viewpoint decimation, with an average reduction of −69%.

This is mainly due to the fact that a great portion of
the external surface is out of reach when approaching the
bin from one side, and the presence of the bin-supporting
legs often causes a collision between the camera mesh and
the bin mesh. Another interesting piece of information is
related to the amount of viewpoints selected by the GA
method. Noticeably, the actual number of viewpoints that are
necessary to effectively see the same surface does not follow
a linear trend, meaning that increasing the initial amount of
viewpoints does not add much information (i.e. visible area)
to the whole process, as shown in Fig. 12. On the contrary,
Table 3 shows that computational time linearly grows as pSP
increases, with a major contribution of the reachability-check
and the distance-matrix computation steps (see also Fig. 13).
In conclusion, from experience, a seed percentage value pSP
between 10 and 40 is found to be a good trade-off between
area coverage and computational time. Nonetheless, if the
objective is to maximize the visible area disregarding the time
and effort, all available seeds should be taken (i.e. pSP =

100%) as an initial attempt.

FIGURE 12. Number of viewpoints against different values of the
percentage pSP .

The last piece of data worth analysing is the amount of
area loss when applying the SA method with a reduction
percentage of 15%. The average loss is below 0.5% except for
the case where p = 1%, that is when the amount of starting
viewpoints (obtained from GA method) is already small with
respect to the total area size. In this case, even removing a

117264 VOLUME 12, 2024



S. Comari, M. Carricato: Autonomous Scanning and Cleanliness Classification of Pharmaceutical Bins

TABLE 1. Bin scanning parameters. The translation block in the homogeneous transformations is expressed in meters.

TABLE 2. External viewpoints decimation with different seeds percentage values and SA reduction of 15%.

TABLE 3. Execution times with different seeds percentage values and SA reduction of 15% for the external-surface case.

single viewpoint can lead to a significant loss in the visible
area.

2) ONLINE MODE
The online mode can be used for two different purposes:
data collection for the classifier (see Sect. V) or surface-
cleanliness evaluation.

In the first case, all reachable viewpoints are used, ignoring
the selection and sorting steps in order to maximize the
number of images that can be autonomously collected for
the training of the classifier. To this end, a perturbation of
the target pose may be added, if desired, to introduce some
noise and help the training process by increasing the data
variance.

In the evaluation case, only the selected and sorted
viewpoints are used. In this scenario, no perturbations are
applied. After stopping at a view pose, a request is sent to the
classifier described in Sect. V, and the results are published.
Before the request is sent, the procedure waits 1 second to
let any arm oscillation disappear and focus the image. Image
classification inference lasts roughly 1 second. The entire
process typically lasts a few seconds per viewpoint, including
the robot movement.

V. BIN-SURFACE CLASSIFICATION
In machine learning, classification refers to a predictive
modelling problem where a class label is guessed for given
input data. There are four main types of classification:

• binary classification, predicting one of two classes;
• multi-class classification, predicting one of many
classes;

• multi-label classification, predicting one or more classes
for each sample;

• imbalanced classification, referring to classification
tasks where the distribution of examples across the
classes is not equal; this is typically the case for
anomaly detection, which often belongs to uneven
binary classification, given the usual low occurrences
of the anomaly with respect to the nominal case in the
training samples.

The use case is a binary-classification problem since the
goal is to distinguish a clean surface from a dirty one, and
training data are evenly distributed. The samples, in this case,
are images of a portion of the bin surface taken at a suitable
distance in the visible range of the RGB camera. Since the
images may include some unrelated background, they are
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focused, cropped and resized to be independent of the original
resolution.

A. METHODOLOGY
Machine Learning (ML) is a subset of Artificial Intelligence
focusing on allowing computers to perform tasks without the
need for explicit programming [25]. ML problems are, as a
matter of fact, optimization problems where the solution is
not given in an analytical form.

FIGURE 13. Computational times against different values of the
percentage pSP .

Deep Learning (DL) is a branch of ML that may target
all problems suitable to ML, but it truly excels in those
involving myriads of features such as images, speech and
text processing [26]. DLmodelling introduces a sophisticated
approach based on complex, multi-layered Neural Network,
built to allow data to move through nodes (like neurons) in
highly connected ways.

A Convolutional Neural Network (CNN) is a particular
type of Deep Neural Network employing convolutions in at
least one layer [27], [28]. CNNs proved to be extremely
suited for image processing thanks to their ability to assign
importance to different features and/or objects in a very
efficient way [29].

A CNN can capture both spatial and temporal dependen-
cies in an image through the consecutive application of suit-
able filters. Differently from primitive methods, where filters
are hand-engineered, CNNs are able to autonomously learn
dependencies by training on labelled data, that is, in this case,
images with an associated ground-truth description/label.

This technique, therefore, falls under the realm of data-
driven supervised learning, where the quality, distribution
and availability of labelled data play a key role in the
robustness and efficacy of this method.

1) RESNET-BASED APPLICATION
ResNet184 is chosen as the backbone for the bin surface
binary classifier for its availability as open-source software
and excellent performance. Thanks to the so-called transfer
learning technique, it is, in fact, possible to exploit the
pre-training of this sophisticated CNN over millions of image
samples and use the small amount of application-specific
pictures to replace the classifier section and finely tune the
feature extractor layers. This method is based on the idea that,
especially when dealing with images, a common processing
part extracts high-level, generic features from a picture. These
features can then be suitably combined to solve a specific
task, for instance, a binary surface classification (e.g. clean
vs dirty). The input of the customized ResNet-based network
is an RGB image framing a portion of the bin surface, and
the output is a label indicating whether the surface is clean
or not. Another advantage of this method is the possibility to
easily re-train the network whenever there are changes in the
specifications, such as a different powder or a different bin
surface are used. This characteristic can also be exploited to
re-train the network with a larger and/or better data set.

B. IMPLEMENTATION AND RESULTS
The software developed for this work is implemented
resorting to thewell-knownPyTorch5 [31] Python library, and
includes two main items: a stand-alone script to arrange the
data set and train the network, and a program that uses the
trained model, connects it to a camera stream, and predicts
the class of the latest grabbed image.

Fig. 14a shows a random subset of images obtained
with the procedures explained in Section IV, with the
corresponding ground truth (i.e. the correct label) used to
train the network tailored to the external surface. Similarly,
Fig. 14b shows a random subset used to train the network for
the internal surface. Testing data were collected under typical
conditions of an industrial warehouse with skylights, namely
diffused artificial light mixed with natural light, a bin with
matt external surfaces and glossy internal ones, and white
powder randomly scattered on bin surfaces. Fig. 15 displays
the distribution of training, validating and test sets for external
and internal surfaces. Around 1000 samples per class were
automatically collected for the external surface, whereas
around 500 samples were collected for the internal surface.

4ResNet [30] won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2015 and was the first CNN to achieve predictions above
the human level for object detection and image classification. Subsequent
winners of the challenge are based on more complicated and power-
consuming algorithms, but with a negligible gain in performance for the
application at hand.

5Pytorch is an open-source ML framework that accelerates the path from
research prototyping to production deployment by providing blocks, models,
pre-trained parameters and functionalities related to ML and DL algorithms.
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FIGURE 14. Random subset of sample training images for the surface
classifier.

This discrepancy is due to the greater difficulty for the robotic
arm to access the internal side of the bin to take pictures
during the data-collection phase. Moreover, the total area of
the internal surface is smaller than the external one, leading to
a smaller number of seed points and, thus, viewpoints. Fig. 15
shows that data sets are approximately evenly distributed,
so that there is no significant class imbalance (i.e. more clean
samples than dirty ones, or vice-versa).

The hyper-parameters listed in Table 4 were used to train
the model in two consecutive steps: first, only the classifier
layers are trained by freezing the parameters of the feature
extractor; then, at the fine-tuning stage, the whole network is
trained by unfreezing the feature-extractor parameters and by
using a lower learning rate, but a larger number of epochs.

To augment training data, images are randomly cropped
and/or horizontally flipped, whereas to enhance batch
normalization, images are normalized using mean values and

FIGURE 15. Data distribution.

TABLE 4. Hyper-parameters used at training time.

standard deviations for each one of the three colour channels,
directly calculated on the image sets built for training and
validation. Stochastic gradient descent is used as optimizer,
with momentum equal to 0.9 and weight decay equal to
0.0001. A learning rate scheduler, instead, decays the learning
rate of each parameter group by 0.1 every 5 epochs.
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FIGURE 16. Accuracy plot for bin cleanliness classifier. Magenta and light blue lines represent, respectively, the accuracy of training data and validation
data during the classifier training. Orange and blue lines represent, respectively, the accuracy of training data and validation data during fine-tuning. The
light lines in the back represent the raw data whose moving average is displayed by the darker overlapping lines.

Finally, the classifier accuracy during training and
fine-tuning is shown in Fig. 16 for the training and validation
data sets (Fig. 16a shows the accuracy for the external-
surface classifier, Fig. 16b the accuracy for the internal-
surface classifier). A typical training session lasts between
10 and 15 minutes, whereas image classification inference
requires roughly 1 second.

Despite the relatively low amount of training data, results
show accuracy on the test set around 98%. This excellent
outcome, however, must be taken with care since the testing
data were collected under conditions similar to those of
the training set. This means that the combination of light
conditions, type and status of the inspected surface and
the camera used to collect testing data is not significantly
different from the one used to collect training data. Hence,
a larger variance in the working scenarios would be necessary
to test the quality of the model, and this will be the subject of
future works.

VI. CONCLUSION
This paper presented a strategy to fully automatize the
procedure of cleanliness inspection of a pharmaceutical bin
through a robotic arm and traditional/AI-based computer
vision techniques.

An autonomous mobile robot was used to mimic
the approach of a manipulator to a bin with arbi-
trary relative positioning. An eye-on-hand RGB camera
was installed on the robot end-effector to carry out
the classification of the surface status (e.g. clean vs
dirty). This classification was performed by a convolu-
tional neural network based on ResNet18 and transfer
learning.

The viewpoints from which the images are taken are the
result of an optimization that, starting from the CAD model
of the bin, a virtual planning scene and a few parameters,
minimizes the number of viewpoints while maximizing the
visible area from the current position of the robot with respect
to the bin. The results of this optimization can be used to
set up a pipeline which is entirely bin-independent, assuming
that the CAD model of each target bin is available. The same
procedure may also be employed in the generation of the
best path to clean the surface by only replacing the cone of
vision of the camera with the frustum of action of a cleaning
nozzle.

As far as the classifier is concerned, preliminary results are
very promising, reaching an accuracy of 98% on conditioned
data.

Two lines of further development can be pursued starting
from the results discussed in this article. On the one hand,
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there are a few improvements to viewpoints generation,
filtering and sorting that can be carried out, such as:

• the point cloud can be sub-sampled to concentrate more
seed points in potentially critical areas of the bin, such
as corners and junctions, where dirt tends to accumulate;

• exploiting the presented pipeline and working back-
wards, it is possible to optimize the position of the robot
with respect to the bin to maximize the visible area by
the sensor/washing nozzle;

• the Greedy Area method can be upgraded by including
in its objective function not only the amount of visible
area but also some indices related to its morphology6; in
this way, it would be possible to prioritize those zones
where dirt is likely to accumulate;

As far as the image classifier is concerned, instead, possible
improvements are:

• the use of the validation set to tune the initial value of
the learning rate, keeping the weight decay to 0;

• the use of the validation set to tune the value of the
weight decay;

• the inclusion of dropouts to increase robustness;
• a different transformation train7 for data augmentation;
• the use a different back-bone network than ResNet18;
• the use of ensemble techniques to create models of the
same bin under different light conditions;

• the use of few-shot and unsupervised learning on
unlabeled bin surface images, to mitigate the problem
of limited labeled data;

• setting a threshold in the predictions to reduce the num-
ber of false positives (e.g. surfaces that are considered
clean but are actually dirty) at the expense of increasing
false negatives (e.g. surfaces that are considered dirty
but are actually clean); in this way, a human-in-the-loop
could be in charge of double-checking the detected dirty
area and tell the machine whether the prediction is right
or wrong; this human feedback may also be included in
further training to increase robustness.

As one can see, the room for improvement is large, but
with suitable changes, this work has the merit of becoming
an effective and versatile industrial product.
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