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Spin-s Dicke States and Their Preparation

Rafael I. Nepomechie,* Francesco Ravanini, and David Raveh

The notion of su(2) spin-s Dicke states is introduced, which are higher-spin
generalizations of usual (spin-1/2) Dicke states. These multi-qudit states can
be expressed as superpositions of su(2s+ 1) qudit Dicke states. They satisfy a
recursion formula, which is used to formulate an efficient quantum circuit for
their preparation, whose size scales as sk(2sn− k), where n is the number of
qudits and k is the number of times the total spin-lowering operator is applied
to the highest-weight state. The algorithm is deterministic and does not
require ancillary qudits.

1. Introduction

Quantum state preparation is a fundamental task in quantum
computing.[1] The cost of preparing a general quantum state
scales exponentially with the number of qubits (or qudits, for d-
level systems), see e.g. refs. [2–6]. Hence, quantum states that can
be prepared efficiently are of particular interest. Dicke states[7]

constitute one such example. These states, which we denote here
by |Dn,k⟩, are completely symmetric n-qubit states of k |1⟩’s and
n − k |0⟩’s, for instance
|D3,2⟩ = 1√

3
(|011⟩ + |101⟩ + |110⟩) (1)

where the tensor product is understood, e.g. |011⟩ = |0⟩⊗ |1⟩⊗|1⟩. Such states have numerous applications, including quan-
tum networking,[8] quantum metrology,[9] optimization,[10] and
quantum compression.[11] An efficient algorithm for preparing
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Dicke states was given in ref. [11], see
also refs. [12, 13]. This construction was
used recently as the starting point for
preparing exact eigenstates of the Heisen-
berg spin chain[14–16] via coordinate Bethe
ansatz.[17,18]

A generalization of Dicke states |Dn,k⟩
to higher-level systems is given by qudit
Dicke states, which are multi-qudit com-
pletely symmetric basis states (a precise def-
inition can be found in Appendix A); and an
algorithm for preparing these states, gener-
alizing ref. [11],[11 was given in ref. [19].

Additional types of quantum states that can be prepared effi-
ciently include the q-deformation of qubit[20] and qudit[21] Dicke
states, uniform and cyclic quantum states,[22] and W states.[23]

In this paper, we introduce the notion of higher-spin Dicke
states, and we formulate a deterministic algorithm for prepar-
ing these states that does not require ancillas. These multi-qudit
states differ from the above-mentioned qudit Dicke states, and
can in fact be prepared with significantly simpler circuits. We ex-
pect that these states may be useful for generalizing the many
applications of (qubit) Dicke states to qudits, and may serve as
the starting point for preparing exact eigenstates of integrable
higher-spin Heisenberg chains via coordinate Bethe ansatz.[24]

Specifically, we consider qudits with dimension d = 2s + 1,
where s = 1∕2 , 1 , 3∕2 ,…, corresponding to spin-s spins. We de-
note the basis by

|0⟩ = ⎛⎜⎜⎜⎝
1
0
⋮
0

⎞⎟⎟⎟⎠ , |1⟩ =
⎛⎜⎜⎜⎝
0
1
⋮
0

⎞⎟⎟⎟⎠ ,… , |2s⟩ = ⎛⎜⎜⎜⎝
0
0
⋮
1

⎞⎟⎟⎟⎠ (2)

as usual. The total spin operators �⃗� are given by

�⃗� =
n−1∑
i=0

S⃗i , S⃗i =
n−1
↓

𝕀 ⊗…⊗ 𝕀⊗

i
↓

S⃗ ⊗𝕀⊗…⊗

0
↓

𝕀 (3)

where S⃗ = (Sx , Sy , Sz) are (2s + 1) × (2s + 1) matrices that obey
the su(2) algebra [Sx , Sy] = iSz, etc., and 𝕀 is the (2s + 1) × (2s + 1)
identity matrix. As usual, we take Sz to be the diagonal matrix

Sz = diag
(
s , s − 1 ,… ,−(s − 1) ,−s

)
(4)

For a system of n such qudits, we define spin-s Dicke states|D(s)
n,k⟩ as the states obtained by applying k times the total spin-

lowering operator 𝕊− on the highest-weight state. More precisely,

|D(s)
n,k⟩ = a(s)n,k(𝕊

−)k|0⟩⊗n , k = 0, 1,… , 2sn (5)
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where 𝕊− = 𝕊x − i𝕊y is the total spin-lowering operator, |0⟩⊗n is
the state with all n spins “up” (with 𝕊z-eigenvalue 𝕞 = sn), and
a(s)n,k is the normalization factor (This factor can be derived using
the familiar fact

𝕊− |𝕤,𝕞⟩ =√(𝕤 +𝕞)(𝕤 + 1 −𝕞) |𝕤,𝕞 − 1⟩ (6)

where |𝕤,𝕞⟩ are simultaneous eigenstates of �⃗� 2 and 𝕊z, and the
fact that here 𝕤 = sn.).

a(s)n,k =
1

k!
√(2sn

k

) (7)

These states are exact ground states of ferromagnetic spin-s
Heisenberg Hamiltonians, and of a spin-s version of the Lipkin–
Meshkov–Glick[25] Hamiltonian −�⃗� 2 = −

∑
i,j S⃗i ⋅ S⃗j.

The spin-s Dicke states take the closed-form expression

|D(s)
n,k⟩ = ∑

ji=0,1,…,2s
j0+j1+⋯+jn−1=k

√√√√√(2s
j0

)(2s
j1

)
…
( 2s
jn−1

)
(2sn

k

) |jn−1… j1j0⟩ (8)

see Appendix A for a complete proof of this fact. Thus, for s =
1∕2 the spin-s Dicke states reduce to the usual Dicke states,
i.e. |D(1∕2)

n,k ⟩ = |Dn,k⟩. Further, for s > 1∕2, these states can be
expressed as linear combinations of (2s + 1)-level qudit Dicke
states. A simple example with s = 1 is the state

|D(1)
3,2⟩ = 2√

15
(|011⟩ + |101⟩ + |110⟩)

+ 1√
15
(|002⟩ + |020⟩ + |200⟩) (9)

The general relation between higher-spin and qudit Dicke states
is given by Equations (A10) and (A13). Higher-spin Dicke states
are entangled, and we include here a computation of their bipar-
tite entanglement entropy. We remark that these states have the
“duality” (charge conjugation) transformation property

⊗n |D(s)
n,k⟩ = |D(s)

n,2sn−k⟩ ,  =
⎛⎜⎜⎝

1
⋰

1

⎞⎟⎟⎠ (10)

which maps k → 2sn − k. To our knowledge, such higher-spin
Dicke states have not heretofore been systematically studied.[26,27]

An outline of the reminder of the paper is as follows. In Sec-
tion 2, we present a recursive construction of higher-spin Dicke
states on a quantum computer. (Of course, the construction
Equation (5) cannot be directly implemented on a quantum com-
puter, since the total spin-lowering operator 𝕊− is not unitary.)
The key idea is that, as for the case of usual Dicke states[11] and
qudit Dicke states,[19,21] these states satisfy a recursion Equation
(17), which is proved in Appendix B. The reference state Equa-
tion (14), whose choice requires considerable care, also plays an
important role in this construction. The problem reduces to find-
ing explicit circuits for certain operators T . As a warm-up for de-
termining these T operators, we briefly review in Section 3 the

case s = 1∕2.[11,19] In Section 4, we consider the case s = 1; and
we finally treat the general spin-s case in Section 5. We conclude
with a brief discussion in Section 6. We complement the paper
with some appendices; in particular, Appendix A shows the rela-
tion between higher-spin and qudit Dicke states, and Appendix C
contains the computation of the entanglement entropy. Code in
cirq[28] for simulating the circuits presented here is provided in
the Supporting Information.

2. Recursive Construction

We assume that a spin-s Dicke state Equation (5) can be gener-
ated by a unitary operatorU(s)

n acting on a simple “reference” state|𝜓 (s)
n,k⟩

|D(s)
n,k⟩ = U(s)

n |𝜓 (s)
n,k⟩ , k = 0, 1,… , 2sn (11)

where U(s)
n is independent of k.

In order to specify the reference state |𝜓 (s)
n,k⟩ for a given value

of k, it is necessary to first define 𝓁 to be the unique integer sat-
isfying

k = 2s𝓁 + i , 0 ≤ i < 2s (12)

so that

𝓁 = ⌊ k
2s
⌋ ∈ {0, 1,… , n} , i = k − 2s𝓁 ∈ {0, 1,… , 2s − 1} (13)

where ⌊…⌋ denotes floor. The reference state |𝜓 (s)
n,k⟩ is then given

by the product state

|𝜓 (s)
n,k⟩ ≡ |𝜓 (s) i

n ;𝓁⟩ = |0⟩⊗(n−𝓁−1)|i⟩|2s⟩⊗𝓁 (14)

These reference states have been engineered so that they reduce
for n = 1 to basis states |k⟩
|𝜓 (s)

1,k⟩ = |k⟩ = |D(s)
1,k⟩ , k = 0, 1,… , 2s (15)

which implies that U(s)
n in Equation (11) reduces for n = 1 to the

identity matrix

U(s)
1 = 𝕀 (16)

A key feature of spin-s Dicke states Equation (5) is that they
obey a recursion formula

|D(s)
n,k⟩ = 2s∑

j=0
c(s)n,k,j |D(s)

n−1,k−j⟩⊗ |j⟩ (17)

with

c(s)n,k,j =

√√√√√(2s
j

)(2sn−2s
k−j

)
(2sn

k

) (18)
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whose proof is given in Appendix B. Similarly to refs. [11, 19,
21], let us now define a unitary operator W (s)

n that implements a
corresponding mapping on the reference states

W (s)
n |𝜓 (s)

n,k⟩ = 2s∑
j=0

c(s)n,k,j |𝜓 (s)
n−1,k−j⟩⊗ |j⟩ , n = 2, 3,… (19)

Note thatW (s)
n , likeU

(s)
n , is independent of k. Making use of Equa-

tion (11) in both sides of Equation (17), we see that U(s)
n satisfies

the recursion

U(s)
n =

(
U(s)

n−1 ⊗ 𝕀
)
W (s)

n (20)

Telescoping the recursion, and imposing the initial condition
Equation (16), we conclude that U(s)

n is given by an ordered prod-
uct ofW operators

U(s)
n =

↷
n∏

m=2

(
W (s)

m ⊗ 𝕀⊗(n−m)
)

(21)

where the product goes from left to right with increasing m.
The problem of constructing a quantum circuit for U(s)

n there-
fore reduces to finding circuits for theW (s)

m operators. The strategy
for accomplishing the latter is to look for operators T (s)

m,k ≡ T (s) i
m;𝓁

(recall the Equations (12) and (13) for 𝓁 and i), which do depend
on k, with the following properties

and

T (s)
m,k′

(
T (s)
m,k |𝜓 (s)

m,k⟩) =
(
T (s)
m,k |𝜓 (s)

m,k⟩) for k′ > k (24)

where W (s)
m |𝜓 (s)

n,k⟩ in Equation (23) is given by Equation (19). An

operatorW (s)
m that performs the mapping Equation (19) is there-

fore given by an ordered product of all the T operators

W (s)
m =

↶
2sm−1∏
k=1

T (s)
m,k (25)

where the product goes from right to left with increasing k.
We see from Equation (25) that the number of T operators

in W (s)
m is 2sm − 1; and from Equation (21) we conclude that the

number of T operators in U(s)
n is

n∑
m=2

(2sm − 1) = (n2s) (26)

However, we shall later argue that the number of T operators can
be reduced, see Equation (52).
To summarize, spin-s Dicke states Equation (5) are generated

by Equation (11), where the reference state |𝜓 (s)
n,k⟩ is given by Equa-

tion (14), the unitary operator U(s)
n is given in terms of W’s by

Equation (21), and the W’s are given in terms of T ’s by Equa-
tion (25). It remains to find explicit circuits for the T ’s, to which
the reminder of this paper is largely dedicated. As a warm-up, we
begin by reviewing the case s = 1∕2 in Section 3; we then treat
the case s = 1 in Section 4, and we finally consider the general
spin-s case in Section 5.

3. The Case s = 1∕2
For the case s = 1∕2, which corresponds to usual qubit Dicke
states, we see from Equation (12) that 𝓁 = k and i = 0; hence,
the reference state Equation (14) with n = m reduces to

|𝜓 (1∕2)
m,k ⟩ = |0⟩⊗(m−k)|1⟩⊗k (27)

The action of the W operator on this state is given by Equa-
tion (19)

W (1∕2)
m |0⟩⊗(m−k)|1⟩⊗k = c(1∕2)m,k,0 |0⟩⊗(m−k−1)|1⟩⊗k|0⟩

+c(1∕2)m,k,1 |0⟩⊗(m−k)|1⟩⊗k (28)

We define a three-qubit operatorT (1∕2)
m,k (denoted by Im,k in refs. [19,

21]) that performs themapping Equation (23) with Equation (28),
which acts on the kth, (k − 1)th, and 0th qubit, as follows

T (1∕2)
m,k : |0⟩k |1⟩k−1 |1⟩0 → c(1∕2)m,k,0 |1⟩k |1⟩k−1 |0⟩0

+c(1∕2)m,k,1 |0⟩k |1⟩k−1 |1⟩0 (29)

and otherwise acts as identity (as long as the 0th qubit is in the
state |1⟩, which is always the case for the input states in Equa-
tion (28)). For k = 1, the middle qubits in Equation (29) are omit-
ted. The corresponding circuit diagrams are shown in Figure 1,
where here R(𝜃) is the Ry(−𝜃)-gate

R(𝜃) =

(
cos(𝜃∕2) sin(𝜃∕2)
− sin(𝜃∕2) cos(𝜃∕2)

)
(30)

and the angle 𝜃1 is chosen such that

cos(𝜃1∕2) = c(1∕2)m,k,1 (31)

Throughout the paper, we label m-qudit vector spaces from 0
tom − 1, going from right to left, as in Equation (3); and in circuit
diagrams, the m vector spaces are represented by corresponding
wires labeled from the top (0) to the bottom (m − 1).

3.1. Simplifying the Circuit

We have seen that the operator U(1∕2)
n is given by Equations (21),

(25), and (29). According to Equation (11), this operator generates
the Dicke states |Dn,k⟩ for all possible values of k. However, if we
are only interested in a Dicke state for a fixed value of k, then it
can be shown that some of the T operators become redundant;
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Figure 1. Circuit diagrams for T(1∕2)
m,k

.

by removing those redundant operators, we are left with a “sim-
plified” k-dependent operator (1∕2)

n,k that creates the desired state

|Dn,k⟩ =  (1∕2)
n,k |𝜓 (1∕2)

n,k ⟩ (32)

This simplified operator is expressed similarly to Equation (21)
in terms of corresponding simplified operators (1∕2)

m,k

 (1∕2)
n,k =

↷
n∏

m=2

( (1∕2)
m,k ⊗ 𝕀⊗(n−m)

)
(33)

where[19,21]

 (1∕2)
m,k =

↶

min(k,m−1)∏
k′=max(k+m−n,1)

T (1∕2)
m,k′ (34)

cf. Equation (25).

4. The Case s = 1

We turn now to the construction of the spin-1 T operators. For
s = 1, we see from (12) that i can have two possible values: either
i = 0 (k is even and 𝓁 = k∕2), or i = 1 (k is odd and 𝓁 = (k − 1)∕2).
Correspondingly, there are two families of reference states

|𝜓 (1) 0
m;𝓁 ⟩ = |0⟩⊗(m−𝓁)|2⟩⊗𝓁 ,

|𝜓 (1) 1
m;𝓁 ⟩ = |0⟩⊗(m−𝓁−1)|1⟩|2⟩⊗𝓁 (35)

where the subscripted semicolon notation is defined in Equa-
tion (14). The action of theW operator on these reference states
is given, according to Equation (19), by

W (1)
m |0⟩⊗(m−𝓁)|2⟩⊗𝓁 = c(1)m,k,0 |0⟩⊗(m−𝓁−1)|2⟩⊗𝓁|0⟩
+c(1)m,k,1 |0⟩⊗(m−𝓁−1)|1⟩|2⟩⊗(𝓁−1)|1⟩
+c(1)m,k,2 |0⟩⊗(m−𝓁)|2⟩⊗𝓁 , k = 2𝓁 (36)

W (1)
m |0⟩⊗(m−𝓁−1)|1⟩|2⟩⊗𝓁 = c(1)m,k,0 |0⟩⊗(m−𝓁−2)|1⟩|2⟩⊗𝓁|0⟩

+c(1)m,k,1 |0⟩⊗(m−𝓁−1)|2⟩⊗𝓁|1⟩
+c(1)m,k,2 |0⟩⊗(m−𝓁−1)|1⟩|2⟩⊗𝓁 , k = 2𝓁 + 1 (37)

respectively. We will treat these two cases separately in turn, see
Equations (39) and (41) below.
In order to implement these operators, we make use of the

ternary quantum logic gates defined in ref. [29] (see also ref. [30]).
In particular, we denote by X (i,j), with i < j, the NOT gate that
performs the interchange |i⟩↔ |j⟩ and leaves unchanged the re-
maining basis vector. Similarly, R(i,j)(𝜃) denotes the gate that per-
forms an Ry(−𝜃) rotation in the subspace spanned by |i⟩ and |j⟩;
hence,

R(i,j)(𝜃)|i⟩ = cos(𝜃∕2)|i⟩ − sin(𝜃∕2)|j⟩ ,
R(i,j)(𝜃)|j⟩ = sin(𝜃∕2)|i⟩ + cos(𝜃∕2)|j⟩ (38)

Moreover, 𝑖 denotes a control (of a controlled gate) with value
i.
For k even, we define the three-qutrit operator T (1)

m,k = T (1)
m,2𝓁 ≡

T (1) 0
m ;𝓁 that performs themapping Equation (23) with Equation (36)

as follows

T (1) 0
m;𝓁 : |0⟩𝓁 |2⟩𝓁−1 |2⟩0 → c(1)m,k,0 |2⟩𝓁 |2⟩𝓁−1 |0⟩0
+c(1)m,k,1 |1⟩𝓁 |2⟩𝓁−1 |1⟩0 + c(1)m,k,2 |0⟩𝓁 |2⟩𝓁−1 |2⟩0 , k = 2𝓁 (39)

and otherwise acts as identity (as long as the 0th qutrit is in the
state |2⟩, which is always the case for the input states in Equa-
tion (36)). For 𝓁 = 1, themiddle qutrits in Equation (39) are omit-
ted. The corresponding circuit diagram (with 1 < 𝓁 ≤ m − 1 and
m > 2) is given in Figure 2, where the rotation angles 𝜃1 and 𝜃2
are chosen such that

cos(𝜃1∕2) = c(1)m,k,2 , sin(𝜃1∕2) cos(𝜃2∕2) = c(1)m,k,1 ,

sin(𝜃1∕2) sin(𝜃2∕2) = c(1)m,k,0 (40)

The circuit for the edge cases with l = 1 and m > 1 can be ob-
tained as a limit of the circuit in Figure 2, see Appendix D.
For k odd, we similarly define a four-qutrit operator T (1)

m,k =
T (1)
m,2𝓁+1 ≡ T (1) 1

m ;𝓁 that performs the mapping Equation (23) with
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Figure 2. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁 = T(1) 0m;𝓁 (k even), with 1 < 𝓁 ≤
m − 1, m > 2.

Equation (37) as follows

T (1) 1
m;𝓁 : |0⟩𝓁+1 |1⟩𝓁 |2⟩𝓁−1 |2⟩0 → c(1)m,k,0 |1⟩𝓁+1 |2⟩𝓁 |2⟩𝓁−1 |0⟩0
+c(1)m,k,1 |0⟩𝓁+1 |2⟩𝓁 |2⟩𝓁−1 |1⟩0
+c(1)m,k,2 |0⟩𝓁+1 |1⟩𝓁 |2⟩𝓁−1 |2⟩0 , k = 2𝓁 + 1 (41)

The corresponding circuit diagram (with 1 < 𝓁 < m − 1 andm >
3) is given in Figure 3, where the rotation angles 𝜃1 and 𝜃2 are
again given by Equation (40).
For the four types of edge cases for T (1) 1

m;𝓁

1) 𝓁 = m − 1 , m > 2
2) 𝓁 = 1 , m = 2
3) 𝓁 = 1 , m > 3
4) 𝓁 = 0 , m > 1

the corresponding circuit diagrams can be obtained from limits
of Figure 3, see Appendix D.
One can check that the T operators defined by these circuits

indeed also satisfy the property Equation (24). Code in cirq[28] for
simulating these circuits is included in the Supporting Informa-
tion.

4.1. Simplifying the Circuit

As discussed for the case s = 1∕2 in Section 3.1, for a fixed value
of k, not all T operators are needed; by removing the redundant
operators, we are left with a “simplified” k-dependent operator
 (1)

n,k that generates the desired state

|D(1)
n,k⟩ =  (1)

n,k |𝜓 (1)
n,k⟩ (42)

where

 (1)
n,k =

↷
n∏

m=2

( (1)
m,k ⊗ 𝕀⊗(n−m)

)
(43)

and

 (1)
m,k =

↶

min(k,2m−1)∏
k′=max(k+2(m−n),1)

T (1)
m,k′ (44)

5. The Spin-s Case

We now turn to the construction of the T operators for general
values of spin. For spin s, there are 2s possible values of i in Equa-
tion (12). We observe from Equations (19) and (23) that

T (s) i
m;𝓁 |𝜓 (s) i

m;𝓁⟩ = 2s∑
j=0

c(s)m,2s𝓁+i,j |𝜓 (s)
m−1,2s𝓁+i−j⟩⊗ |j⟩ (45)

Recalling that the reference states are given by Equation (14), and
noting that

|𝜓 (s)
m−1,2s𝓁+i−j⟩ =

⎧⎪⎨⎪⎩
|𝜓 (s) i−j

m−1;𝓁⟩ i ≥ j

|𝜓 (s) 2s+i−j
m−1;𝓁−1⟩ i < j

(46)

Figure 3. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁+1 = T(1) 1m;𝓁 (k odd), with 1 < 𝓁 < m − 1, m > 3.
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Figure 4. Circuit diagram for T(s)
m,k

= T(s)m,2s𝓁+i = T(s) im;𝓁 (beginning).

we see that Equation (45) becomes

T (s) i
m;𝓁 |0⟩⊗(m−𝓁−1)|i⟩|2s⟩⊗𝓁 =

i∑
j=0

c(s)m,2s𝓁+i,j |0⟩⊗(m−𝓁−2)|i − j⟩|2s⟩⊗𝓁|j⟩
+

2s∑
j=i+1

c(s)m,2s𝓁+i,j |0⟩⊗(m−𝓁−1)|2s + i − j⟩|2s⟩⊗(𝓁−1)|j⟩ (47)

Our circuit for T (s) i
m;𝓁 generates the terms in Equation (47) from

last to first; that is, starting from the reference state on the l.h.s,
the circuit successively generates the terms on the r.h.s with j =
2s , j = 2s − 1 ,… , j = 0. The circuit diagram, split into two parts
due to its length, is shown Figure 4 (beginning) and Figure 5
(end). If i = 0, then the circuit ends at the dashed red line in
Figure 4; otherwise, the circuit continues through Figure 5. The
2s rotation angles 𝜃1,… , 𝜃2s are chosen such that

sin(𝜃1∕2) ⋯ sin(𝜃2s−j∕2) cos(𝜃2s+1−j∕2) = c(s)m,2s𝓁+i,j , j = 0, 1,… , 2s

(48)

where 𝜃2s+1 ≡ 0. The displayed circuit diagram is for the generic
case with 1 < 𝓁 < m − 1 and m > 3; edge cases can be obtained
from limits, as for s = 1∕2 and s = 1.
One can easily check that, for s = 1∕2 and s = 1, this circuit

reduces to the ones presented in Sections 3 and 4, respectively.

Code in cirq[28] for simulating the circuit for s = 3∕2 is also in-
cluded in the Supplementary Material.Supporting Information-
Supporit
We observe from Figures 4 and 5 that T (s) i

m;𝓁 is generically a
four-qudit operator (three-qudit for i = 0); i.e., the number of
qudits on which it acts does not grow with s. Moreover, T (s) i

m;𝓁
generically has 2s double-controlled rotations, and 4s single-
controlled NOTs. Recalling that the number of T operators in
U(s)

n is (n2s) Equation (26), we conclude that the total number
of gates in U(s)

n is (n2s2).
We note that the double-controlled rotation gates can be de-

composed into elementary one-qudit and two-qudit gates in the
same way as for corresponding double-controlled qubit Ry gates,
since we use the naive embeddings SU(2) ⊂ SU(2s + 1) Equa-
tion (38). Hence, eight two-qudit gates are needed for the decom-
position of each double-controlled rotation gate, see e.g. Table 1
in ref. [19]. Universal gate sets for qudit-based quantum comput-
ing are reviewed in ref. [30].

5.1. Simplifying the Circuit

As discussed for the cases s = 1∕2 and s = 1 in Sections 3.1 and
4.1 respectively, for a fixed value of k, not all T operators are
needed; by removing the redundant operators, we are left with a

Figure 5. Circuit diagram for T(s)
m,k

= T(s)m,2s𝓁+i = T(s) im;𝓁 (end). Note that this part of the circuit is present if and only if i > 0.
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“simplified” k-dependent operator (s)
n,k that generates the desired

state

|D(s)
n,k⟩ =  (s)

n,k |𝜓 (s)
n,k⟩ (49)

where

 (s)
n,k =

↷
n∏

m=2

( (s)
m,k ⊗ 𝕀⊗(n−m)

)
(50)

and

 (s)
m,k =

↶

min(k,2sm−1)∏
k′=max(k+2s(m−n),1)

T (s)
m,k′ (51)

see Equations (34) and (44), where again theT operators are given
by Figures 4 and 5.
The number of T operators in  (s)

n,k is given, in view of Equa-
tions (50) and (51), by

N(s)
n,k =

n∑
m=2

[
1 +min(k, 2sm − 1) −max(k + 2s(m − n), 1)

]
= (k(2sn − k)) (52)

which can be shown to be consistent with the duality symmetry
Equation (10)

N(s)
n,k = N(s)

n,2sn−k (53)

Hence, the total number of gates in  (s)
n is (sk(2sn − k)).

6. Discussion

We have introduced the notion of su(2) spin-s Dicke states |D(s)
n,k⟩

Equations (5) and (8), which are higher-spin generalizations of
usual (spin-1/2) Dicke states that can be decomposed into lin-
ear combinations of su(2s + 1) qudit Dicke states. Based on the
recursive property Equation (17), we have formulated a circuit
for preparing these states. (Specifically, we have determined a k-
independent operator U(s)

n that generates via Equation (11) these
spin-s Dicke states from reference states |𝜓 (s)

n,k⟩ in terms of W’s
Equation (21), which are in turn given in terms of T ’s Equation
(25); and the T ’s are (at most) four-qudit operators given by the
circuits in Figures 4 and 5.) These Dicke states can also be gener-
ated with a “simplified” k-dependent operator (s)

n,k using fewer T
operators, see Equations (49)–(51). We emphasize that this algo-
rithm for preparing Dicke states |D(s)

n,k⟩ is deterministic, does not
use ancillary qudits, and the number of gates scales as sk(2sn − k),
see Equation (52); this circuit is therefore efficient[1] to the extent
that its size is polynomial in the system size n (as well as the spin
s and the parameter k). These circuits are significantly simpler
than those for preparing (2s + 1)-level qudit Dicke states.[19]

We have also precisely related spin-s Dicke states to (2s + 1)-
level qudit Dicke states Equations (A10) and (A13), and we have
computed their entanglement entropy Equations (C3) and (C6).
Because spin-s Dicke states are linear combinations of qudit

Dicke states, one could use quantum phase estimation to project
a spin-sDicke state onto a desired qudit Dicke state, with success
probability |𝛼(s)n,k(k⃗)|2 (A13), see refs. [31, 32].
Further properties and applications of spin-s Dicke states re-

main to be explored. For example, it would be interesting to con-
sider their q-deformation, and compare with corresponding re-
sults for (2s + 1)-level qudit Dicke states. Indeed, it was shown[21]

that celebrated q-combinatorial identities arise naturally from the
q-analog qudit Dicke states; perhaps other identities can be re-
lated to the q-analog of the spin-s Dicke states, such as (possibly)
a q-analog of Equation (A14). Moreover, as noted in the Intro-
duction, these states may be useful for generalizing the many
applications of (qubit) Dicke states to qudits, and may serve as
the starting point for preparing exact eigenstates of integrable
higher-spin Heisenberg chains.

Appendix A: Spin-s Dicke States in Terms of
(2s+ 1)-Level Qudit Dicke States

We derive here the closed-form Equation (8) for the spin- s Dicke states by
expressing the su(2) spin-s Dicke states in terms of su(2s + 1) qudit Dicke
states, see Equation (A10) below.

A.1. Qudit Dicke States

We begin by defining a multisetM(k⃗)

M(k⃗) = {0,… , 0
⏟⏟⏟

k0

, 1,… , 1
⏟⏟⏟

k1

,… , d − 1,… , d − 1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

kd−1

} (A1)

where kj is the multiplicity of j in M(k⃗), such that M(k⃗) has cardinality n.

Hence, k⃗ is a d-dimensional vector such that

k⃗ = (k0, k1,… , kd−1) with kj ∈ {0, 1,… , n} and
d−1∑
j=0

kj = n (A2)

The corresponding normalized qudit Dicke state |Dn(k⃗)⟩with a number
n of d-level qudits is defined by (see[19] and references therein)

|Dn(k⃗)⟩ = 1√(n
k⃗

) ∑
w∈𝔖

M(k⃗)

|w⟩ (A3)

where𝔖
M(k⃗)

is the set of permutations of the multisetM(k⃗) (A1), and |w⟩
is the n-qudit state corresponding to the permutation w. Moreover,

(n
k⃗

)
denotes the multinomial(
n

k⃗

)
=
(

n
k0, k1,… , kd−1

)
= n!∏d−1

j=0 kj!
(A4)

The qudit Dicke states satisfy the recursion[19]

|Dn(k⃗)⟩ = d−1∑
j=0

√
kj
n
|Dn−1(k⃗ − ĵ)⟩⊗ |j⟩ (A5)

where ĵ is the d-dimensional unit vector with components (ĵ)a = 𝛿aj, a =
0, 1,… , d − 1.

Adv. Quantum Technol. 2024, 2400057 2400057 (7 of 11) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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A.2. Higher-Spin Dicke States in Terms of Qudit Dicke States

As a simple example of a spin-s Dicke state in terms of (2s + 1)-level qudit
Dicke states, we observe that the spin-1 Dicke state Equation (9) can be
rewritten as

|D(1)
3,2⟩ = 2√

5
|D3(1, 2, 0)⟩ + 1√

5
|D3(2, 0, 1)⟩ (A6)

We now proceed to generalize this result.
Because the spin-s Dicke state |D(s)

n,k
⟩ is invariant under any permu-

tation, we know it can be decomposed into a linear combination of
the permutation-invariant d-level qudit Dicke states |Dn(k⃗)⟩, as in Equa-
tion (A6). Evidently, we need d = 2s + 1. Moreover, we observe that such a
qudit Dicke state is an eigenstate of 𝕊z with eigenvalue sn −

∑2s
j=0 j kj; and

since the 𝕊z eigenvalue of the spin-s Dicke state |D(s)
n,k
⟩ is given by sn − k,

the decomposition is restricted to k⃗’s that satisfy

2s∑
j=0

j kj = k (A7)

We also require that the number of qudits match, so

2s∑
j=0

kj = n (A8)

see Equation (A2). In other words, for given values of n, k and s, the allowed
values of k⃗ = (k0, k1,… , k2s) are precisely the solutions of the Diophantine
Equations (A7) and (A8). The number of such solutions, which we denote
by g(s)

n,k
, is known to be generated by the q-binomial coefficient[33, 35]

(
n + 2s
2s

)
q
=

2sn∑
k=0

g(s)
n,k

qk (A9)

We conclude that a spin-s Dicke state has the decomposition

|||D(s)
n,k

⟩
=

′∑
k⃗

𝛼
(s)
n,k
(k⃗) |Dn(k⃗)⟩ (A10)

where the sum over k⃗ is restricted (indicated by a prime) to solutions of

Equations (A7) and (A8), and the coefficients 𝛼(s)
n,k
(k⃗) are still to be deter-

mined.
In order to determine the coefficients 𝛼

(s)
n,k
(k⃗), we substitute Equa-

tion (A10) into the recursion Equation (17), and obtain

′∑
k⃗

𝛼
(s)
n,k
(k⃗) |Dn(k⃗)⟩ = 2s∑

j=0
c(s)
n,k,j

′′∑
a⃗

𝛼
(s)
n−1,k−j(a⃗) |Dn−1(a⃗)⟩⊗ |j⟩ (A11)

where on the r.h.s we restrict (indicated by a double-prime) a⃗ to be solu-
tions of Equations (A7) and (A8) with kj → aj , n → n − 1, k → k − j. Ex-

panding |Dn(k⃗)⟩ in Equation (A11) via the qudit Dicke state recursion

Equation (A5), and making the association a⃗ → k⃗ − ĵ then gives a recur-

sive relation for the coefficients 𝛼(s)
n,k
(k⃗)

√
kj
n
𝛼
(s)
n,k
(k⃗) = c(s)

n,k,j
𝛼
(s)
n−1,k−j(k⃗ − ĵ) (A12)

which solves to

𝛼
(s)
n,k
(k⃗) =

[ (n
k⃗

)(2sn
k

) 2s∏
j=0

(
2s
j

)kj
]1∕2

(A13)

We note that the orthonormality of the spin-s and qudit Dicke states thus
implies the combinatorial identity[34]

(
2sn
k

)
=
∑
k⃗

(
n

k⃗

) 2s∏
j=0

(
2s
j

)kj
, (A14)

where we sum over solutions k⃗ to the Diophantine Equations (A7) and
(A8). Finally, Equation (8) follows from Equations (A3), (A10), and (A13).

The paper[27] includes a discussion of particular cases of the results
Equations (A10) and (A13). Specifically, for the three cases s = 1, 3∕2, 2,
formulas for the coefficients 𝛼

(s)
n,k
(k⃗) are given in ref. [27] (note that our

variables (n, k, k⃗) correspond to the variables (N, J −M, n⃗) in ref. [27], with
J = sN), see there Equations (14), (28), and (44); and sample values of
these coefficients are reported in corresponding tables. Where there is
overlap, our results agree with those in ref. [27], apart from some typos
in the latter.

A.3. An Alternative Construction of Spin-s Dicke States

Since a spin-s Dicke state can be expressed Equation (A10) as a linear
combination of (2s + 1)-level qudit Dicke states, the construction[19] of the
latter can—in principle—be used to obtain an alternative construction of
the former. Indeed, a unitary operatorUn is found in ref. [19] that generates

the qudit Dicke state Equation (A3) from a product state |e(k⃗)⟩
Un |e(k⃗)⟩ = |Dn(k⃗)⟩ , |e(k⃗)⟩ = |0⟩⊗k0 |1⟩⊗k1 … |d − 1⟩⊗kd−1 (A15)

It is not difficult to prepare the linear combination of the |e(k⃗)⟩’s
|𝛼(s)

n,k
(k⃗)⟩ = ′∑

k⃗

𝛼
(s)
n,k
(k⃗) |e(k⃗)⟩ (A16)

where the coefficients 𝛼(s)
n,k
(k⃗) are given by Equation (A13). It follows from

Equations (A10), (A15), and (A16) that the spin-s Dicke state can be con-
structed by acting with Un on the above state

|D(s)
n,k
⟩ = Un |𝛼(s)n,k(k⃗)⟩ (A17)

(This is similar to the construction of a linear combination of qubit Dicke
states in Theorem 2 of ref. [11].) However, the quantum circuit for Un in
ref. [19] is considerably more complicated than the circuit for U(s)

n Equa-
tion (11) in the present work.

Appendix B: Proof of the Recursion Equation (17)

In this section, we denote the total spin operators Equation (3) by �⃗�(n) in
order to indicate the number of spins (qudits). It follows from Equation (3)
that these operators satisfy the recursion

�⃗�(n) = �⃗�(n−1) ⊗ 𝕀 + 𝕀⊗(n−1) ⊗ S⃗ (B1)

Adv. Quantum Technol. 2024, 2400057 2400057 (8 of 11) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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where S⃗ = �⃗�(1). Therefore, powers of the total spin-lowering operator are
given by

(
𝕊(n)−

)k = (𝕊(n−1)− ⊗ 𝕀 + 𝕀⊗(n−1) ⊗ S−
)k = k∑

j=0

(
k
j

)(
𝕊(n−1)−

)k−j
⊗ (S−)j

(B2)

Recalling the definition Equation (5) of spin-s Dicke states, we obtain

|D(s)
n,k
⟩ = a(s)

n,k

(
𝕊(n)−

)k|0⟩⊗n

= a(s)
n,k

⎧⎪⎨⎪⎩
min(k,2s)∑

j=max(0,k−2s(n−1))

(
k
j

)(
𝕊(n−1)−

)k−j
⊗ (S−)j

⎫⎪⎬⎪⎭
(|0⟩⊗(n−1) ⊗ |0⟩)

(B3)

where the limits in the sum reflects the fact that
(
𝕊(n)−

)j |0⟩⊗n = 0 for
j > 2sn. Noting also that

a(s)1,j (S
−)j|0⟩ = |j⟩ , j = 0, 1,… , 2s (B4)

we conclude from Equation (B3) that

|D(s)
n,k
⟩ = min(k,2s)∑

j=max(0,k−2s(n−1))
c(s)
n,k,j
|D(s)

n−1,k−j⟩⊗ |j⟩ (B5)

where

c(s)
n,k,j

=
(
k
j

) a(s)
n,k

a(s)
n−1,k−j a

(s)
1,j

=

√√√√√(2s
j

)(2sn−2s
k−j

)
(2sn

k

) (B6)

where we used the result Equation (7) to pass to the the final equal-
ity. Focusing on the limits in the sum in Equation (B5), and recalling
the definition of 𝓁 Equation (12), we note that k < 2s implies 𝓁 = 0, and
k − 2s(n − 1) > 0 implies 𝓁 = n − 1 (or the trivial case 𝓁 = n). Because the
circuits for 𝓁 = 0, 1, n − 1 will be treated separately as edge cases of the
circuit for 1 < 𝓁 < n − 1, instead of Equation (B5) we simply write

|D(s)
n,k
⟩ = 2s∑

j=0
c(s)
n,k,j
|D(s)

n−1,k−j⟩⊗ |j⟩ (B7)

assuming 1 < 𝓁 < n − 1.

Appendix C: Entanglement Entropy

Usual (spin-1∕2) Dicke states have long been known to be entangled; in-
deed, the simplest such state |D2,1⟩ = (|01⟩ + |10⟩) ∕√2 is a Bell state.
The Von Neumann bipartite entanglement entropy of a Dicke state |Dn,k⟩
for general values of n and k was computed in refs. [36, 37], see also
refs. [38–40]. Corresponding results were obtained for qudit Dicke states|Dn(k⃗)⟩ (A3) in refs. [41, 42], as well as for their q-analogs in refs. [20, 21].

We calculate here the bipartite entanglement entropy of the spin-sDicke
states |D(s)

n,k
⟩ Equation (5). This entails partitioning the n qudits into two

parts, of sizes n − l and l, where l < n is a positive integer, and calculating
the eigenvalues of the reduced densitymatrix of |D(s)

n,k
⟩ , obtained by tracing

over the first n − l qudits of the density matrix. One method of computing

Figure C1. The entanglement entropy (EE) of the state |D(s)
n,k
⟩ as a func-

tion of l for s = 1 , n = 50. The exact values are given for k = 1 (red), k = 5
(green), and k = 50 (blue), as are their respective approximated curves
(black).

these eigenvalues is to find the Schmidt decomposition for the spin-sDicke
states, which we claim is given by

|D(s)
n,k
⟩ = min(k,2sl)∑

j=max(0,k−2s(n−l))

√
𝜆j |D(s)

n−l,k−j⟩⊗ |D(s)
l,j
⟩ (C1)

where

𝜆j =

(2sl
j

)(2sn−2sl
k−j

)
(2sn

k

) (C2)

Note that the max/min in Equation (C1) are simply enforcing the require-
ments 0 ≤ j ≤ 2sl and 0 ≤ k − j ≤ 2sn − 2sl. A proof for this decomposition
can be obtained by generalizing the argument in Appendix B; indeed, the
recursion Equation (B5) can be viewed as a special case of the Schmidt

decomposition Equation (C1) with l = 1, as we see that
√

𝜆j = c(s)
n,k,j

when

l = 1. Using the orthonormality of the spin-s Dicke states, it follows from
the Schmidt decomposition that the eigenvalues of the reduced density
matrix are given by 𝜆j, and therefore the entanglement entropy of |D(s)

n,k
⟩ is

given by

Sl =
min(k,2sl)∑

j=max(0,k−2s(n−l))
−𝜆j log2s+1 𝜆j (C3)

We observe that 𝜆j, and therefore Sl, are invariant under k → 2sn − k, corre-
sponding to the duality symmetry Equation (10). This allows us to focus on
the case k ≤ sn. Note that while 𝜆j ≡ 𝜆j(l) is not symmetric under l → n − l,
it does satisfy 𝜆j(l) = 𝜆k−j(n − l). It follows that Sl is also symmetric under
l → n − l, so we restrict our attention to l ≤ n∕2. Following,[37] for large n
and l, we can approximate the hypergeometric distribution 𝜆j via the Gaus-
sian distribution

𝜆j ≈
1√
2𝜋𝜎

exp
[
−
(j − j̄)2

2𝜎2

]
(C4)

with mean j̄ = kl∕n and variance

𝜎2 = k(2sn − k)l(n − l)∕2sn3 (C5)
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the latter of which exhibits the expected symmetries l → n − l and k →
2sn − k. The entanglement entropy is therefore approximated by

Sl ≈ −∫
∞

−∞
𝜆j log2s+1 𝜆j dj =

1
2
log2s+1(2𝜋e𝜎

2) (C6)

We plot the entanglement entropy curves—both the numerical sums
given by Equation (C3) and the approximated curves given by Equa-
tion (C6)—for s = 1 in Figure C1. The results are qualitatively similar to
those for the case s = 1∕2.[36,37] Indeed, the variance Equation (C5) for
fixed n, k, s, l can be mapped to the variance for the usual (spin-1∕2) Dicke
state |D2sn,k⟩ with partitions of sizes 2sl and 2sn − 2sl. In other words, de-
noting the result in Equation (C5) by 𝜎2(n, k, s, l), we see that

𝜎2(n, k, s, l) = 𝜎2(2sn, k, 1
2
, 2sl) (C7)

corresponding to the mapping (n, l) → (2sn, 2sl), i.e. “stretching” both the
chain and the partition by the factor 2s.

Comparing the entanglement entropy results for spin-s Dicke states
and for (2s + 1)-level qudit Dicke states,[41,42] we find that they cannot be
mapped into each other (such as in Equation (C7)) except for s = 1∕2. This
is not surprising, given that the latter states have 2s + 1 free parameters

(k⃗, where n =
∑

i ki), while the former states have only two (n and k).

Appendix D:

Circuit Diagrams for s = 1 Edge Cases
For completeness, we display here circuit diagrams corresponding to the
various edge cases for s = 1 (Figure D1–D5).

Figure D1. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁 = T(1) 0m;𝓁 (k even), with 𝓁 =
1, m > 1.

Figure D2. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁+1 = T(1) 1m;𝓁 (k odd), with 𝓁 =
m − 1, m > 2.

Figure D3. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁+1 = T(1) 1m;𝓁 (k odd), with 𝓁 =
1, m = 2.

Figure D4. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁+1 = T(1) 1m;𝓁 (k odd), with 𝓁 =
1, m > 2.

Figure D5. Circuit diagram for T(1)
m,k

= T(1)m,2𝓁+1 = T(1) 1m;𝓁 (k odd), with 𝓁 =
0, m > 1.
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