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A B S T R A C T

There is widespread and growing use of inertial measurement technology for human motion analysis in
biomechanics and clinical research. Due to advancements in sensor miniaturization, inertial measurement units
can be used to obtain a description of human body and joint kinematics both inside and outside the laboratory.
While algorithms for data processing continue to improve, a lack of standard reporting guidelines compromises
the interpretation and reproducibility of results, which hinders advances in research and development of mea-
surement and intervention tools. To address this need, the International Society of Biomechanics approved our
proposal to develop recommendations on the use of inertial measurement units for joint kinematics analysis. A
collaborative effort that incorporated feedback from the biomechanics community has produced recommenda-
tions in five categories: sensor characteristics and calibration, experimental protocol, definition of a kinematic
model and subject-specific calibration, analysis of joint kinematics, and quality assessment. We have avoided an
overly prescriptive set of recommendations for algorithms and protocols, and instead offer reporting guidelines
to facilitate reproducibility and comparability across studies. In addition to a conceptual framework and
reporting guidelines, we provide a checklist to guide the design and review of research using inertial mea-
surement units for joint kinematics.

1. Introduction

Advances in inertial measurement technology have had a significant
impact on many areas of science, engineering, medicine and industry.
Today’s inertial measurement units (IMUs) have reduced power con-
sumption, allowing the use for relatively long recordings. They can
provide output data at relatively high sampling rates and ranges, inte-
grate other sensors and fuse information to provide additional kinematic

data. Due to their small size, low cost, and the ability to measure
movements outside of a laboratory for extended periods of time, IMUs
have become important tools with applications in health, sports, and
basic science (Camomilla et al., 2018; Cinnera et al., 2024). The number
of IMU-based studies for the estimation of joint kinematics has increased
rapidly in recent years in various areas of biomechanics (Fang et al.,
2023; García-de-Villa et al., 2023). IMUs are also used increasingly to
obtain biomechanical biomarkers for clinical trials, and very recently,
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regulatory agencies also provide specific guidance for use of digital
technologies including IMUs for clinical or remote data collection
(Framework for the Use of DHTs in Drug and Biological Product Develop-
ment, 2023, https://www.fda.gov).

The International Society of Biomechanics (ISB) has published
standardization recommendations for estimation of human joint kine-
matics, but some of these were developed for use with marker-based
stereo-photogrammetry and cannot be directly applied to IMU-based
applications (Wu et al., 2005, 2002; https://isbweb.org/activities/sta
ndards). In fact, inertial measurement technology does not supply reli-
able positional information and orientation estimates can be affected by drift,
thus defining, estimating, and reporting human joint kinematics using
IMUs requires special attention. Failure to adhere to correct procedures
may lead to unreliable results.

Despite the increasing interest in the use of IMUs for human move-
ment analysis, there are no consistent guidelines. The need for ISB rec-
ommendations, built on a solid biomechanical foundation, was recently
suggested (Hafer et al., 2023) and would benefit not only the

biomechanics community, but also the health and sports fields.
Reporting guidelines are necessary given the increasing use of open-
source data sets and to meet the requirements of reproducibility and
validity in biomedical research and regulatory qualification.

The purpose of this work is to present a set of recommendations for
definition, estimation, and reporting of human joint kinematics using
IMUs. To promote transparency and encourage participation of the
biomechanics community in the development of these recommenda-
tions, we collected comments during the symposium on “Human Motion
Analysis with Wearable Inertial Sensors” at the XXIX ISB congress
(2023) and solicited feedback from ISB members through a survey
announced on social media. Out of 69 survey respondents, 99 % said
they were likely to follow recommendations, if available. These re-
spondents were experienced users in both academia (96 %) and industry
(16 %), and for applications in clinical (83 %) or sports (78 %) contexts,
methodological development and validation (78 %), and in hardware
development (25 %). The primary reason given for standardization was
to ensure comparability across studies and to provide a framework for

Fig. 1. Conceptual framework for the design and validation of an experimental and analytical protocol for joint kinematics estimation using multiple IMUs. Multi-
step procedure for joint kinematics estimation (inside blue-dashed region). Blue rhomboids represent data collection phases; yellow rhomboids represent the outputs
of the kinematics estimation process and IMUs metrological characterization.
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joint kinematics analysis with IMUs in biomechanics research. Re-
spondents indicated that such a framework would be useful for study
design, manuscript writing and review, and student training. Not all
respondents favored explicit prescriptions for algorithms and protocols.
As an overly prescriptive set of guidelines would not consider the variety
of applications in which the optimal methods and protocols may vary,
we focused on high level reporting guidelines for joint kinematics esti-
mation to enhance reproducibility and comparability across studies
(Fig. 1). Recommendations are organized in sections that address the
different experimental and theoretical aspects that should be considered
when proposing novel methods or replicating existing methods for
human joint kinematics estimation using IMUs.

2. IMU characteristics and sensor calibration

An IMU is an electronic device with both accelerometers and gyro-
scopes that measure the proper acceleration (i.e., acceleration relative to
free-fall) and angular velocity, respectively, of a rigidly attached body.
IMUs are often combined with other sensing modalities such as mag-
netometers, barometric pressure sensors, proximity sensors, global
navigation satellite systems, and cameras.

IMUs do not directly measure orientation or position; thus, mathe-
matical integration of the angular velocity and acceleration measure-
ments is required to derive these quantities. During integration, errors
can cause drift in the estimated orientations and positions, which is a
major problem with using IMUs. These errors arise from electronic
noise, bias and bias instability, scale factor error which can vary with
temperature, and quantization error depending on the analogue to
digital conversion (Beange et al., 2023). The sensitivity of the bias and
noise to environmental factors and the nature of the motion, such as its
amplitude and speed, can lead to a non-linear drift over time which can
be difficult to correct (Fig. 2).

Additional sensors can be used with IMUs to reduce drift errors. For
instance, triaxial magnetometers may be incorporated into the IMU to
provide the absolute direction of the local Earth’s magnetic field. This,
combined with the accelerometers, allows the definition of a global
coordinate system under static conditions and improves the accuracy of
angle estimation (Sabatini, 2006). However, the use of magnetometers
introduces magnetic distortion as another source of error in addition to
drift. It can arise from ferrous material in building foundations and
medical equipment or from nearby alternating currents (e.g. electric
motors), leading to significant errors in estimating the yaw angle. If it is
not possible to eliminate these sources of error, algorithms can be used
to compensate for magnetic distortion (Roetenberg et al., 2013). Drift in
gyroscopes can also be corrected for in some applications by resetting
the gyroscope to zero when movement of the IMU stops, such as when
the foot is flat on the floor while walking with IMUs on the feet (Veltink
et al., 2003).

Sensor errors are typically examined during factory calibration using
laboratory equipment, involving static or dynamic calibration (Avrutov

et al., 2017). While robust factory calibration is important for IMU se-
lection (Zhou et al., 2020), values fluctuate over the lifetime of the
sensor. Therefore, various methods have been proposed for refining the
sensors’ calibration in the field to correct for bias and sensitivity by
exploiting the Earth’s gravitational acceleration and known rotations
(Ferraris et al., 1995; Tedaldi et al., 2014; Cutti et al., 2006), or based on
the sensor’s noise characteristics (Sabatini, 2006). Some manufacturers
offer accompanying calibration algorithms that allow users to calibrate
the sensors themselves (Zhou et al., 2020). This allows periodic assess-
ment of the IMU performance to ensure the metrological characteristics
of the sensors.

Recommendations for sensors characteristics and calibration

• IMU characteristics. Manufacturer, model and the measurement
modes added to the accelerometers and gyroscopes (e.g., magne-
tometer) should be provided. Sensitivity, scale factor error, bias,
noise level, quantization error, environmental factors, and other
factors that affect signal processing and data fusion for joint kine-
matics estimation should be described.

• IMU calibration. The type and the date of the last calibration should
be provided to evaluate effects of calibration on joint kinematics
estimation.

3. Experimental protocol

Errors inherent in the experimental protocol can be classified as
human errors or technological errors (Beange et al., 2023). Human er-
rors include soft tissue artifacts, inaccurate sensor placement and
alignment, and insufficient sensor attachment. Technological errors
result from limitations of the inertial measurement technology with
respect to the motor task under analysis. In this case, in addition to
sensor noise and calibration errors, it is important to consider sampling
frequency, sensor range, inter-sensor synchronization, wireless trans-
mission, and ferromagnetic interference.

3.1. IMU placement and attachment

Since IMUs are attached to the body segments, recorded data are
affected by soft tissue motion which causes a time-variant motion be-
tween the IMU and the underlying bony segment. The characteristics of
this motion depend on the body segment, the motor task, and the
placement protocol (Cereatti et al., 2017). Soft tissue artifacts are also
affected by the mass and size of the IMU, the method of attachment
(Forner-Cordero et al., 2008), and IMU repositioning (Decker et al.,
2011). When comparing a bone-mounted to skin-mounted accelerom-
eter devices, peak tibial acceleration was on average 2.1 g lower than the
skin acceleration during running (Lafortune et al., 1995). Invalid data
due to accidental collisions or loose attachment is an important error (Yi
et al., 2022) that must be eliminated before kinematic analysis. IMUs
integrated in garments can be subjected to additional signal artifacts due

Fig. 2. Drift-affected (black) ski angle during cross-country skiing obtained by integration of medio-lateral ski angular velocity (i.e. sagittal angle angle). Ski
inclination computed based on measured gravity during the static moments (instants of time) is marked with black dot (Fasel, 2017).
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to movement of the garment relative to the skin. In addition, it should be
considered that the acceleration magnitude can vary depending on
where the IMU is positioned on the body segment under analysis. For
instance, differences in tibia acceleration (e.g., ~0.7 g, ~13 %) during
running were found when the sensor was placed on the proximal or
distal portion of the tibia (Lucas-Cuevas et al., 2016). Optimal IMU
placement has been investigated for the estimation of lower limb joint
kinematics during Timed-up-and-go tests (Niswander et al., 2020). As a
general consideration for reducing soft tissue artifacts on joint kine-
matics, body segment areas with reduced “wobbling” mass, muscle
deformation and skin stretching/sliding are preferred (e.g., distal thigh/
shank). However, further research is needed to understand how soft
tissue artifact varies with sensor location and the effects on estimating
joint kinematics.

Different methods of attaching the IMU on the body segments can be
used including placing the IMU in a belt, using double-sided tape on the
skin, placing tape over the sensor, or using an elastic strap or rigid frame.
In a recent literature review addressing the issue, the main recommen-
dations for tasks involving impacts were tensioning the attachment ‘as
much as tolerable’, avoiding areas close to joints and with soft tissues,
avoiding the use of elastic belts, and using low mass devices (Preatoni
et al., 2022). Considering these recommendations and previous in-
vestigations of soft tissue artifacts (Cereatti et al., 2017), for less dy-
namic movements (e.g., walking, sit-to-stand) it is adequate to ensure
that there is no detectable movement between the sensor and the body
segment throughout the task.

3.2. Sensor range and sampling frequency

To benefit from the best sensor sensitivity, the choice of sensor range
must take into account the motor task being investigated, as the
maximum signal magnitude can vary significantly. The peak tibial ac-
celeration varies from 3 g (walking) to about 11 g (running) and 60 g
(landing a jump). These peak values also depend on how the IMU is
attached to the body segment as slip between the body and the sensor
will likely increase the peak acceleration of the sensor (Lafortune, 1991;
Zhang et al., 2008). While the shank angular velocity is typically below
400◦/s during walking (Aminian et al., 2002), the angular velocity of the
arm segment around the shoulder joint during baseball pitching can
reach values over 7000◦/s (Dillman et al., 1993). On the other hand, if
the sensor operating range is too large, there is a reduction in resolution.
Similarly, the choice of the sampling frequency must follow the Nyquist
criterion, taking into account the motor task, the body segment, and the
variables under investigation. For instance, to measure running kine-
matics, it has been recommended to use a sampling frequency of at least
500 Hz for peak heel acceleration, 333 Hz for stride length, and 200 Hz
for peak tibial acceleration, stride duration, foot orientation angle, heel
strike angle and peak eversion velocity (Mitschke et al., 2017).

3.3. Data recording and inter-IMU synchronization

Data can be recorded in two modalities: logging or streaming. On-
board memory cards log data and have limitations of the speed of
their read/write capacity. Wireless transmission devices stream data to a
computer and may have variable-length signal delays or failures. In-
terruptions or delays in data transmission can result in data loss or out-
of-sync sensors, when they do not include inter-IMU synchronization.
These irregularities within stored data can cause temporal misalignment
between IMUs, resulting in errors in metrics derived from several IMUs.
Data extrapolation has been reported to correct for some missing data
due to poor wireless transmission or sensor saturation (e.g., strong dy-
namic movement or impact) (Mariani et al., 2010).

The difference between the start time of each IMU and its internal
clock can lead to a lack of synchronization which can cause errors in the
kinematics derived from the combination of IMUs. Synchronization is
also critical when comparing kinematics derived from IMUs to a

reference system. Event-based synchronization typically involves a
physical action (e.g., clapping, jumping, hitting a surface) along with a
spotting algorithm to minimize the delay between IMUs (Bannach et al.,
2009). A more precise solution involves the IMUs to record a trigger
from an external source (Chardonnens et al., 2013; Spilz and Munz,
2021), synchronize all IMUs through a radio frequency trigger sent at a
regular pace (Fasel et al., 2016) or via bidirectional communication
configured for master or mesh synchronization (Greenberg et al., 2018).
An electronic trigger (Fasel et al., 2017) or a flashlight in front of the
cameras is also used to synchronize the reference marker-based stereo-
photogrammetry with IMUs (Hamidi Rad et al., 2021).

Recommendations for experimental protocols

• IMU placement and attachment. The design of the IMU setup (i.e.,
number, location on body segment and attachment modality) should
be selected based on the requirements of the specific application and
reported.

• Range and sampling frequency. IMU specifications should be
selected based on the characteristics of the motor task and the
environmental conditions of the acquisition field and reported. To
identify the frequency content and maximum values exhibited by the
variable under analysis, a pre-test or literature review should be
performed.

• Data recording and inter-IMU synchronization. The description
should include acquisition modality and methods for inter-unit
synchronization and/or for IMU-based system synchronization
with external systems (if present). Loss of data resulting from human
or technical failure must be reported.

• Protocol. Details on the subject and motor task that may affect results
(e.g., use of assistive devices, speed of movement, anthropometry,
postural support, disease severity) should be reported.

4. Kinematic model definition and subject-specific calibration

4.1. Definition of the kinematic model

The definition of the kinematic model must include the number of
rigid bodies and the type of joints that determine the total number of
degrees of freedom. The joint models should be consistent with the level
of approximation required for the specific application (Kontaxis et al.,
2009).

Since IMU-based linear displacements are affected by errors larger
than the actual joint linear displacements (e.g., tibiofemoral linear dis-
placements), the latter are neglected and human joints are commonly
modeled as a spherical joint. In the general case, the joint kinematics can
be fully described by the angular displacements that occur about three
independent axes of rotation that define the joint coordinate system
(JCS) (Grood and Suntay, 1983). However, joint models will have fewer
degrees of freedom when joint rotations about one or two axes can be
neglected (Seel et al., 2014; Wells et al., 2019). Consequently, this will
simplify the kinematic model calibration and provide numerical ad-
vantages in the joint kinematics analysis (see section 5).

4.2. Subject-specific kinematic model calibration

Once a suitable kinematic model is selected and the IMUs are
attached to the body segments of interest (see section 3.1), the kinematic
model needs to be calibrated to the specific subject under investigation.
This calibration procedure is required to determine the JCS for the joint
motion description and the bony segment lengths (distance between
adjacent joint centers) (Koning et al., 2015; Miezal et al., 2016).

The ISB has published two different recommendations (Wu et al.,
2005, 2002) for the JCS definition for the major human joints, starting
from the identification of the 3D positions of either internal or external
bony landmarks. Unfortunately, while the identification of the bony
landmark positions is straightforward using stereo-photogrammetry, it
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is not possible using IMUs, and therefore the ISB recommendation
cannot be directly applied. To overcome this, by taking advantage of the
ability of the IMU to identify oriented lines in the 3D space, it is
necessary to reformulate the JCS definition starting from oriented 3D
lines instead of 3D points. In the following, we describe the most popular
approaches used for the identification of the axis directions along with
the advantages and disadvantages of each approach (Vitali and Perkins,
2020).

4.2.1. Methods for axes identification
The simplest solution for axes identification is to manually align the

geometrical axes of the IMU housing with the axes of the anatomical
coordinate system (ACS) of the bony segment associated with the rele-
vant body segment. (“Manual Unit Alignment”) (Bouvier et al., 2015;
Cutti et al., 2008) (Fig. 3a). This approach can only be implemented if
the IMU sensitive axes are aligned with the IMU housing. While its
simplicity is attractive, the drawbacks are that the accuracy and
repeatability of the results depend on the experience of the operator, and
visual alignment can be more difficult for IMUs with a small form factor,
especially considering that the surfaces of the body segments are
generally curved.

A second approach is to infer the direction of the axes of the ACS
from the position of a few, palpable, anatomical landmarks (“Anatom-
ical landmark identification approach”) using a calibration device. This
can be a camera (Bisi et al., 2015; Dejnabadi et al., 2005) or a stereo-
photogrammetric system (Chardonnens et al., 2012) to record the 3D
marker position in the coordinate system of the relevant IMU (Fig. 3b1).
Another solution is to use a caliper containing an IMU with a magne-
tometer (Picerno et al., 2008; Picerno et al., 2019). By pointing at two
palpable anatomical landmarks, the axis can be estimated with respect
to the coordinate system of the IMU attached to the body segment
(Fig. 3b2). While the anatomical landmark identification approach
provides a similar approach to the ISB guidelines for JCS definition, it
requires a calibration device.

A third approach is to use joint motion to identify the relevant axes of
rotation (“Functional approach”) (Favre et al., 2009; O’Donovan et al.,

2007). This functional approach is based on the assumption that the
subject is able to generate, actively or passively, a pure, repeatable and
sufficiently large rotation about one of the joint axes of interest. The
direction of this axis is assumed to coincide with the direction of either
the mean or first principal component of the attitude vector or angular
velocity vector (Fig. 3c) (Di Raimondo et al., 2022). This method can
identify both the direction and position of the axis. The functional
approach can be easily applied to joints with a dominant and well-
defined rotational degrees of freedom, such as the knee (Cutti et al.,
2010), but also to joints with 2 or 3 degrees of freedoms (e.g., elbow and
hip), (Cutti et al., 2008; Favre et al., 2009; Luinge et al., 2007).

A fourth approach uses the direction of gravity sensed by the accel-
erometers in static conditions during a selected posture (“Static
approach”) (Cutti et al., 2010) (Fig. 3d). This approach can be particu-
larly useful to define the longitudinal axis of some bony segments while
the subject is standing in an upright posture. The main advantage of the
Static approach is its simplicity, but its accuracy depends on the sub-
ject’s ability to align one axis of the ACS with gravity, which is not
guaranteed particularly for individuals with physical limitations, or the
experimenter controlling for the correct posture being assumed.

A combination of multiple approaches may be useful for some ap-
plications. Fig. 3 summarizes the four approaches to develop a subject-
specific kinematic model.

4.2.2. Methods for joint center identification
Many applications, including musculoskeletal simulation, visual

feedback generation, and human-robot interaction, require a spatial
representation of the kinematic model and identification of the position
of the joint centers (Koning et al., 2015; Roetenberg et al., 2013). By
assuming that the joint center coincides with the center of rotation be-
tween adjacent bony segments, it is possible to use rigid body kinematic
equations to derive the joint position with respect to the IMU coordinate
system from the measured accelerations and angular velocities during
functional exercises (McGinnis and Perkins, 2013; Seel et al., 2014).
However, the accuracy of joint center determination can be affected by
the joint angular velocity, and errors may increase when slow joint

Fig. 3. Methods used to identify the axes with respect to the IMU coordinate system. (a) Manual unit alignment approach. In this example, the X-, Y-, and Z-axes of
the femur are assumed to coincide with the x-, y-, and z-axes of the thigh IMU. (b) Anatomical landmark identification approach: In the example (b1), the position of
greater trochanter (GT), the femoral lateral epicondyle (LE) and the medial epicondyle (ME) are identified using markers attached to the subject skin and the IMU and
a camera; in the example (b2), a caliper carrying a IMU with a magnetometer is used to define the direction of the lines connecting GT to LE. (c) Functional approach:
The shank is rotated relative to the thigh in the sagittal plane to determine the direction of the mean axis of rotation (perpendicular to the plane of the paper) and its
position (r) with respect to the thigh IMU. (d) Static approach: The direction of the gravity vector is used to identify the longitudinal axis of the femur while the
subject is asked to assume an upright standing posture.

A. Cereatti et al.



Journal of Biomechanics 173 (2024) 112225

6

movements are used (Crabolu et al., 2016). The bony segment length can
then be inferred from the position of the joint centers and joint axes once
they are defined in the same IMU coordinate system.

4.2.3. Identification of the JCS
When using IMUs, the problem of identifying the JCS to describe the

joint motion can be approached from two different, but equivalent,
perspectives: Euler angles decomposition and mechanical joint model
(Grood and Suntay, 1983; Wu et al., 2005). The Euler angles decom-
position requires the definition of the bone-embedded ACS with respect
to the IMU coordinate system to fully determine the “sensor-to-segment
calibration”. Then, the JCS is defined based on the ACS of the proximal
and distal bony segments and rotations are calculated by decomposing
the relative orientation of the distal (moving) ACS relative to the prox-
imal (fixed) ACS based on one of the possible Euler decompositions,
which should be explicity declared (Euler angles decomposition
perspective). This is the same procedure as described in the ISB guide-
lines (Wu et al., 2005, 2002). Alternatively, in the mechanical joint
model perspective, the directions of the “body fixed joint rotation axes”
defining the JCS are first identified. Then, for each axis of rotation, the
magnitude of rotation is defined based on a reference line perpendicular
to that axis (Grood and Suntay, 1983). In this case, the direction of the
reference lines can be implicitly determined by imposing a static refer-
ence posture, typically the neutral standing posture (e.g., T-pose, A-
pose), for which the joint angles are assumed to be equal to zero or a
known value (Cooper et al., 2009; Taetz et al., 2016; Wells et al., 2019)
(Fig. 4). This approach can be convenient from a practical point of view,
as it does not require an explicit determination of the ACS of the bony
segments forming the joint. Conversely, a limitation is that the actual
values of the joint angles during the reference posture are lost, and the
repeatability of the results depends on the subject’s ability to resume the
same reference posture across the different observations.

In some cases, when an IMU can be assumed to be aligned with the
ACS of the parent bony segment, then the reference posture can be used
to initialize and identify the ACS of the other bony segments with respect
to the corresponding IMU coordinate system (Schepers et al., 2018). In
some pathological populations, with irreducible joint flexion or de-
formities, other postures may be used (Cutti et al., 2010).

Finally, it should be emphasized that simplifying assumptions,
related to the joint models, JCS identification and initialization, affect
the joint kinematics estimation andmust be considered when comparing
results or deciding whether the estimation errors are acceptable for the
research question of interest (Kontaxis et al., 2009).

Recommendations for kinematic model definition and subject-specific
calibration

• Kinematic model. A description of the general kinematic model
should be provided, including the number and type of degrees of
freedom for each joint and, if applicable, additional details such as
bony segment length, joint centers, etc. The model and software
implementing the model should be provided with the publication for
results reproducibility.

• ACS and JCS definition. To promote interpretability, it is important
to report ACS and JCS definitions for each bony segment and joint
along with a brief description of the method used for their identifi-
cation. Templates for summarizing essential information are pro-
vided in Appendix A.

• Axes identification. A clear description of the methods used to
identify each of the axes involved in the ACS and JCS description
should be provided. We recommend that authors acknowledge the
limitations associated with their specific method and describe
countermeasures taken.

• Reproducibility of ACS and JCS.When presenting an original method
or applying a previously validated method to a new cohort, it is good
practice to implement a repeated measures experimental design on a
subset of subjects to assess the influence of the critical factors

according to the specific method (e.g. intra/inter-subject, inter/
intra-operator).

5. Analysis of angular joint kinematics

5.1. Single-body versus multi-body methods

Methods for estimating joint kinematics based on IMU data can be
grouped into single-body and multi-body methods. In single-body
methods, the orientation of each body segment relative to the global
coordinate system is computed independently using only the data
recorded by the relevant IMU and a selected orientation estimation al-
gorithm (Madgwick et al., 2011; Mahony et al., 2008; Sabatini, 2011;
Vitali et al., 2021). Then, the joint motion is described based on the
orientation of each segment relative to each other and the relevant JCS
(see section 4.2.3). In contrast, multi-body methods estimate the joint
angles through an optimization process. While some multi-body
methods use rigid body kinematic equations to relate IMU signals
directly to joint angles or their derivatives without explicitly calculating
body segment orientation (Seel et al., 2014), others do like full-state
Kalman filters and moving horizon estimation (Potter et al., 2022;
Taetz et al., 2016; Weygers et al., 2020). In the latter case, the algorithm
involves operations that affect orientation estimates of multiple body

Fig. 4. An example of using the reference posture to define the JCS of the knee
joint without explicitly defining the ACS of the femur and tibia segments.
Consider the proximal and distal units (IMUp, IMUd) attached to the thigh and
shank segments in an arbitrary way with respect to the underlying bony
segment. The knee joint is modeled as a revolute joint and the direction of the
flexion–extension axis of rotation with respect to the coordinate system of the
IMUp is determined using one of the methods described in section 4.2.1. It is
assumed that the flexion–extension angle of the knee (α) is equal to zero during
the reference posture (e.g., upright standing posture). We can mathematically
rotate IMUd in order to define a virtual IMU (IMUdVirt) that is aligned with
IMUp during the reference posture. Then, the reference line associated with the
joint rotation axis of the JCS is assumed to be orthogonal to the rotation axis
and fixed with the IMUp. The flexion–extension angle α can then be determined
during the knee motion by calculating the relative orientation between IMUp
and IMUdVirt and calculating the rotation angle around the rotation axis. This
example can be extended to a 2 or 3 DoF joint model without losing validity.
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segments simultaneously.

5.2. Determining a global coordinate system

Methods requiring estimation of individual body segment orienta-
tion must first identify a common global coordinate system. While the
determination of a global coordinate system is straightforward for
stereophotogrammetry, which requires that a cluster of three non-
collinear markers is visible by a sufficient number of cameras, this is
more challenging for IMU-based motion analysis because IMU mea-
surements are made in a local coordinate system. In IMU-based systems,
a natural choice for the definition of the global coordinate system
orientation is to rely on the “north”, “east”, and “up” directions
(Sabatini, 2011). Under static conditions, the “up” direction can be
identified by the accelerometer measurement of the gravitational ac-
celeration vector, and the “east” direction can be identified using a cross
product of the magnetometer measurement of the magnetic field vector
with the “up” direction (Brodie et al., 2008). If a magnetometer is not
available, the IMU yaw angle must be imposed, e.g., initialized to zero
during a known, or assumed, pose.

5.3. Estimation algorithms and error compensation

Sensor fusion algorithms combine information from different sensors
or enforce biomechanical constraints to mitigate drift error as intro-
duced in section 2. Under dynamic conditions, the IMU orientation can
be obtained through the gyroscope signal, by numerically integrating
the rigid body kinematic equations. Under static conditions, an accel-
erometer measurement can be used to estimate the angular deviation of
the IMU relative to the gravity direction. This is sufficient to describe
only two rotational degrees of freedom (roll and pitch, but not yaw)
(Ojeda et al., 2017). These accelerometer and gyroscope orientation
estimates can be combined using sensor fusion techniques including
Kalman and complementary filters and optimization approaches
(Nazarahari and Rouhani, 2021). The kinematic model can be used to
impose constraints on the estimated kinematic variables. These can be
implemented in multiple ways including dynamic constraints in optimal
control simulations (Dorschky et al., 2019; Hafer et al., 2023), opti-
mizing with respect to unconstrained coordinates (Al Borno et al.,
2022), and as measurement updates in a Kalman filter (Potter et al.,
2022).

Estimation accuracy depends on several intrinsic (e.g., algorithm,
parameters, sensor noise) and extrinsic (e.g., movement type, speed, and

duration) factors. Particularly critical for obtaining good estimation
performance is the choice of algorithm parameter values, which should
be tuned according to different operating conditions (Caruso et al.,
2021) (Fig. 5).

There is no general solution for determining filter parameters and
gains that are optimal in every context. Proposed approaches include
deriving parameters from hardware specifications (Potter et al., 2021)
or empirical tuning (Al Borno et al., 2022; Madgwick et al., 2011). Some
algorithms use adaptive gains (Nazarahari and Rouhani, 2021) and
apply corrections only under certain conditions, like planar joint motion
(Vitali et al., 2017) or static pose (Sabatini, 2011). Therefore, for
reproducibility, it is important to clearly describe how an algorithm
functions, what the measurement updates are and when they are
applied, and how the algorithm parameters are initialized and adapted.
Open-source code is arguably the most transparent and unambiguous
way to communicate an algorithm. While there are some disadvantages
in terms of intellectual property and time, it encourages use by others,
enables third-party validation, and allows a more thorough analysis of
an algorithm to advance the state-of-the-art. Users sometimes modify
open-source algorithms to suit different applications. Such modifica-
tions to open-source code should be clearly stated to avoid misrepre-
sentation of the original algorithm.

5.4. IMU orientation parameters

Orientation can be parametrized in several ways (Shuster, 1993).
Common choices include direction cosines (Fischer et al., 2013), qua-
ternions (Sabatini, 2011), and Euler angles (Jurman et al., 2007), each
with advantages and disadvantages. For example, while Euler angles
require minimal memory, are unconstrained, and are more interpretable
than quaternions, they do not uniquely parameterize orientation
(infinite ambiguities), have a nonlinear kinematic equation, and can
have singularities. Quaternions have only one ambiguity (q and − q
parameterize the same orientation) and their four elements require only
slightly more memory than the three Euler angles, but less than half the
nine direction cosines. The main advantages over Euler angles are the
linearity of their kinematic equation and the absence of singularities. As
a result, quaternions are a popular choice for estimation algorithms on-
board many commercially available IMUs. Regardless of the choice of
generalized coordinates, it is necessary to clearly describe how the
biomechanically relevant joint angles are calculated from the
coordinates.

Recommendations for analysis of angular joint kinematics.

Fig. 5. An example of knee flexion–extension angle estimation during walking as obtained for different values of the orientation filter weight parameter β. Kine-
matics were reconstructed from data recorded by IMUs attached to the thigh and shank and using the complementary filter proposed by Madgwick and colleagues
(2011). For β = 0 only the gyroscope contribution is considered, β = 0.1 is the value chosen for the experiments presented in Madgwick and colleagues (2011).
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• Kinematic model. The kinematic analysis should be compatible with
the kinematic model. Details on the generalized coordinates used to
parameterize the kinematic model, the associated transformation
equations, and how the biomechanically relevant joint angles were
calculated should be reported.

• Sensor fusion algorithm. Details on raw sensor signals preprocessing
(e.g., low-pass filtering) and sensor fusion algorithms used, including
measurement and time update equations, application criteria, and
parameter initialization and tuning should be described.

• Open-source code. In accordance with intellectual property re-
quirements, open-source code for new algorithms whenever possible
should be provided to promote reproducibility and advance the field.

6. Quality assessment

The quality criteria of any measurement system are its accuracy,
concurrent validity, reliability, and context-specific validity in assessing
the outcome of interest. A three-component framework (verification,
analytical validation, and context-specific validation) has been proposed
to provide a basic evaluation framework for Biometric Monitoring
Technologies (BioMeTs) (Goldsack et al., 2020). This framework is also
applicable to IMU-based measurements of joint kinematics.

6.1. Accuracy

Ideally, assessing the accuracy of IMU-based protocols for joint ki-
nematics should involve comparison with direct measurements of skel-
etal motion, obtained through bone pins and marker-based
stereophotogrammetry or dual-plane fluoroscopy. However, the former
is highly invasive, and the latter requires expensive equipment with
limited practicality due to constrained movement, radiation exposure,
and 2D to 3D registration challenges. Notably, IMU-based systems have
yet to be evaluated against these direct measurements of joint
kinematics.

A potential solution for analytical validation of IMU-based kine-
matics accuracy is to use robotic joint simulators (Ortigas Vásquez et al.,
2022). This allows for assessing uncertainties related to algorithm
models and assumptions, albeit without addressing the influence of soft
tissue artifacts. Limitations of these systems include heterogeneity, po-
tential errors in kinematic mapping, and challenges in replicating
physiological motion (Ortigas Vásquez et al., 2022).

6.2. Concurrent validity

Assessing ground truth joint kinematics is challenging, leading to the
common practice of evaluating the concurrent validity of IMU-based
methods by comparing them to marker-based clinical protocols
(Kobsar et al., 2020), or, rarely, to other IMU-based systems (Cottam
et al., 2022). While all motion capture systems that rely on sensor
placement on the skin are prone to soft tissue artifacts (Cereatti et al.,
2017), their impact on joint angle estimation varies between IMU-based
and marker-based stereophotogrammetric systems. In addition, dis-
crepancies in JCS definitions (section 4.2.3, section 5.1) contribute to
differences in derived joint kinematics, (Ferrari et al., 2010). Many
studies have reported joint angle trajectory offsets between IMU-based
and marker-based stereophotogrammetric systems when different
ACSs are used (Al Borno et al., 2022; Bailey et al., 2021; Chan et al.,
2022; McGrath and Stirling, 2022; Nijmeijer et al., 2023; Nüesch et al.,
2017; Parel et al., 2014).

Another crucial issue when comparing IMU-based methods with
another reference motion capture system is to express the relevant ki-
nematic quantities in a common coordinate system. To this end,
appropriate alignment procedures can be implemented (Chardonnens
et al., 2012).

Concurrent validity describes the agreement between a proposed
measurement system (e.g., IMU-based kinematics analysis) and one

already accepted in the field (e.g., marker-based motion capture). It is
commonly evaluated by comparing kinematic parameters derived from
the different systems using metrics such as root mean square error, peak
error, or mean relative/absolute error at maximum excursion (Fang
et al., 2023). Although less commonly used, Bland-Altman plots (Bland
and Altman, 1986) are desirable for comparisons of discrete kinematic
parameters and provide insight into systematic bias between systems.
Correlation analysis, root mean square error, or statistical parametric
mapping with paired t-tests are used to assess agreement in kinematic
trajectories.

6.3. Reliability

While evidence for the concurrent validity of IMU-based kinematics
is abundant, research on the equally important quality criteria of reli-
ability and clinical validity of IMU-based systems is limited. Assessing
within-day reliability (repeatability) or between-day reliability (repro-
ducibility) in clinical populations is challenging due to potential disease-
related variations in function (Bartlett and Frost, 2008). In addition,
reliability is influenced by technical aspects such as calibration pro-
cedures (inter-operator and inter-subject, especially when calibration
relies on static posture) and human factors such as sensor or marker
placement (Schwartz et al., 2004). Few studies have reported on
within-session (Al-Amri et al., 2018; Berner et al., 2020; Nüesch et al.,
2017) or between-day (Nilsson et al., 2022) reliability of different IMU
systems for assessing joint kinematics in healthy populations or in pa-
tients (Berner et al., 2020; Parel et al., 2012). Reliability is typically
assessed using standard errors of measurement, appropriate intraclass
correlation coefficients (ICCs) (Koo and Li, 2016), and Bland-Altman
plots with limits of agreement (and the resulting minimum detectable
changes).

6.4. Context-specific validation

According to the BioMeTs framework (Goldsack et al., 2020), clinical
validation “evaluates whether a sensor acceptably identifies, measures,
or predicts a meaningful clinical, biological, physical, functional state,
or experience, in the stated context of use (which includes a specific
population)”. This definition, referred to as context-specific validation,
extends beyond clinical settings to include general health and/or sports
(Camomilla et al., 2018) settings and represents the sensitivity of a
system to detect relevant differences or changes in the outcome
parameter of interest in the specific setting and population. It is
important to consider that the context can also affect the concurrent
validity or reliability of the methodology, and hence steps should be
taken to mitigate these effects (e.g., implementing proper calibration
postures in real-world settings).

To establish the meaningfulness of IMU-based estimates, compari-
sons with physiological biomarkers, patient/observer-reported, clini-
cally evaluated, and qualitative questionnaires are critical (Berner et al.,
2020; Nüesch et al., 2017; Cutti et al., 2016). Clinical meaningfulness
can also be demonstrated through the relationship between standard-
ized physician assessments of disease severity and joint angle (Shah
et al., 2021). Notably, the Federal Drug Administration now mandates
that IMU-based estimates demonstrate meaningfulness to patients for
regulatory approval (Framework for the Use of DHTs in Drug and Biological
Product Development, 2023). For example ambulatory joint angle dif-
ferences of > 5◦ are considered clinically relevant (Berner et al., 2020;
Nüesch et al., 2017), and the minimum detectable changes of the system,
derived from its accuracy and reliability, must be less than the clinically
relevant change. When analyzing gait, pre- to postoperative joint kine-
matics changes in patients undergoing hip arthroplasty, exceeding the
IMU-based minimum detectable changes, have been reported. Differ-
ences were comparable between the IMU-based and marker-based
measurement protocols (Nüesch et al., 2023), and correlated with
patient-reported outcomes (Kaufmann et al., 2023). Further, Cutti et al.
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(2016) investigated the context-specific validity of augmenting a clinical
score with IMU-based measurements of the scapulo-humeral coordina-
tion. Ideally, context-specific validation involves comparing relevant
outcome parameters assessed in controlled laboratory settings with
those in real-life situations. There is evidence that results can vary
significantly depending on whether movement is assessed under labo-
ratory conditions or in everyday life (Warmerdam et al., 2020), there-
fore validation of kinematic characteristics must take into account
context, instructions, and environment, as well as the particular cohort.

Overall, demonstrating and reporting evidence of accuracy, con-
current validity, reliability and context-specific validity for the specific
outcome of interest is critical for the use of any IMU system in healthcare
and sport settings.

Recommendations for quality assessment

• Accuracy. Standard procedures in a controlled setting should be
implemented to assess the overall accuracy of the estimated quan-
tities, at least the first time an IMU-based system is proposed, and the
results provided.

• Concurrent validity. The biomechanical outcomes of interest should
be compared between IMU-based systems and a reference system
(current standard: marker-based stereophotogrammetry). Error sta-
tistics appropriate for the metric being validated should be reported
(e.g., Bland-Altman plots and limits of agreement for discrete pa-
rameters such as range of motion, RMSE for time-series data such as
joint angle trajectory). Alternatively, appropriate literature for the
same outcome and system should be cited.

• Reliability. Reliability as intraclass correlation coefficients (choose
appropriate ICC) and standard errors of measurement or Bland-
Altman plots and limits of agreement should be reported. Alterna-
tively, appropriate literature for the same outcome and system
should be cited.

• Context-specific validation. Sensitivity and specificity of the system-
based context-specific biomechanical outcome, including clinically-
relevant or performance-relevant differences and/or changes and
associations with patient-reported outcome or clinical measures
should be reported. Alternatively, appropriate literature for the same
outcome and system should be cited.

7. Conclusion

Inertial measurement technology is an attractive solution to measure
human motion outside the laboratory. However, there are currently few
standards or recommendations for how to obtain accurate and mean-
ingful measures of joint kinematics from IMUs. This paper presents a
conceptual framework that highlights the key aspects of estimating joint
kinematics using IMUs. A series of recommendations are proposed that
cover these aspects ranging from metrological performance to analysis
of joint kinematics, including practical considerations for experimental
protocols, definition of the kinematic models and subject-specific cali-
bration. This guidance includes the importance of assessing the reli-
ability, accuracy, and validity of the data obtained using IMUs. The
specific recommendations are general to avoid becoming obsolete with
the inevitable advances in this evolving field, and to be applicable also if
machine learning approaches are used for joint angle estimation directly
from IMU signals (Gurchiek et al., 2019). We recognize that these rec-
ommendations for estimating joint kinematics from IMUs may not
address all the aspects that IMU users need, but they are proposed as a
first step in establishing good practice for the use of IMUs for human
movement analysis, guiding the development of commercial products,
and issuing certifications (see checklist in Appendix B).
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