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Abstract: Condition monitoring (CM) is the basis of prognostics and health management (PHM),
which is gaining more and more importance in the industrial world. CM, which refers to the tracking
of industrial equipment’s state of health during operations, plays, in fact, a significant role in the
reliability, safety, and efficiency of industrial operations. This paper proposes a data-driven CM
approach based on the autoregressive (AR) modeling of the acquired sensor data and their analysis
within frequency subbands. The number and size of the bands are determined with negligible human
intervention, analyzing only the time–frequency representation of the signal of interest under normal
system operating conditions. In particular, the approach exploits the synchrosqueezing transform
to improve the signal energy distribution in the time–frequency plane, defining a multidimensional
health indicator built on the basis of the AR power spectral density and the symmetric Itakura–Saito
spectral distance. The described health indicator proved capable of detecting changes in the signal
spectrum due to the occurrence of faults. After the initial definition of the bands and the calculation
of the characteristics of the nominal AR spectrum, the procedure requires no further intervention and
can be used for online condition monitoring and fault diagnosis. Since it is based on the comparison
of spectra under different operating conditions, its applicability depends neither on the nature of
the acquired signal nor on a specific system to be monitored. As an example, the effectiveness of
the proposed method was favorably tested using real data available in the Case Western Reserve
University (CWRU) Bearing Data Center, a widely known and used benchmark.

Keywords: condition monitoring; fault diagnosis; data-driven methods; autoregressive modeling;
multidimensional health indicator; Fourier synchrosqueezing transform; spectral distances; signal
processing

1. Introduction

The Prognostics and Health Management (PHM) of machines is gaining more and
more importance in the industrial world, especially for firms adopting the main concepts
of Industry 4.0 like smart factory and intelligent manufacturing [1–4]. In this context,
condition monitoring (CM) is a crucial aspect, as it plays a significant role in the reliability,
safety, and efficiency of industrial operations [5,6]. Condition monitoring, which refers
to the tracking of industrial equipment’s state of health during operations, is in fact the
basis of modern maintenance strategies like condition-based maintenance (CBM) and
predictive maintenance (PM) [1]. The former is usually triggered when a monitored device
reaches a certain level of degradation, while the latter relies on the component’s predicted
level of deterioration in time. CBM and PM have overcome the drawbacks of corrective
and preventive maintenance and allow maintaining a competitive edge and ensuring
operational continuity. In fact, these maintenance strategies schedule maintenance activities
based on the actual condition of the machinery, as determined by CM data processing.

The information on the health status of machinery, upon which CBM and PM are built,
is continuously or periodically assessed by CM through the measurement and analysis of
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various operational parameters like vibration, temperature, current, and pressure. This
information allows detecting equipment changes due to wear, deterioration of components,
or other anomalies that, in turn, may indicate the beginning of a fault occurrence. After the
data acquisition step, involving the definition of the machine’s critical components and the
choice of the sensors to be installed, the central step of CM is data processing [4,5,7]. Data
processing consists in extracting, selecting, and (possibly) reducing features from the raw
data acquired by sensors. The selected features are then exploited to build health indicators
that are able to reveal the health status of the machine’s components. The health indicator
is the basis of the machinery fault diagnosis and plays a fundamental role in the last phase
of CBM and PM, which is maintenance decision making [1].

The methods employed in the data processing CM step can be divided into three main
categories, depending on how much they exploit the physical knowledge related to the
monitored system: model-based, data-driven, and hybrid [1,2,8]. Model-based methods
rely on physical modeling to build mathematical approximations of increasing degrees
of complexity to characterize systems’ input/output behavior. On the contrary, data-
driven methods exploit signals measured onboard the system, mainly by means of signal
processing and machine learning (or deep learning) techniques. They extract patterns from
the available measured data to characterize the status of the machinery. Hybrid methods
combine model-based and data-driven approaches. The data-driven approach has become
the most used practice in the industry, thanks also to the ever-increasing availability of raw
sensor data [5,9].

Many data-driven methods are based on statistical signal processing techniques [4,7,8].
Among them, AutoRegressive (AR) modeling of the measured signals (raw or preprocessed)
is a very interesting approach. AR models are one of the most popular tools for time
series analysis and spectral estimation [10,11], and they also prove to be a very effective
tool for condition monitoring and fault diagnosis [12–20]. The widespread use of this
class of models is mainly due to the existence of simple and robust algorithms for their
identification, the easy implementation of online estimation algorithms, and the high
accuracy of the associated spectral estimates. Another feature that makes AR modeling
particularly suitable for condition monitoring is its versatility with regard to the type of
acquired signal (e.g., vibration, current, torque, temperature) and to the type of machine
component to be monitored (e.g., roller bearings, gearboxes, electrical motors, shafts). It is
also worth stressing that AR-based techniques are not computationally demanding, so they
can be successfully adopted in edge-computing condition monitoring [19,21].

An effective way to perform the CM task with AR models consists in exploiting
the associated AR power spectral density (PSD) because of its high sensitivity to signal
changes [14,19,20]. Moreover, the use of the AR spectrum makes the diagnostic process
easier with regard to the use of the Fourier spectrum [12,16,17,22]. The AR PSD-based
approach relies on two main steps: (i) identification of an AR model and the associated AR
PSD based on data collected under normal (healthy) operating conditions, and this AR PSD
will be considered as the reference PSD; (ii) subsequently, the AR model is continuously or
periodically updated using new measured data and the associated PSD is compared with
the reference one in order to detect changes in the machine’s behavior. In this paper, we
propose a multidimensional health indicator based on AR PSD and the symmetric Itakura–
Saito spectral distance, which is used to compare the current PSD with the reference one. It
is worthwhile noting that spectral distances are more sensitive to signal changes and more
theoretically sound w.r.t. other distances like the Euclidean distance between the AR model
coefficients [23].

Despite the very good properties of spectral distances, two limitations may arise.
First, the distance is computed by considering the whole spectra; this could make it more
difficult to detect incipient or subtle faults as the difference between faulty and normal
spectra could manifest only in specific frequency bands; in these cases, the use of the whole
frequency content would hide the presence of the fault. Second, the spectral distance is a
scalar variable; therefore, it is suitable for fault detection and anomaly detection but not
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for fault isolation unless the number of faults to be classified is very low. Based on these
considerations, we propose to extract a multidimensional indicator from the estimated
AR spectrum. To do this, the estimated AR PSDs are divided into a proper number of
bands, and the comparison between the current PSD and the reference one is performed
band by band, thus obtaining a multidimensional health indicator, called multidimensional
symmetric Itakura–Saito spectral distance (MSISSD). Starting from the time–frequency
description of the data collected under healthy operating conditions, the definition of the
frequency bands is performed by exploiting the properties of the Fourier Synchrosqueezed
Transform (FSST).

The effectiveness of the proposed health indicator in condition monitoring has been
tested on real data available in the Case Western Reserve University (CWRU) Bearing Data
Center [24], which is often used to test new techniques in bearing fault diagnosis [25,26].
This choice is for illustrative purposes only, since the described procedure is related neither
to a specific measured signal nor to a specific machine’s component. The obtained results
are very promising, as the MSISSD indicator is able to overcome the above-mentioned
limitations associated with scalar spectral distances.

The rest of this paper is organized as follows. Section 2 briefly recalls AR models and
their identification and describes the derivation of the AR PSD-based multidimensional
health indicator. Section 3 describes the proposed CM procedure, including the frequency
bands definition through FSST, the AR order selection, and the online monitoring procedure.
The results obtained by applying the method to the CWRU dataset are discussed in Section 4.
Section 5 concludes the paper with some final comments.

2. A Multidimensional Health Indicator Based on AR Spectrum

As mentioned in Section 1, autoregressive models are particularly suitable to repre-
sent signals collected from sensors in order to detect changes in the system’s behavior.
The measured signal y(t) will thus be described by means of a p-order autoregressive
(AR) process:

y(t) + a1 y(t − 1) + · · ·+ ap y(t − p) = w(t), (1)

where w(t) is a zero mean driving white noise with variance σ2
w. By introducing the

polynomial
A(z−1) = 1 + a1 z−1 + · · ·+ ap z−p (2)

the AR process can also be seen as the output of an all-pole filter driven by a white noise

y(t) =
w(t)

A(z−1)
. (3)

The knowledge of the AR coefficients a1, . . . , ap, the noise variance σ2
w, and the sam-

pling frequency fs allows computing the power spectral density (PSD) S( f ) in the frequency
domain:

S( f ) =
σ2

w

|A(e−j2π f / fs)|2
=

σ2
w

|1 + ∑
p
k=1 ak e−j2kπ f / fs |2

(4)

The most popular methods for estimating the AR parameters starting from a set of
available measurements {y(t)}N

t=1 are the least squares (LS) method, the Yule–Walker
equations, and the Burg’s method [10,11,27]. Among these approaches, the LS one leads
to more accurate estimates, especially when the number of signal samples N is not very
high [11]. The rationale behind the LS approach, which is also called “covariance method”,
consists in finding the AR model associated with the optimal one-step-ahead predictor of
the signal y(t). In fact, the LS estimate is found by minimizing the loss function J(θ) given
by the sum of the squares of the prediction errors:

J(θ) =
N

∑
t=p+1

(
y(t)− φT(t)θ

)2
=

N

∑
t=p+1

(y(t)− ŷ(t))2 (5)
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where

φ(t) = [−y(t − 1) − y(t − 2) · · · − y(t − p) ]T (6)

θ = [ a1 a2 · · · ap ]
T (7)

and ŷ(t) = φT(t) θ is the optimal prediction of y(t). The solution is given by

θ̂ =

(
N

∑
t=p+1

φ(t)φT(t)

)−1 N

∑
t=p+1

φ(t)y(t). (8)

An estimate of the additive noise variance σ2
w can be computed as follows

σ̂2
w =

1
N − p

N

∑
t=p+1

(y(t)− φT(t)θ̂)2 =
J(θ̂)

N − p
, (9)

where J(θ̂) is computed through (5) by replacing θ with the estimated AR coefficient vector
θ̂. As regards the estimation of the AR model order p, there are some commonly used
approaches, such as final prediction error (FPE), Akaike information criterion (AIC), and
minimum description length criterion (MDL) [11,27]. They consist in estimating the AR
models of increasing orders and selecting the order p corresponding to the minimum of the
following cost functions:

FPE : p = min
k

(
N + k
N − k

J(θ̂k)

)
(10)

AIC : p = min
k

(
N log J(θ̂k) + 2 k

)
(11)

MDL : p = min
k

(
N log J(θ̂k) + k log N

)
(12)

where θ̂k is the least squares estimate of an AR model of order k.
A very effective way to perform condition monitoring and fault diagnosis by means of

AR models consists in exploiting the power spectral density given by (4) [14,19,20,22]. It has
been shown that the AR PSD has better diagnostic capabilities with regard to conventional
FFT-based techniques [12,16,17,22]. This is mainly due to the fact that, unlike FFT-based
methods, the estimated AR spectra do not involve signal windowing, leading to an improved
spectral resolution and preventing the introduction of sidelobes effects [11]. To derive a
health indicator that is able to check the current status of the system starting from the AR
PSD, we adopt the symmetric Itakura–Saito spectral distance SISSD, also known as “cosh”
distance [28,29]:

SISSD =
1

N f

N f

∑
k=1

(
S0( fk)

S( fk)
− log

S0( fk)

S( fk)
+

S( fk)

S0( fk)
− log

S( fk)

S0( fk)
− 2
)

(13)

where N f is the number of frequency points, and S0( f ) is a spectrum computed offline
during normal operating (healthy) conditions (the “nominal” spectrum), while S( f ) is
computed online and compared with S0( f ) in order to check if deviations from the healthy
state have occurred. Spectral distances are more sensitive to system changes and more
theoretically sound with regard to other distances like the root mean square error that
compares the Euclidean norms of the parameter vectors θ = [ a1 a2 . . . ap ]T [23]. It is
worthwhile noting that in the Gaussian case, the Itakura–Saito distance corresponds to the
Kullback–Leibler divergence up to a multiplicative factor [30], so it also has an interesting
statistical interpretation.

Despite the high sensitivity of spectral distances like (13) to anomaly conditions, two
limitations may arise: (1) The distance is computed by considering the whole spectra, that
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is, fk takes values in the range [0, Fs/2], where fs is the sampling frequency. This could
make it more difficult to detect incipient or subtle faults as the difference between faulty
and normal spectra could manifest only in specific frequency bands. In these cases, the use
of the whole frequency content would hide the presence of the fault. (2) The health indicator
(13) is a scalar variable; therefore, it is suitable for fault detection and anomaly detection
but not for fault isolation, unless the number of faults to be classified is very low. Based
on these considerations, we propose to extract a multivariate index from the estimated
AR PSD. To do this, the estimated spectra are divided into Nb bands, and the comparison
between S0( f ) and S( f ) is performed band by band, thus obtaining an Nb-dimensional
health indicator as described in the following.

Let fs be the sampling frequency and S0( f ), 0 ≤ f ≤ fs/2 the nominal AR PSD.
According to the procedure described in Section 3.2, Nb frequency bands B1, B2, . . . , BNb
are selected so that S0( f ) can be divided into Nb segments:

S0( f ) = S1
0( f ) ∪ S2

0( f ) ∪ · · · ∪ SNb
0 ( f ) (14)

where

Si
0( f ) = {S0( f ) : fi ≤ f < fi+1} i = 1, 2, . . . , Nb − 1 (15)

SNb
0 ( f ) = {S0( f ) : fNb−1 ≤ f ≤ fs/2}. (16)

Similarly, during online health monitoring, the current spectrum S( f ) is divided into
the same Nb bands, and the multivariate symmetric Itakura–Saito spectral distance is
computed as follows:

MSISSD =


ISSD1

ISSD2

...
ISSDNb

 (17)

where

ISSDi =
1

Ni
f

Ni
f

∑
k=1

(
Si

0( fk)

Si( fk)
− log

Si
0( fk)

Si( fk)
+

Si( fk)

Si
0( fk)

− log
Si( fk)

Si
0( fk)

− 2

)
(18)

and Ni
f is the number of frequency points of the i-th band, so ∑Nb

i=1 Ni
f = N f . As shown in

Section 4, the multivariate index (17) allows one to further increase the sensitivity to signal
changes for condition monitoring. Moreover, the MSISSD proves to be a very good feature
vector for fault classification.

3. Condition Monitoring Procedure

The proposed condition monitoring procedure is of general application and can
be applied to a very wide set of signals from the monitored system (vibration, current,
pressure, torque, . . . ). It can be divided into two distinct phases as depicted in Figure 1 and
Figure 2, respectively: (i) bands definition and computation of the nominal AR spectrum
and (ii) online monitoring.

The main purpose of the first phase (Figure 1) is to locate the different portions of the
spectrum Bi (i = 1, 2, . . . , Nb) that correspond to the energy distribution in the signal, in the
absence of faults (healthy data). Then, the computation of the nominal AR spectrum is
performed, and the resulting PSD S0( f ) is used for the online monitoring procedure.

In the second phase (Figure 2), the monitoring procedure can be carried out online.
During normal operation, the spectra within each Bi band are roughly of the same shape
and share the same number of peaks. On the other hand, the appearance of nonidealities
due (directly or indirectly) to the presence of a particular defect increases the distance
between the nominal and operational spectrum, simplifying the process of identification of
the fault occurrence.
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Healthy data

FSST Analysis

AR order selection

p

AR identification

S0( f )

Bands definition

{Bi}
Nb
i=1

Figure 1. Bands definition and computation of the nominal AR spectrum through healthy data.

Data sequence

AR identificationp

S( f )

Health indicator
{Bi}

Nb
i=1

S0( f )

MSISSD

Figure 2. Online monitoring procedure.

3.1. Time–Frequency Representation of the Signal

In many real-world operating situations, when using a model-based approach to
detect faults in a complex system, there are important parameters that cannot be accurately
estimated a priori. These include the detection accuracy of frequency components, the ex-
tent of damage, and effects due to operating speed, lubrication conditions, or unknown
external interference. The proposed approach is based on the recognition of the frequencies
that are present in the spectrum during fault-free operation and the bands in which they are
located. It is therefore necessary to isolate the most significant instantaneous frequencies in
order to define the regions with the highest energy concentration.

The most suitable approach to identify time-varying frequencies is the use of one of
the possible time–frequency representations (TFRs) of the signal [31,32]. Among them,
the Short-Time Fourier Transform (STFT) [33,34] is widely used for analyzing nonstation-
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ary signals in the time–frequency domain. It computes the Fourier Transform of short
windowed segments of the real signal y(t) by sliding them along the time axis:

STFT(t, f ) =
Nw

∑
τ=1

y(τ)g(τ − t)e−j2π f (τ−t)/ fs (19)

where g(t) is an energy-normalized window sequence of length Nw ≤ N, and N is the
number of samples. The function of the window is to extract a portion of the finite length of
the input signal in such a way that its spectral characteristics are approximately stationary
for practical purposes. Spectrogram S(t, f ) = |STFT(t, f )|2 is an estimate of the signal
PSD at time t and frequency f . Figure 3a shows the spectrogram of a signal (acceleration)
relative to the bearing’s healthy operation at a maximum speed of 1797 rpm (Healthy0:
signal 1 in Table 1 related to the motor load of 0 hp). In this TFR, well-defined vertical
lines representing stationary frequencies are clearly visible, together with a low-frequency
blurred region where weakly nonstationary phenomena occur.

Table 1. Available CWRU vibration data collected at 48 kHz for each motor load (0, 1, 2, 3) [24].

Signal Class Number Type of Signal

1 Normal (healthy)
2 BF (0.007 in)
3 BF (0.014 in)
4 BF (0.021 in)
5 IRF (0.007 in)
6 IRF (0.014 in)
7 IRF (0.021 in)
8 ORF centred (0.007 in)
9 ORF centred (0.014 in)
10 ORF centred (0.021 in)
11 ORF orhtogonal (0.007 in)
12 ORF orthogonal (0.021 in)
13 ORF opposite (0.007 in)
14 ORF opposite (0.021 in)

To increase the readability of (19) in the time–frequency plane, the Synchrosqueezing
Transformation method [35,36] can be applied to improve its energy concentration by
reallocating the values along the frequency axis in the (t, f ) plane and constructing a more
concentrated time–frequency representation. The procedure is analogous to assigning
the total mass of an object to its center of gravity: at each time–frequency point where a
spectrogram value is not negligible, the (t, f̂ ) coordinates of the local centroid of the TFR
are calculated, and the spectrogram value is moved from (t, f ) to (t, f̂ ), providing a sharper
representation. Here, f̂ = f̂ (t, f ) is the local instantaneous frequency of the signal at time t,
“filtered” at frequency f [36].

The Fourier-based Synchrosqueezing Transform (FSST) [37] is a signal processing tech-
nique that provides a concentrated representation of the time–frequency content of a signal
by modifying (19) the application of the described technique. It applies a windowed Fourier
Transform to segments of the signal and it refines the frequency information by redistribut-
ing the energy from neighboring frequencies to the dominant frequency component (ridge).
By doing so, each column of the FSST(t, f ) matrix contains the synchrosqueezed spectrum
of the input segment, while the rows correspond to different time instants, and the columns
represent frequency bins. The FSST procedure is applied to refine (19), and the magnitude
squared is shown in Figure 3b.

It should be noted that, for the proposed approach, the use of the Synchrosqueezing
Transform is only aimed at defining the bands Bi of interest and not at separating and
demodulating the different modes in a multicomponent signal, unlike what is usually
carried out. In fact, in the presence of faults, either the magnitude of the spectrum varies or
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the appearance of particular frequencies in one or more subbands occurs, leading to the
identification of a PSD (not necessarily precise, but certainly) different from the nominal
one, thus highlighting the presence of a fault.
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Figure 3. Time–frequency analysis of acceleration signal in the absence of failure and at a maximum
speed of 1797 rpm (Healthy0): (a) Spectrogram (b) magnitude of Fourier Synchrosqueezed Transform,
(c) Fourier power spectrum, (d) integral over time of local instantaneous squeezed frequencies in the
TF plane. Vertical red lines identify the boundaries of the bands obtained by the procedure.

3.2. Partitioning of the Fourier Axis in Nb Subbands Bi

To compensate for (weak) nonstationary effects in the signal and localize the regions
of interest, we consider the function

FSST+( f ) = ∑
t

FSST(t, f ) (20)

defining a parameter that is somehow related to how much energy is contained within
the windowed portions of the signal during the acquisition period. Healthy0 signal func-
tion (20) is shown in Figure 3d. By doing so, the peaks located around the dominant
“signature frequencies” Nb Fs

i become clearly apparent. In this way, bands are defined as
the regions of the spectrum that contain a set of fairly pronounced maxima based on their
prominence, i.e., how much they differ both in their height and in their position compared
with other peaks. An isolated, low peak might be more prominent than a higher one (in
absolute value) but not be considered if it belongs to a set of closely spaced higher peaks.
We simply define the boundaries fi of each interval as the center between two consecutive
maxima: with this set of frequencies, the Fourier spectrum [0, fs/2] is divided into Nb
segments, where each band Bi = [ fi, fi+1) is defined according to

f1 = 0, fi =
Fs

i + Fs
i+1

2
, fNb = fs/2 i = 2, . . . , Nb − 1

The number Nb is determined by the structure of the signal spectrum, in particular the
distribution and the number of instantaneous frequencies found by the synchrosqueezing
procedure. Human intervention is very limited: the result depends on the prominence
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factor and the analysis window used with the STFT (a Kaiser window [38] was chosen for
this work, since it maximizes the energy concentration in the main lobe). The choice can
be heuristic or, if possible, based on knowledge of physical models, and it is performed
only once on the healthy signal. Underestimating the number of bands results in poorly
detailed spectrum subdivisions and limits the effectiveness of spectral distance assessment,
while excessive subdivisions result in unnecessary computational load without providing
better performance. However, tests have shown that the number of bands and their extent
depend weakly on the prominence factor and the type of analysis window.

Furthermore, the sum Np of all peaks within the intervals will be used to estimate
the order p of the AR, a key task for the success of the following identification step.
Finally, Figure 3c shows the signal power spectrum and the sub-bands Bi considered in the
subsequent analysis.

The same procedure is also applied to the other available healthy signals for different
velocities (1772, 1750, and 1730 rpm), obtaining similar results to those discussed for
Healthy0. As an example, signal 1 in Table 1 related to the motor load of 2 hp and velocity
1750 rpm (Healthy2) is shown in Figure 4. Although Figures 3b,d and 4b,d appear very
similar, the values of magnitude are different: a different velocity regime produces a similar
function (20), and the maxima around the frequencies Fs

3 = 4.21 kHz and Fs
5 = 8.4 kHz

have different values, but both the total number of bands (Nb = 6) and peaks (Np = 27) are
the same.
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Figure 4. Time–frequency analysis of acceleration signal in the absence of failure and at a speed
of 1750 rpm (Healthy2): (a) Spectrogram (b) magnitude of Fourier Synchrosqueezed Transform,
(c) Fourier power spectrum, (d) integral over time of local instantaneous squeezed frequencies in the
TF plane. Vertical red lines identify the boundaries of the bands obtained by the procedure.

3.3. Online Monitoring Procedure

As highlighted in Figure 1, the band definition and the estimation of the nominal AR
PSD Ŝ0( f ) are performed offline by using a set of data collected under normal (healthy)
operating conditions. In particular, the order p of the AR model is determined by exploiting
both classical criteria like FPE, AIC, and BIC [11,27], as well as the number of peaks Np
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estimated by the FSST procedure, as detailed in Section 4. The online condition monitoring
procedure is then implemented as follows:

1. Collected data of the signal of interest y(t) (vibration, current, etc.) are segmented
into (overlapping or not) frames of N samples.

2. For each signal frame, an AR model of order p is estimated by using the LS approach,
and the associated PSD Ŝ( f ) is computed. The current PSD Ŝ( f ) and the reference
one Ŝ0( f ) are then used to compute the multivariate health indicator MSISSD (17).

Note that this way of exploiting AR modeling follows the same philosophy as the Short-
Time Fourier Transform (STFT); for this reason, it has also been called STAR (short-time
autoregressive) [39]. In fact, AR identification (and the associated AR spectral estimation) is
performed on short segments of measured data and the signal is assumed to be weakly sta-
tionary only within each frame. This allows one to quickly detect changes in the frequency
content of the signal; therefore, the method can be successfully exploited in applications
involving nonstationary signals like speech enhancement [39,40], geophysics [39,41], and
predictive maintenance [19].

4. Results

The effectiveness of the proposed health indicator in condition monitoring has been
tested on real data available in The Case Western Reserve University (CWRU) Bearing Data
Center [24]. The CWRU dataset is often used as a benchmark for testing new procedures
and techniques in bearing fault diagnosis [25,26,42–46]. The test rig shown in Figure 5
consists (see red numbers in the figure) in a 2 hp electric motor (1) driving a shaft, a torque
transducer/encoder (2), a dynamometer (3), and control electronics. Single-point faults
were artificially introduced to both drive-end (4) and fan-end (5) bearings. The faults are
located in the Inner Ring (IRF) and the Ball (BF) rolling element and in three different points
on the Outer Ring (ORF). Different fault severities were considered, namely fault diameters
of 0.007, 0.014, 0.021, 0.028, and 0.040 inches. The test bearings support the motor shaft
and their vibrations are measured by means of piezoelectric accelerometers located at the
housing of both drive end (DE) and fan end (FE) bearings. In some tests, accelerometers
were also located at the motor-supporting base plate. The test rig operates at a constant
speed, and four different motor loads of 0, 1, 2, and 3 hp are considered, corresponding
to constant speeds of 1797, 1772, 1750, and 1730 rpm. Vibration data are collected with
sampling frequencies of 48 kHz and 12 kHz. It is worth stressing that the detailed analysis
of the frequency content of the CWRU-collected signals based on physical considerations
highlights the presence of many frequency components not related to the considered faults
BF, IRF, and ORF [42]. It was concluded that this is due to mechanical and electromagnetic
phenomena. Furthermore, many signals exhibit nonstationary behavior. As a consequence,
fault classification methods relying on the true bearing fault frequencies are not able to
perform the classification task in some of the collected data sequences [42].
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Figure 5. CWRU bearing test rig: (1) electric motor, (2) torque transducer/encoder, (3) dynamometer.
Accelerometers are located at the housing of both drive end (4) and fan end (5) bearings.
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In this paper, the DE vibration data sampled at 48 kHz are considered, including the
DE normal baseline (healthy) data, that have also been sampled at 48 kHz [42]. In this case,
for every motor load (0, 1, 2, and 3 hp) 14 classes of collected signals are available [24,42],
see Table 1.

A good health indicator should be able to detect as soon as possible deviations from
normal behavior and “to follow” the possible increment of the fault severity over time.
Therefore, to test the fault detection capabilities of the health indicator (17) in condition
monitoring, we apply the procedure described in Section 3 to a set of signals that refer to
the normal state and to the different severities of the same fault. In particular, the procedure
is applied to the set of signals {1, 2, 3, 4}, {1, 5, 6, 7}, and {1, 11, 12} (see Table 1) related to
the motor load of 0 hp (speed 1797 rpm). Note that each set refers to a different type of
fault (BF, IRF, and ORF orthogonal, respectively) and includes the normal (healthy) status
and three faulty status corresponding to three different fault sizes (0.007 in, 0.014 in, and
0.021 in) except for ORF orthogonal, where the size of 0.014 inches is not available. For each
set, the condition monitoring procedure is implemented as follows:

1. A portion of the healthy signal is used to define the frequency bands, B1, B2, . . . , BNb ,
to select a proper order p of the AR model, to estimate an AR model of the selected
order, and to compute the associated reference PSD Ŝ0( f ) through (4). Note that this
offline step is the same for every set as it involves only the (same) healthy signal.

2. The remaining part of the healthy data and the faulty data sequences are segmented
into frames of N = 20,000 samples. For each signal frame, an AR model of order p
is estimated by using the LS approach, and the associated PSD Ŝ( f ) is computed.
The current PSD Ŝ( f ) and the reference one Ŝ0( f ) are then used to compute the health
indicator. Both the scalar spectral distance SISSD (13) (that does not use the frequency
bands but only the whole spectrum) and the multidimensional distance MSISSD (17)
are considered.

The time evolution of the signals of the first set ({1, 2, 3, 4}), involving healthy and
ball fault conditions, is shown in Figure 6. The first phase of the proposed approach (see
Figure 1), performed on a portion of the healthy signal (Figure 6a), leads to the definition
of the six bands reported in Table 2. The corresponding number of peaks is Np = 27.
By taking into account Np and the selection criteria (10)–(12), we decide to choose the AR
order p = 54 to double the number of peaks estimated by the FSST (remember that a peak
can be associated with a couple of complex conjugate poles in the filter (3)). In fact, on the
one hand, the FPE criterion does not exhibit a minimum for orders ranging from 1 to 200,
while the MDL criterion leads to a minimum of 135, as can be seen in Figure 7 (the AIC is
not reported, as it shows behavior similar to FPE). On the other hand, the criteria tend to
stabilize after a strong initial decrease. The order p = 54 has therefore been selected for
two reasons: (1) the peaks estimated are the ones that “take” the major part of the energy;
see Section 3.1; (2) the value p = 54, highlighted in red in Figure 7, belongs to the region
where the criteria are almost constant (the decrease in MDL from 54 to the minimum 135 is
less than 1%). However, other AR models with orders both smaller and larger than 54 were
tested. The obtained results are not reported as there is no significant difference compared
with those obtained with p = 54.
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Figure 6. CWRU DE vibration signals sampled at 48 kHz (motor load 0 hp): (a) healthy, (b) ball fault
(0.007 inches), (c) ball fault (0.014 inches), (d) ball fault (0.021 inches).
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Figure 7. Estimation of the AR order p: (a) FPE criterion (b) MDL criterion. The red star shows the
values of FPE and MDL associated with the order p = 54, which is double the number of peaks Np

estimated through the FSST procedure.

Table 2. Frequency bands obtained by applying the procedure described in Section 3.2 to a portion of
the healthy signal of Figure 6a.

Band Number Frequency Range (kHz)

1 [0 0.93)
2 [0.93 2.06)
3 [2.06 3.38)
4 [3.38 6.19)
5 [6.19 16.13)
6 [16.13 24.00]
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The online procedure is performed by using the determined bands Bi in Table 2,
and the selected order and the values of both the indicators SISSD and MISSD are computed.
The evolution of the scalar indicator SISSD in the four conditions is reported in Figure 8,
as a function of the signal frames. We can see that, during normal conditions, the values
of the SISSD are very close to zero, as expected. In fact, in all signal frames, the current
PSD Ŝ( f ) is very close to the reference one Ŝ0( f ), as the healthy signal exhibits a stationary
behavior. The ball fault conditions can be clearly distinguished from the healthy ones,
and very robust detection thresholds can be defined. It is worth noting the (slightly)
nonstationary behavior of the indicator in the third condition and the nonstationary event
that occurs in the fourth condition. These behaviors also emerge from the time domain
signal waveform; see Figure 6c,d. This figure shows the ability of the spectral distance to
detect signal changes because of its high sensitivity. Nevertheless, in this case, the SISSD is
not able to discriminate all the different fault severities, in particular the second condition
from the third one (0.007 in vs 0.014 in). Figure 9 reports the evolution of the six entries
of the multivariate indicator MSISSD, associated with the six estimated bands reported
in Table 2. Two important observations can be made: (1) The fault detection ability of the
indicator is very good, and the sensitivity is even higher with respect to SISSD, as shown in
Figure 9c. (2) The different fault sizes can be clearly distinguished, see Figure 9b,d,e.
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Figure 8. Evolution of the SISSD indicator in the four different conditions associated with the set of
signals {1, 2, 3, 4} as a function of the signal frames: (1) healthy, (2) BF (0.007 in), (3) BF (0.014 in),
(4) BF (0.021 in).

The procedure is then applied to the set of signals ({1, 5, 6, 7}), concerning healthy
and inner ring fault conditions. The obtained results are reported in Figures 10 and 11.
Again, the SISSD allows the detection of faulty situations with very high relative distances;
see Figure 10. The discrimination of the different fault sizes is, however, not possible, as
conditions (2) and (4) present similar levels of the health indicator. On the contrary, these
faulty situations are clearly distinguished when the multidimensional indicator is used, see
Figure 11. It is worth noting the strange behavior of the third condition (IRF-0.014 in) in all
six frequency bands. This is not surprising in light of the analysis performed in [42] on the
envelope spectrum of this signal. In fact, it was concluded that the spaces of the pulses of
the spectrum, and their modulation seems quite random and not related to inner ring fault
and shaft speed.
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Figure 9. Evolution of the MSISSD indicator in the four different conditions associated with the set of
signals {1, 2, 3, 4} for all the defined frequency bands as a function of the signal frames. Subfigures
(a–f) refer to the subbands 1–6 defined in Table 2. The picture associated with Band i reports the
evolution of the i-th entry of the MSISSD indicator. For every picture, the four conditions are
(1) healthy, (2) BF (0.007 in), (3) BF (0.014 in), (4) BF (0.021 in).
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Figure 10. Evolution of the SISSD indicator in the four different conditions associated with the set of
signals {1, 5, 6, 7} as a function of the signal frames: (1) healthy, (2) IRF (0.007 in), (3) IRF (0.014 in),
(4) IRF (0.021 in).
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Figure 11. Evolution of the MSISSD indicator in the four different conditions associated with the set
of signals {1, 5, 6, 7} for all the defined frequency bands as a function of the signal frames. Subfigures
(a–f) refer to the subbands 1–6 defined in Table 2. The picture associated with Band i reports the
evolution of the i-th entry of the MSISSD indicator. For every picture, the four conditions are
(1) healthy, (2) IRF (0.007 in), (3) IRF (0.014 in), (4) IRF (0.021 in).

The last considered set of signals is {1, 11, 12}, which includes healthy, ORF orthogonal
(0.007 in), and ORF orthogonal (0.021 in). The results are shown in Figures 12 and 13. These
figures essentially lead to observations similar to those made for the previous types of
faults. Even though in this case the scalar indicator SISSD allows one to distinguish the fault
sizes (see Figure 12), the multivariate indicator successfully performs the same task with
remarkably higher relative distances, as can be seen by comparing, for instance, Figure 12
with Figure 13a,b.
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Figure 12. Evolution of the SISSD indicator in the three different conditions associated with the set
of signals {1, 11, 12} as a function of the signal frames: (1) healthy, (2) ORF orthogonal (0.007 in),
(4) ORF orthogonal (0.021 in).

0 20 40 60 80
Frame number

0

1

2

3

4

5

6

7

8

M
S

IS
S

D

Band 1

(1) (2) (4)

(a)

0 20 40 60 80
Frame number

0

10

20

30

40

50

60

70

M
S

IS
S

D

Band 2

(1) (2) (4)

(b)

0 20 40 60 80
Frame number

0

50

100

150

200

250

M
S

IS
S

D

Band 3

(1) (2) (4)

(c)

0 20 40 60 80
Frame number

0

5

10

15

20

M
S

IS
S

D

Band 4

(1) (2) (4)

(d)

0 20 40 60 80
Frame number

0

0.5

1

1.5

2

2.5

M
S

IS
S

D

Band 5

(1) (2) (4)

(e)

0 20 40 60 80
Frame number

0

0.5

1

1.5

2

2.5

M
S

IS
S

D

Band 6

(1) (2) (4)

(f)

Figure 13. Evolution of the MSISSD indicator in the four different conditions associated with the set
of signals {1, 11, 12} for all the defined frequency bands as a function of the signal frames. Subfigures
(a–f) refer to the subbands 1–6 defined in Table 2. The picture associated with Band i reports the
evolution of the i-th entry of the MSISSD indicator. For every picture, the four conditions are
(1) healthy, (2) ORF orthogonal (0.007 in), (4) ORF orthogonal (0.021 in).
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Evaluation of the MSISSD Indicator in Fault Classification

In this subsection, we show some preliminary results concerning the performance of
the multivariate indicator MSISSD in fault classification. It is worth stressing that the main
focus of this paper is not fault classification, and the aim of this subsection is not a complete
classification of the CWRU dataset. For this reason, only 48 kHz drive-end data and only
one classifier (support vector machine with linear kernel) have been considered.

For each motor load, 0, 1, 2, 3 hp, all the signal classes reported in Table 1 are taken
into account, so we have four different multiclass classification problems, each involving
14 classes. For every motor load (speed), the MSISSD-based classification procedure was
implemented as follows:

1. A portion of the healthy signal (1 in Table 1) is used to define the frequency bands
B1, B2, . . . , BNb , to select a proper order p of the AR model, to estimate an AR model
of the selected order and to compute the associated reference PSD Ŝ0( f ) through (4).

2. The remaining part of the healthy signal and the faulty signals 2, 3, . . . 14 are segmented
into frames of N = 20,000 samples. For each signal frame, an AR model of order p
is estimated by using the LS approach, and the associated PSD Ŝ( f ) is computed.
The current PSD Ŝ( f ) and the reference one Ŝ0( f ) are then used to compute the
multivariate spectral distance MSISSD (17).

3. At the end of step 2, we have a set of MSISSD points for each of the 14 classes
representing the different conditions. For every class, the related MSISSD points are
labeled with the corresponding class number and divided into a training set and a
validation set. As regards the number of points of the training and validation sets,
both the 70%/30% and 50%/50% fractions are considered.

4. The classification task is performed by means of the support vector machine (SVM)
classifier with a linear kernel and one-versus-one approach. To this end, the MAT-
LAB [47] function “fitcecoc” was employed.

Steps 3 and 4 are repeated 200 times in order to test 200 different combinations of
training and validation points. Therefore, 200 × 2 = 400 tests were carried out for every
motor load, for a total of 1600 tests. The results are summarized in Table 3, which reports
the means of accuracy over 200 runs, the worst accuracy, and the number of runs where
100% accuracy was obtained.

Table 3 shows the promising performance of the proposed health indicator, which
is also in the fault classification. The MSISSD is able to discriminate both the different
types of faults and the different severities of each type of fault. It is also able to classify the
different ORF subtypes that are fault centered in the load zone, fault orthogonal to the load
zone, and fault opposite to the load zone. It is also worth noting that, if we consider the
two macroclasses of healthy (signal 1) and faulty (signals form 2 to 14), both precision and
recall are always equal to 1 in all 400 performed tests. This confirms the very good fault
detection ability of the MISSD indicator, which is already pointed out in Figures 8–13. As
already mentioned, the objective of this paper is not CWRU data classification, and the
obtained results can be further improved. As an example, Figure 14 compares the confusion
matrix of the worst case test (load 0, 50% training ratio) with one of the confusion matrices
related to load 1 and 50% training ratio (accuracy always equal to 100%; see Table 3). As it
can be seen, the dataset employed for the load 0 hp is unbalanced, in particular, with
reference to the 6-th class (IRF 0.014 in), and all the misclassified points are related to this
class. As previously mentioned, it was claimed in [42] that this signal exhibits a random
behavior not related to a specific type of fault; see also Figures 10 and 11. By repeating the
classification experiments taking into account all classes but the 6-th one, the 0-hp row of
Table 3 becomes equal to the 1-hp row, i.e., no points are misclassified for both the training
ratios. This confirms the negative role played by the sixth signal, even if the overall results
are satisfactory.
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Table 3. Classification results of the CWRU dataset (48 kHz, DE data). For each motor load, classifica-
tion problems with 14 classes are solved; see Table 1. For every motor load and training data fraction
(70% and 50%), 200 classification experiments were carried out.

Motor Load (hp) Training Set (%) Accuracy
(Mean)

Accuracy
(Worst)

No of Runs with
100% Accuracy

0 70% 99.81% 98.92% 132/200
50% 99.69% 98.41% 81/200

1 70% 100% 100% 200/200
50% 100% 100% 200/200

2 70% 99.99% 99.18% 197/200
50% 99.91% 98.90% 152/200

3 70% 99.84% 99.38% 76/200
50% 99.82% 99.14% 28/200
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Figure 14. Confusion matrices associated with two classification experiments: (a) 0 hp load, 50%
training ratio, worst case (accuracy 98.41%), (b) 1 hp load, 50% training ratio, accuracy 100%.

5. Conclusions

A machine condition monitoring procedure based on a new multidimensional health
indicator has been described. The proposed indicator relies on the spectrum of the autore-
gressive model of the signal to be monitored and on the Itakura–Saito spectral distance.
The method has the following features:

• The initial parameter setting step is carried out on the healthy signal only once.
• It can be applied to different types of acquired signals (vibration, current, torque,

etc.) and to different types of machine components (bearings, gearboxes, shafts,
etc.) from real industrial contexts without the need to interrupt the operation of the
monitored system.

• It is not designed for a specific case, even though only vibration signals and roller
bearings have been considered in this paper. Moreover, the successful use of the AR
PSD for other signal/components, like current/bearings [14], vibration/gears [17],
PLC torque/shaft [20], can be seen as further case studies where the MSISSD indicator
can be successfully applied.

• The multivariable nature of the indicator may improve the detection of subtle faults
with respect to spectrum-based scalar indicators.
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• It allows one to perform the fault classification task without requiring a huge amount
of data, unlike modern data-based approaches

• There is no need to precisely identify the characteristic frequencies of faults, since it is
only important to highlight the emergence of changes in the spectra.

• All steps involve operations that are not computationally critical, so the method can
also be adopted as part of monitoring edge-computing conditions, allowing for early
detection of failures.

Tests performed using the CWRU dataset show the effectiveness of the approach
in detecting signal changes and its suitability for online monitoring and fault diagnosis.
The preliminary results obtained in the classification of failures of part of the CWRU dataset
are very promising, so the use of the health indicator for fault classification deserves further
investigation. Another interesting topic to cover is the application of the method to data
collected from industrial contexts.
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