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Abstract: This paper investigates the threshold voltage shift (∆VTH) induced by positive bias temper-
ature instability (PBTI) in silicon carbide (SiC) power MOSFETs. By analyzing ∆VTH under various
gate stress voltages (VGstress) at 150 ◦C, distinct mechanisms are revealed: (i) trapping in the interface
and/or border pre-existing defects and (ii) the creation of oxide defects and/or trapping in spatially
deeper oxide states with an activation energy of ~80 meV. Notably, the adoption of different character-
ization methods highlights the distinct roles of these mechanisms. Moreover, the study demonstrates
consistent behavior in permanent ∆VTH degradation across VGstress levels using a power law model.
Overall, these findings deepen the understanding of PBTI in SiC MOSFETs, providing insights for
reliability optimization.

Keywords: silicon carbide MOSFETs; threshold voltage instability; VTH characterization; trapping/
de-trapping mechanisms; defects; reliability

1. Introduction

The rapid growth of renewable energy [1] and electric vehicles (EVs) [2] is driving the
development of power devices based on wide bandgap (WBG) semiconductors. Renewable
energy sources such as solar and wind energy require efficient solutions to convert and man-
age electricity [3], as well as electric vehicles requiring high-power reliable semiconductor
devices to control electric motors and charging systems [4].

Silicon carbide (SiC) stands out in the realm of power electronics, offering a robust and
high-performance alternative to conventional silicon (Si) counterparts [5], thus representing
one of the best choices for applications where high power and reliability are required, such
as solar inverters, wind turbine control systems, and electric vehicle motor control systems.

SiC’s inherent properties enable devices to operate at higher voltages, maintain stabil-
ity at elevated temperatures, and switch at high frequencies. In particular, the breakdown
electric field strength, nearly ten-fold that of silicon, and a band gap three times wider [6],
allow for operation at elevated voltages and temperatures. Another key advantage of
SiC lies in its thermal performance; it can maintain consistent operation even under high-
temperature conditions [7], which is crucial for many industrial and automotive applica-
tions. The high thermal conductivity of SiC also aids in mitigating temperature-dependent
degradation, ensuring longevity and reliability.

The high-frequency operation capability of SiC devices enables more compact power
electronics systems [8], offering higher power density and reduced cooling requirements
and opening a spectrum of possibilities in various sectors, from power systems to switch-
mode power supplies and EVs [9].
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However, while SiC technology offers significant benefits, different challenges are still
present, including intricate production processes, resulting in elevated costs, and notably,
issues related to device reliability.

One reliability challenge is the lower short circuit tolerance of SiC devices compared
with Si ones [10,11]. This necessitates the use of fast-acting gate drivers to ensure device
safety and reliability. In addition, SiC devices have been observed to exhibit larger threshold
voltage (VTH) instability compared with their Si counterparts, with a tendency to faster
recovery [12–14]. In [15], two distinct trapping mechanisms contributing to VTH shift
(∆VTH) have been identified under gate bias stress tests, i.e., trapping of charges in the
near-interface oxide traps (also referred as border traps) and in intrinsic defects at the
SiO2/SiC interface.

The presence of pre-existing border traps has also been investigated in [16–20], high-
lighting the role of the tunneling in the charging and discharging processes [19], and
measuring capture and emission times in the order of µs [20]. The role of fast trapping
mechanisms related to pre-existing interface defects has been analyzed in [21–24].

In addition to interface and border defects, the creation of new traps and/or the
charge trapping in deeper energy-level defects, both localized within the oxide, has been
demonstrated in [25] by applying a relatively large gate voltage.

Further investigations have indicated the role of the testing methods on the ob-
served ∆VTH. In particular, the influence of positive/negative bias temperature instability
(P/NBTI) on the electrical characteristics of SiC MOSFETs has been thoroughly studied
using both slow and fast measurement techniques [26].

Recently, we reported a distinct temperature dependence of ∆VTH, which varies based
on the measurement technique employed [27]. When using a slow-PBTI procedure, the
effect of fast interface and border traps is not accounted for in ∆VTH, as their recovery
time is shorter than the VTH characterization time. As a result, the oxide charge trapping
dominates ∆VTH, resulting in a positive temperature dependency, i.e., the higher the
temperature, the greater the charge trapping, the higher ∆VTH. Conversely, a negative
temperature dependency is observed when a fast-PBTI test is adopted, emphasizing the
role of a fast interface and border traps in the overall behavior [27].

In this work, the ∆VTH of SiC MOSFETs induced by different PBTI test procedures
suggested by JEDEC JEP184 [28], here named transistor and diode modes, has been investi-
gated. The role of the gate bias level on the different underneath trapping mechanisms has
been analyzed.

2. Devices under Test (DUTs) and BTI Characterization Techniques

In this study, a 650 V automotive grade silicon carbide power MOSFET with a vertical-
diffused structure (VD-MOSFET), manufactured by STMicroelectronics, has been consid-
ered. The room temperature transfer characteristics is reported in Figure 1, additional key
features can be found in [29].

The Keysight Power Device Analyzer B1505A has been adopted for this analysis.
Initially, a PBTI stress and characterization procedure according to the JEDEC standard

JEP184, namely transistor mode, has been adopted and reported in Figure 2a. It illustrates
the gate voltage (VG), drain voltage (VD), and drain current (ID) for the initial three stress
and characterization periods. The gate maintains a steady bias during the stress phase,
while the drain and source are grounded. Stress time periods, which increase logarith-
mically, are interspersed with VTH sensing intervals. Following each stress interval, the
gate stress is removed to allow for conditioning and VTH sensing. To stabilize the VTH
readout, a conditioning phase is carried out by a 100 ms long positive gate pulse before
the VTH measurement. For the extrapolation of VTH, the ID–VG transfer characteristics are
measured. During this process, VD remains constant whereas VG is swept from VG_MAX to
0 V to minimize VTH recovery. VTH is calculated at fixed ID = 1 mA.
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Figure 1. ID–VG transfer characteristics of SiC MOSFETs with VG sweep from 0 V to 18 V, VDS = 1 V 
and ambient temperature T = 25 °C. 
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Figure 2. Waveforms of PBTI stress and measure procedure in the case of transistor (a) and diode 
mode (b) method, as reported by JEDEC JEP184 standard [28]. Each cycle consists of a logarithmi-
cally increasing stress period, conditioning and threshold voltage measurement. 

However, as ΔVTH can be induced by slow and fast trapping/de-trapping components 
[16–25], slower measurements might result in the partal loss of the contribution ascribed 
to faster defects, i.e., fast defects recover before and/or during the VTH characterization 
phase, thus not contributing to it. To gain a clearer understanding of these fast compo-
nents, it is necessary to use faster measurement techniques. 

Standard JEP184 also provides the gated-diode method for measuring the VTH of SiC 
power transistors under BTI stress conditions. It involves biasing both the VG and VD sim-
ultaneously while maintaining the source at the ground potential. The test consists of two 
blocks: a stress phase for a specified period and VTH characterization. 

Similar to the previous method, during stress, VG stress is applied to the gate termi-
nal. The increasing gate stress time corresponds to a logarithmic scale. 

The VTH measurement method follows the JEDEC standard JEP183 [30], shown in 
Figure 2b. Firstly, as for the previous method, a gate conditioning pulse is applied, then 
VTH of the SiC power MOSFET is measured in diode mode, which consists of the shorting 
gate and drain. The instrument forces the target threshold current (ITH), which determines 
the VTH with a faster spot measurement (10 ms) compared with the full IDVG characteriza-
tion (few seconds), therefore avoiding VTH recovery as much as possible. 
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and ambient temperature T = 25 ◦C.
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Figure 2. Waveforms of PBTI stress and measure procedure in the case of transistor (a) and diode
mode (b) method, as reported by JEDEC JEP184 standard [28]. Each cycle consists of a logarithmically
increasing stress period, conditioning and threshold voltage measurement.

However, as ∆VTH can be induced by slow and fast trapping/de-trapping compo-
nents [16–25], slower measurements might result in the partal loss of the contribution
ascribed to faster defects, i.e., fast defects recover before and/or during the VTH charac-
terization phase, thus not contributing to it. To gain a clearer understanding of these fast
components, it is necessary to use faster measurement techniques.

Standard JEP184 also provides the gated-diode method for measuring the VTH of SiC
power transistors under BTI stress conditions. It involves biasing both the VG and VD
simultaneously while maintaining the source at the ground potential. The test consists of
two blocks: a stress phase for a specified period and VTH characterization.

Similar to the previous method, during stress, VG stress is applied to the gate terminal.
The increasing gate stress time corresponds to a logarithmic scale.
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The VTH measurement method follows the JEDEC standard JEP183 [30], shown in
Figure 2b. Firstly, as for the previous method, a gate conditioning pulse is applied, then VTH
of the SiC power MOSFET is measured in diode mode, which consists of the shorting gate
and drain. The instrument forces the target threshold current (ITH), which determines the
VTH with a faster spot measurement (10 ms) compared with the full IDVG characterization
(few seconds), therefore avoiding VTH recovery as much as possible.

3. Results and Discussion

Figure 3 reports the ∆VTH under different gate stress voltages (VGstress) at an ambient
temperature of 150 ◦C. Notably, the ∆VTH obtained by means of the diode mode approach
is higher, especially for lower VGstress values (i.e., 30 V), although the stress phase is the
same. The difference is ascribed to the different characterization phase, which is temporally
shorter in the case of diode mode, allowing for a smaller VTH recovery, hence capturing a
larger ∆VTH. The difference between the two methods becomes more pronounced when
operating at lower VGstress settings or for shorter stress durations. This is because the
trapping and de-trapping processes in/from shallow pre-existing defects, which demand
less time to capture and release charges, emerge as the predominant mechanism responsible
for ∆VTH. As the gate voltage and stress time increase, the creation of new defects or the
trapping in spatially deeper oxide defects starts to play a significant role, producing a
permanent or slowly recoverable ∆VTH. As a result, the different characterization time that
distinguishes the two methods no longer has an impact on the ∆VTH, as the recoverable
part is negligible with respect to the permanent one.
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Figure 3. ∆VTH during the stress time by means of transistor (blue) and diode mode (red) technique,
under different gate stress voltages and T = 150 ◦C.

To demonstrate the occurrence of an additional mechanism (creation of new oxide
defects or trapping in spatially deeper defects) with respect to trapping in the pre-existing
defects, the PBTI analysis is performed at different VGstress ranging from 20 V to 47 V;
the latter is a few volts below the breakdown voltage. Figure 4 shows ∆VTH versus the
stress time as a function of different applied VGstress. It is possible to note the following:
(i) for VGstress up to 32.5 V, the long-term ∆VTH shows signs of saturation. This confirms
the trapping in pre-existing defects with a finite concentration; (ii) from VGstress = 35 V to
VGstress = 45 V, the ∆VTH shows a second (higher) slope, indicating the triggering of an
additional trapping mechanism, which occurs at shorter stress times by increasing VGstress;
(iii) for VGstress > 45 V, i.e., close to breakdown voltage, further trapping mechanisms seem
to show up producing a further ∆VTH slope variation. Moreover, under these high field
conditions, a negative or smaller threshold voltage drift is observed for short stress times
(<30 s), while a negligible VGstress dependency is observed for long stress times (>104 s),
indicating the presence of an additional competing mechanism, e.g., electron de-trapping
from the oxide to the gate metal, contributing to VTH decrease. Overall, by focusing on the
long-term behavior reported in points (ii) and (iii), it may be ascribed to the creation of new
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oxide defects or charge trapping into spatially deep states, i.e., oxide traps far away from
the SiO2/SiC interface.
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Figure 4. ∆VTH during the stress time as a function of different VGstress, monitored by the transistor
mode method, with T = 150 ◦C.

To strengthening this hypothesis, a stress test followed by the recovery phase has been
carried out in the case of VGstress = 25 V and 35 V. Figure 5 reports a permanent or slowly
recoverable ∆VTH, even after an extended recovery period of approximately 83 h at 150 ◦C,
in the case of VGstress = 35 V, i.e., the bias condition in which ∆VTH shows the occurring
of a second slope. On the contrary, a lower stress level of VGstress = 25 V leads to a full
recoverable ∆VTH within just a few hours, confirming trapping and de-trapping in shallow
pre-existing defects.
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Figure 5. ∆VTH during the stress and recovery time as a function of different gate stress voltages,
monitored by the transistor mode technique. Recovery condition: VG = 0 V, T = 150 ◦C.

Focusing on the dynamics of ∆VTH leading to permanent degradation (VGstress ≥ 35 V),
it can model by using a power law, as shown in Figure 6. It is worth noting that ∆VTH
curves with VGstress > 45 V have not been considered because they are very close to the
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breakdown voltage. Therefore, the additional observed mechanisms are unlikely to oc-
cur under normal operating conditions. Figure 6 illustrates that the effect of the second
mechanism on ∆VTH, whether it is creating new defects or trapping in spatially deeper
states, always shows the same power slope (exponent) of n = 0.27, regardless of the gate
stress voltage. Consequently, it is possible to assume that the same mechanism occurs even
at lower VGstress, but its impact is masked by trapping in the shallow pre-existing defects
during the observed time windows. In particular, by obtaining the scaling factor k (symbols
in Figure 7) through fitting the region of ∆VTH experiments with steeper slope (dotted
lines in Figure 6), the dependency of k on the gate voltage can be analyzed, resulting in
a power-law relationship, as depicted in Figure 7. Consequently, the effect of this second
mechanism can be estimated even at gate voltages closer to nominal operation (dashed
lines in Figure 6) by deriving k from the model presented in Figure 7, utilizing n = 0.27. For
instance, considering a maximum VG = 25 V, the induced ∆VTH due to the creation of new
defects is estimated to be roughly 300 mV after 10 years at 150 ◦C.
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By considering the ∆VTH ascribed to the oxide charge trapping (i.e., dotted and dashed
lines in Figure 6), the corresponding oxide trapped charge density (∆NOX) is calculated and
reported in Figure 8 as a function of VGstress. It is worth noting that the possible creation
of new interface and/or border defects is excluded because, as demonstrated in [27], no
degradation of the subthreshold slope has been observed (not shown).
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Finally, a temperature-dependent PBTI analysis has been carried out to calculate the
activation energy of the oxide traps inducing permanent or slowly recoverable ∆VTH,
hence degradation. In particular, VGstress = 42.5 V has been adopted as it represents the
bias condition in which the second ∆VTH slope (trapping mechanism of interest) is clearly
visible, whereas the short-term additional mechanism occurring at larger gate biases (close
to the breakdown voltages) is almost negligible. As observed from the Arrhenius plot
in Figure 9, such oxide defects feature an activation energy of ~80 meV. The relatively
shallow energy level combined with the long recovery time (permanent) further confirms
the creation of new oxide defects or the trapping in states far away from the SiC/SiO2
interface (spatially deep).
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4. Conclusions

The positive bias temperature instability of SiC MOSFETs has been analyzed, revealing
insights into the underlying mechanisms contributing to ∆VTH. The results demonstrate
the importance of characterization methods, with the diode mode approach proving more
sensitive to fast pre-existing defects compared with the transistor mode one, because of
the reduced VTH measure time, eventually leading to a smaller recovery. The analysis of
∆VTH under different gate stress voltage conditions confirmed the presence of multiple
trapping mechanisms, including trapping in pre-existing defects and the creation of new
defects or trapping in spatially deeper states. These mechanisms exhibit distinct behaviors
at varying VGstress levels, contributing to permanent or slowly recoverable ∆VTH. Overall,
the findings contribute to a deeper understanding of the PBTI phenomena in SiC MOSFETs
and provide valuable insights for enhancing device reliability.
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