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Abstract: Power conversion systems for wireless power transfer (WPT) applications have demanding
requirements for continuity of service, besides being operated with stressing environmental con-
ditions. Diagnostic and prognostic programs are thus quite useful and this work shows a novel
approach based on the analysis of spectra of an autoregressive (AR) model to recognize a wide range
of faulty devices, including incipient faults, when deviations from nominal parameters begin to man-
ifest. AR modeling provides cleaner and easier to interpret spectra, where only the salient features
remain, and they are more sensitive to variations in the corresponding time domain waveforms. A
log spectral distance is calculated that successfully separates healthy and faulty states of the feeding
single-phase inverter, even in challenging scenarios of poor signal-to-noise ratio.

Keywords: electromagnetic compatibility; conducted emissions; diagnostics; autoregressive model;
data-driven techniques; SMPS; wireless power transfer

1. Introduction

Compared to AC grids, DC grids (and microgrids in particular) have higher reliabil-
ity [1–3], lower power losses with better greater efficiency [4,5], and better power quality
(PQ) with lower distortion levels (although the extensive use of static power conversion
devices has raised the concern of an increasing supraharmonic pollution [6–8]). They
also provide uninterruptible power supply characteristics [9,10], which are particularly
useful for the continuity of service in specific applications and in general for mission
critical systems.

The architecture of a DC grid consists of a distributed DC link that powers multiple
loads through switching power converters. Therefore, both conducted emissions (CEs)
and high-frequency converter impedance must be kept under control to maintain PQ
and network stability, and ensure satisfactory operation of all connected devices. Such
distributed architecture is particularly useful when putting together several pulsed loads
with significant dynamics, as a quick power transfer is available by means of capacitive
storage. An example of this scenario is a pool of power converters (inverters) feeding a
wireless power transfer (WPT) system, charging electric vehicles while moving [11,12].

Another important aspect of static power converters is their availability, providing
the above mentioned uninterrupted supply as part of modern grids with high system
availability targets and levels of resiliency, in case of the use of redundant and oversized
architectures. Other cases where static power converters’ availability is significant are
power drives with critical functions (e.g., emergency pumping or extraction of fumes) or
being part of expensive industrial processes (e.g., high-performance tooling and machining,
series production, etc.).
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The improvement of availability and the prevention of long down times are strongly
related to the implementation of effective and comprehensive diagnostics [13].

In general, CEs depend on the converter topology, load, and operating conditions,
but also may change under variable supply conditions [14,15], temperature variations [15],
and different cable lengths [16]. As a general control measure, EMI filters and spread
spectrum techniques can reduce CEs, maximizing series inductance while minimizing at
the same time shunt capacitance to ground, which can cause the flow of supraharmonic
currents [17–19]. In our scenario, the DC bus capacitor at the inverter input acts as the first
stage of filtering. The ripple on the input current, and thus the CEs towards the network,
usually oscillates at twice the output current fundamental frequency, tuned at the WPT
resonance frequency. The capacitor filters this lower frequency component, also attenuating
higher frequency switching components.

For a converter supplying a resonant WPT system, the fundamental frequency of the
output voltage and current equals the switching frequency. These systems use resonant
compensation networks as band-pass filters, allowing square-wave operation with reduced
harmonics. This produces a nearly sinusoidal input current at the network tuning fre-
quency, regardless of the square driving voltage. The switching frequency is limited to
a minimum, which equals the compensation network resonant frequency, thus reducing
switching losses and avoiding complex control strategies [20]. Most analyses use a first
harmonic approximation, enabling simplified equivalent circuit modeling using quantities
at the fundamental frequency only. This simplifies analysis and design. The input cur-
rent becomes a pulsed sinusoidal waveform with a fundamental at twice the switching
frequency and only even harmonics appear.

However, failures or degradation in any of the converter components cause deviations
from the theoretical waveforms [21]. Such failures or degradation and the consequential
deterioration or deviation of the signals waveform have an impact on various aspects of the
converter itself and of the WPT system in general. A loss of tuning translates into a reduced
efficiency; that is relevant not only in an economical perspective, but also as a cause of
temperature increase due to the increased losses. Operating at a higher temperature may
reduce the useful life of the components and of the system; similarly, with waveforms
that deviate from the nominal ones, components may experience excessive current or
over-voltages, both impacting their durability.

A significant percentage of the component faults is represented by failures of the power
electronic switches [22], which can occur for a number of reasons, such as chip-related
(intrinsic) failures and package-related (extrinsic) failures. The former are mostly related to
electrical over-stress (i.e., various forms of high current and high voltage stress), whereas
the latter are commonly induced by thermo-mechanical over-stress [23–25]. In general,
power electronic switch faults are classified as short- and open-circuit faults, with the latter
being more difficult to detect in time [6,26–29].

Not addressing faults quickly can exacerbate problems, give rise to risks for the safe
use and operation of the equipment, and increase maintenance costs. However, diagnosing
faults is a lengthy process due to the complexity of power electronic systems, which contain
many components. With power electronics becoming more complex and larger in scale, the
need for effective fault diagnosis (FD) is becoming more and more vital [30].

Historically, inverter FD has developed along two principal methodologies: ap-
proaches founded on mathematical models [31–33] and data-driven techniques [6,30,34].
The former analyze the dynamics and properties of a system to forecast its expected be-
havior in both fault and normal scenarios. When an anomaly from the norm is found, it
may be a sign that there is a problem. Despite excellent FD and detection precision, the
model-based approach is challenging to implement due to the complexity of establishing a
mathematical model of the fault. On the other hand, data-driven FD techniques rely on ex-
amining data gathered from the system. Data-driven techniques are used to extract patterns
and relationships directly from the data, rather than explicitly modelling the behavior of
the system. These techniques work by using historical data with both normal and defective
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operation scenarios to train algorithms to find deviations or anomalies that point to the
existence of a fault. Data-driven approaches are appropriate for complex systems with
fluctuating operating conditions because they are more flexible with respect to different
fault scenarios and do not necessitate extensive system modelling.

What we have collected in the mathematical model group, in [13], are further distin-
guished as “signal-based methods” and “model-based methods”: the difference is subtle in
that the former consider local signals at low level (hardware level) with minimal processing
and fast response times (as it may be for the protection circuits of MOSFETS and IGBTs),
whereas the latter develop a more complex algorithm, based on some kind of modeling of
the normal and exceptional (or faulty) behavior of the converter. The proposed method
acquires high-level signals (accessible at the terminals of the converter, rather than at its
internal semiconductors and components) and evaluates them by applying a spectrum
synthesizing approach based on auto-regressive (AR) models.

This paper analyzes the effects of faults in the switches of an H-bridge inverter feeding
both a resistive load and a series–series compensated WPT system by means of autoregres-
sive modelling. Autoregressive models are one of the most widely used tools for analyzing
time series data and estimating spectra [35,36]. Their popularity stems from several key
factors: there are simple and robust algorithms available for identifying AR models, online
estimation methods are easy to implement, and AR models can provide more accurate
spectral estimates than classical Fourier-based techniques [36,37]. These features make
AR models a very interesting tool for FD systems [38–44], and also useful in the in the
framework of edge-computing condition monitoring [45,46]. The use of AR models in FD
consists of two main steps:

1. estimate an AR model of the measured signal y(t) (vibration, current, etc.);
2. extract suitable features from the estimated model (prediction error variance, model

coefficients, spectral density, etc.) that allow healthy conditions to be discriminated
from faulty ones.

This is a black-box approach, which does not require any physical knowledge about
the system to be diagnosed; for this reason it belongs to the so called data-driven FD
methods [47–49].

The main original contribution of the work consists of demonstrating that it is possible
to exploit the variation that the PSD of the AR model of the acquired signal undergoes
in the presence of typical malfunctions compared to the healthy case. Both the ability to
monitor the operating conditions of the system in real time and the ability to perform
fault identification without notable tuning complexities are fundamental prerequisites for
assessing the reliability of power electronic converters.

The paper is structured as follows. Section 2 describes the circuit topology, the electrical
ruling equations and the relevant electrical parameters. Section 3 provides insight into
the foundations of AR analysis and its application to FD. Results are then reported in
Section 4, which is a long section where both the simpler circuit with resistive load and the
more complete application including the WPT circuit are considered, for both significant
failures in extreme electrical conditions and incipient faults. The discussion of the findings
is included in the same section, whereas Section 5 summarizes the outcome of the work, its
effectiveness, and its applicability.

2. System Characteristics

The considered power converter is an H-bridge inverter with GaN MOSFETs as
switches. The equivalent circuit of the considered system is shown in Figure 1 for a generic
resistive load and in Figure 2 considering the complete WPT system.

Very high switching frequencies (up to 300 kHz) can then be reached, compared to
converters using traditional semiconductors. Indeed, GaN MOSFETs have high blocking
voltage and good operating temperature while still enabling fast switching. Specifically,
EPC2001C eGaN FETs are used, which have a drain-source on-resistance around 8 mΩ at
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25 °C and 17.5 mΩ at 150 °C, measured at VGS = 6 V and IDS = 27 A. The required dead
time (delay between gate signals representing a guard time) for these MOSFETs is 350 ns.
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Figure 1. Equivalent circuit of the inverter feeding a resistive load.
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Figure 2. Equivalent circuit of the inverter feeding a WPT system.

The first filtering stage of the inverter input current is the DC bus capacitor bank,
which ideally allows the DC component of the bridge current to flow in the DC power
source. However, due to the parasitics, the capacitor does not behave ideally and its
filtering characteristics should be properly considered. In general, a series R-L-C circuit
is adequate to model the DC bus capacitor bank [50], whose parameters can be estimated
through measurements and knowing the inverter schematic. In this case, the DC bus of the
inverter uses three parallel capacitor banks indicated as “Cbus” altogether. The main bank
has five high-capacitance electrolytic capacitors to stabilize the DC voltage input to the
inverter, with total nominal capacitance Cc = 390 µF. The other two banks (one per inverter
leg) have 16 ceramic capacitors each, with nominal capacitance CPCB = 2.2 µF, to suppress
switching over-voltages caused by the PCB trace inductance. The parasitic parameters
of the DC bus capacitors were measured experimentally with a vector network analyzer
(VNA). The measured values (leakage resistance Rbus = 20 mΩ, inductance Lbus = 21.2 nH,
and effective capacitance C∗

bus = 375 µF) were inserted into the circuit simulations to obtain
realistic results, focused on measurements around the switching frequency.

The two “LISN” (line impedance stabilization network) blocks in Figures 1 and 2
indicate the points where the feeding impedance network is normalized for the successive
measurement of conducted emissions.

To understand the role of the inverter load, it must be considered that the (non-filtered)
bridge input current iin(t) corresponds to the rectified waveform of the inverter output
current i1(t) [51–53]. Moreover, due to the presence of a DC bus that fixes the H-bridge
input voltage, the inverter can be considered a nearly ideal square-wave voltage source [20].
It is then clear that the inverter load determines i1(t), which in turn affects iin(t) resulting
in the grid current iS(t) after DC bus filtering.

The input DC link current was used in [54], as well as collecting all the switching
phenomena inside the converter, with the possibility of limiting sensing to radiated elec-
tromagnetic emissions with an advantage in terms of intrusiveness and practicability, but
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limited to open-circuit fault detection. Here, the i1(t) load current is considered, but many
kinds of faults are taken into account.

As a case study, two different situations are considered:

• a resistive load represented by the resistance R; (see Figure 1)
• a resonant WPT network (see Figure 2).

In the former case

i1(t) =
v1(t)

R
(1)

and the waveform of the output current i1(t) is the scaled version of the v1(t) waveform.
The spectrum harmonics are thus expected to be the same (with a scaled magnitude). A
particular situation arises when the inverter duty cycle is 50%: in this case, the bridge
current iin(t) should be a perfect DC waveform. However, the necessary inverter-leg dead
times make iin(t) a rectified non-ideal square waveform. When considering the WPT
networks, the situation is clearly different. While v1(t) is still a square voltage waveform,
i1(t) presents a much more smoothed trend depending on the network parameters.

The considered WPT system is composed of two identical magnetically-coupled coils
and presents two identical series-connected capacitors tuned as:

C =
1

ω2
0 L

(2)

where ω0 = 2π f0 is the resonant angular frequency. The network parameters are sum-
marised in Table 1.

Table 1. WPT system parameters.

Quantity Symbol Value

Coil resistance R 0.1 Ω
Coil self-inductance L 12.5 µH

Coils mutual inductance M 5 µH
Compensation capacitance C 280 nF

Resonance frequency f0 85 kHz
Load resistance Rload 2.5 Ω
Source voltage V̂s 50 Vrms

In rated operations, the fundamental of v1(t) oscillates at the WPT network resonant
frequency f0 and i1(t) is a sinusoidal waveform whose amplitude is determined by the
network parameters. The impact of the dead times is thus nullified by the filtering action of
the WPT network. For consistent measurement of the input current, the input impedance
of the converter is set introducing two LISNs, one for each DC pole of the supply.

The circuits were simulated in LT Spice [55].

3. Fault Diagnosis via Autoregressive Modelling

As mentioned in Section 1, the fundamental target of FD is to detect and identify any
type of fault, possibly in the initial phase of occurrence, in order to avoid shutdowns and
therefore to be able to plan a system maintenance action in advance.

Two fundamental tasks can be distinguished in an FD strategy: detection and isolation.
During the former, the system is monitored for any sign of malfunction, by means of sensors
that measure parameters like current, voltage, temperature, pressure, etc. The collected
data can indicate the health status of the system: whether it is functioning normally or
has developed a fault and an alarm is activated. Nevertheless, the faulty element and
the relative fault mode remains unknown. During the latter, the faulty component and
corresponding fault mode that has given rise to a fault alarm are identified, and the faulty
devices can be segregated, redesigning the converter for continuous and safe operation.
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Both real-time sensed capacitor voltage and bus current are commonly used as control
variables for the FD. Starting from these quantities, in this Section we describe a simple and
effective diagnostic method to cope with the considered open- and short-circuit faults. By
taking advantage of the properties of AR modeling, the implementation of the procedures
is simple and does not require any prior physical knowledge of the converter parameters,
accomplishing both of the tasks described above.

3.1. Autoregressive Modelling

Given N samples y(1), y(2), . . . , y(N) of the time series y(t), its representation through
an AR model is given by

y(t) + a1 y(t − 1) + · · ·+ ap y(t − p) = e(t), (3)

where e(t) is a zero mean driving white noise process with variance σ2
e that can also be seen

as a prediction error. In fact, given an estimated model â1, â2, . . . , âp, the optimal one-step
ahead prediction ŷ(t) of the signal y(t) is computed as follows

ŷ(t) = −â1 y(t − 1)− â2 y(t − 2)− · · · − âp y(t − p). (4)

It is worth noting that model (3) can be written in the form

y(t) =
e(t)

A(z−1)
(5)

where A(z−1) = 1 + a1 z−1 + · · ·+ ap z−p is a polynomial in the unit delay operator z−1,
i.e., z−1y(t) = y(t − 1). The AR process y(t) can thus be seen as the output of an all-pole
filter driven by a white process.

Among the available methods for identifying AR models, the least squares approach
is based on the minimization of the sum of the squared prediction errors J(θ) [35,36]:

J(θ) =
N

∑
t=p+1

(y(t)− ŷ(t))2 =
N

∑
t=1

(y(t)− φT(t)θ)2 (6)

where

φ(t) = [−y(t − 1) − y(t − 2) · · · − y(t − p) ]T (7)

θ = [ a1 a2 · · · ap ]
T . (8)

The solution is given by:

θ̂ =

(
N

∑
t=p+1

φ(t)φT(t)

)−1 N

∑
t=p+1

φ(t)y(t). (9)

An estimate of the additive noise variance σ2
e can be computed as follows

σ̂2
e =

1
N − p

N

∑
t=p+1

(y(t)− φT(t)θ̂)2 = J(θ̂). (10)

Other frequently used approaches are Yule–Walker equations and the Burg
algorithm [36,37].

As far as the AR model order p is concerned, the most popular methods for estimating
it are the final prediction error criterion (FPE), the Akaike information criterion (AIC),
and the Bayesian information criterion (BIC) (also known as MDL, from the minimum
description length principle) [36,37]. They are based on the minimization of different cost
functions depending on the loss function J(θ̂) and increasing values of the model order
p [35–37].
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3.2. Fault Diagnosis Procedure

As mentioned in Section 1, the use of AR models in FD consists of first estimating an
AR model of the measured signal y(t) (vibration, current, etc.) and then extracting suitable
features from the estimated model to discriminate healthy conditions from faulty ones.
An effective way to perform the diagnostics task is to consider the estimated AR power
spectral density (PSD) of the signal y(t) [40,44,46], which can be computed from (5):

ŜAR( f ) =
σ̂2

e

|Â(e−j2π f )|2
=

σ̂2
e

|1 + ∑
p
k=1 âk e−j2kπ f |2

. (11)

where â1, . . . , âp are the estimated model coefficients and σ̂2
e is computed from (10). Es-

sentially, the method consists of estimating an AR PSD during normal operating (healthy
conditions) that will be taken as the reference PSD Ŝre f

AR( f ). The reference Ŝre f
AR( f ) is then

compared to the PSD ŜAR( f ) obtained starting from sequences collected subsequently
under healthy or faulty conditions in order to compute an health indicator which is able to
solve the FD problem. For instance, the log spectral distance

LSD =
1

N f

N f

∑
k=1

(
log

ŜAR( fk)

Ŝre f
AR( fk)

)2

(12)

or other spectral distances can be used to detect signal changes [56], where N f is the
number of frequency bins considered in the evaluation of the power spectral densities. The
logarithmic nature of LSD makes it particularly effective when relative differences in PSD
amplitude are more important than absolute differences. The proposed fault diagnosis
procedure is summarized in Figure 3.

Data sequence
(ibus or vbus)

y(t)
AR identification

p

ŜAR( f )
Fault indicator

Ŝ re f
AR( f )

LSD

Figure 3. Fault diagnosis procedure. The AR order p and the reference AR PSD Ŝ re f
AR( f ) are estimated

by using a portion of the healthy signal.

In principle, it would also be possible to evaluate the spectral distance by directly
comparing the healthy and defective Fourier spectra. However, theoretical considerations
and empirical evidence suggest that the diagnostic process is more difficult w.r.t. AR-based
methods, especially for real signals [57–60]. Even when detection is possible, the spectral
distances are smaller, complicating their recognition compared to the AR case [59,60]. This
is mainly due to the fact that, unlike FFT-based methods, the estimated AR spectra do not
involve signal windowing, leading to an improved spectral resolution and preventing the
introduction of sidelobes effects [36]. Furthermore, the AR PSD estimation is more robust
in the presence of noise, as the effect of noise can be effectively counteracted by increasing
the model order or by signal decimation [36,61].

4. Results

The presented technique can identify deviations in the frequency content of the spectra
following the occurrence of anomalous situations or in general deviations from nominal
or reference conditions. A reference spectrum is thus needed to tune the algorithm and
nominal operating conditions are defined.

For a resistive load, the reference is represented by the square waveforms v1(t) and
i1(t), shown in Figure 4a with the corresponding spectra of vbus(t) and iin(t) shown in
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Figure 5a. The voltage v1(t) presents spikes due to dead times, which are necessary,
however, to allow adequate protection against shot-through. The bus voltage and input
current have more populated spectra with respect to the ideal one (DC voltage current),
which still presents the fundamental component at 2 f0.

In the case of the WPT system, voltage and current waveforms v1(t) and i1(t) are
shown in Figure 4b and the spectra of the corresponding vbus(t) and iin(t) are shown
in Figure 5b. In this case, the voltage spikes are much more pronounced, due to the
resonance they trigger (during the dead time the resonant circuit is left in high terminating
impedance conditions).

(a) (b)

Figure 4. Reference waveforms of the output voltage and current for resistive load: (a) common
mode, (b) differential mode.

(a) (b)

Figure 5. Reference spectra of the output voltage and current for resistive load: (a) common mode,
(b) differential mode.

4.1. Non-Ideal Behavior and Fault Scenarios

As discussed in the introduction, power converters can experience faults during oper-
ation and they are mainly related to the switch’s electrical conditions and dead times. For
both the case studies, namely inverter with resistive load and a WPT system, two main
fault scenarios are considered: asymmetric dead time and fault of an inverter semiconduc-
tor switch.

4.1.1. Asymmetric Dead Time

At the first degradation, a deviation of the dead time of a leg with respect to the
reference value is assumed: the technical justification may be an increased resistance of the
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semiconductor driving circuit. Specifically, the dead time of the right leg of the inverter has
been increased by 50 %, leading to an asymmetric square input voltage waveform. This
type of fault will be denoted as “ASYF”.

4.1.2. Switch Fault

As main semiconductor switch faults, open-circuit faults (denoted as “OCFs”), and
short-circuit faults (denoted as “SCFs”) of the S4 switch have been considered for both
the case studies (resistive load and a WPT system). Moreover, to test the sensitivity of the
proposed fault-diagnosis methodology, increased values of the S4 switch resistance Rsw4 by
10 and 100 times have also been introduced.

In the following subsections, we describe the results obtained by using the FD tech-
nique introduced in Section 3.2 applied to both power converters (so feeding both the
resistive load and a WPT system).

4.2. AR-based FD: H-Bridge Inverter with Resistive Load

The H-bridge inverter with resistive load has been considered first (see Figure 1). The
signal that was used to extract the AR models is the bus current ibus(t). Figure 6 shows the
time domain waveform of ibus(t) in the nominal and the faulty conditions.

According to the procedure described in Section 3.2, a suitable AR model order has
been estimated by using sequences of ibus(t) collected under normal operating conditions.

Both the FPE and MDL criteria lead to the selection of the order p = 300. Then, AR
models of order p have been identified through the least squares method and the associated
power spectral densities have been computed from (11).

Figure 7a–c compare the PSDs related to the reference condition (red line) with those
obtained in the three fault scenarios (blue line). These figures show that the three faulty
conditions can be clearly distinguished from the nominal condition.

To test the effectiveness and robustness of the proposed approach under non-ideal
conditions, the FD procedure has been applied to noisy bus current signals obtained by
adding white noise to the original signals in all conditions. The variance in the noise has
been chosen to set a signal-to-noise ratio SNR = 50 dB in the healthy condition. White
noise sequences with the same variance have been added to the signals related to the faulty
conditions. The diagnostic procedure has been implemented as follows:

1. First, a reference AR model is estimated by using a portion of the healthy signal and

the corresponding PSD Ŝ re f
AR( f ) is computed from (11).

2. Then, the remaining part of the healthy data and the faulty data are segmented into
overlapping frames of length N = 10,000 samples. For each sequence, an AR model
of order p = 300 is estimated and the associated PSD ŜAR( f ) is computed.

3. Finally, each current PSD is compared with the reference one through the health
indicator (12).

Figure 8 shows the evolution of the LSD health indicator for the H-bridge converter
with resistive load for the different considered fault conditions (from left to right: healthy,
OCF, ASYF, and SCF).

Within each interval, different signal segments (frames) of N samples are considered
and the value of the spectral distance (12) is calculated by comparing the PSDs obtained
from each (healthy or faulty) frame with the reference one. This procedure follows the
same philosophy as the short-time Fourier transform. In fact, AR identification (and the
associated AR spectral estimation) is performed on short segments of measured data and
the signal is assumed to be weakly stationary only within each frame. This allows taking
into account phenomena such as wear and fatigue.
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Figure 6. The time domain waveform of ibus(t) in four different conditions for the H-bridge inverter
with resistive load: (a) healthy; (b) short circuit; (c) open circuit; (d) asymmetric input voltage.

Two observations should be made at this point.

• The values corresponding to the four situations are different and, within each interval,
the value of the indicator exhibits very small variations; this is consistent with the fact
that the processed signal is due to the same fault type.

• Furthermore, the value of the spectral distance in the healthy case also remains almost
constant and lower than in the other cases (by at least an order of magnitude), making
the detection clear.

The health indicator based on the AR PSD shows a high sensitivity to different condi-
tions, which allows robust detection thresholds to be defined. In other words, even much
smaller deviations of parameters can be detected, such as in the case of incipient faults. This
feature makes the proposed indicator particularly suitable for online condition monitoring
of power converters.

The aforementioned procedure has been then further tested by considering a more
severe SNR condition. More precisely, the bus current signals of the four conditions have
been corrupted by additive white noise with increased variance leading to SNR = 20 dB
in the healthy status. In this case, the evolution of the healthy indicator LSD is shown in
Figure 9. It can be seen that the proposed approach is robust with respect to the presence of
noise even though the relative distance (LSD values) between faulty and healthy conditions
decreases as expected, in particular for the ASYC fault. Although the obtained results
are satisfactory, detection capabilities in the presence of noise can be further improved
in a simple way by increasing the order of the AR model [36]. Nevertheless, if a signal
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is acquired with a sufficiently high sampling rate, a more effective solution consists of
decimating the signal before the identification step [61]. This approach also allows for
better resolution with a lower-order model, approximately equal to p′ ∼= p/D if D is the
decimation factor. Figure 10 shows the results obtained by decimating all considered
signals by a factor D = 5 and considering AR models of order p′ = 50 instead of p = 300.
By comparing Figures 9 and 10, it is easy to see how the decimation decreased the LSD
value in the absence of faults, suggesting an even greater similarity between the PSDs of
the frames considered, and significantly increasing the relative distance with the ASYF case
(frames 1 and 3), thus ensuring a more robust detection.
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Figure 7. Comparison among the estimated AR power spectral densities in the different conditions for
the H-bridge inverter with resistive load. The reference (healthy) AR PSD Ŝre f

AR( f ) (red) is compared
with the AR PSDs estimated in faulty conditions (blue): (a) healthy vs. short circuit; (b) healthy vs.
open circuit; (c) healthy vs. asymmetric input voltage.

To show the ability of the method to “capture” more subtle faults, increased values of
the S4 switch resistance Rsw4 by factors of 10 and 100 have been considered. This allows
one to simulate the degradation of the converter status from healthy to an open-circuit fault
(Rsw4 → ∞). The proposed diagnostic procedure has been applied to sequences corrupted
by additive white noise with SNR = 50 dB and the AR model order is set to p = 300.

The obtained results are summarized in Figure 11, which shows clearly different LSD
levels in the following four conditions: healthy, 10Rsw4, 100Rsw4, and open circuit. Even
in this case, the difference between the Rsw4 healthy and 10Rsw4 levels is acceptable for
detection but smaller than in previous cases. It is worth noting that the sensitivity of
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the health indicator can also be significantly improved in this case by signal decimation.
Figure 12 reports the LSD computed from AR models of order p′ = 50, starting from
signals decimated by D = 5. It can be easily noted the large increase in the relative distance
between the healthy and the first fault condition (resistance value increased by 10).

This example confirms that the proposed approach can be adopted for the condition
monitoring of the converter because of its good detection ability.
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Figure 8. Evolution of the log spectral distance (LSD indicator) computed from AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (resistive load). From left to
right: healthy, OCF, ASYF, and SCF. The red lines indicate the different signal segments (frames) of N
samples corresponding to the four different conditions.
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Figure 9. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in the
presence of additive noise with SNR = 20 dB in four different conditions (in the case of resistive
load). From left to right: healthy, OCF, ASYF, and SCF. The red lines indicate the different signal
segments (frames) of N samples corresponding to the four different conditions.

It is worthwhile to highlight that the method also shows very good performance when
the AR models are extracted from the bus voltage. As examples, Figures 13 and 14 show
the evolution of the health indicator obtained from identified AR models of order p = 300.
Both the cases of OCF, ASYF, SCF, and increased SW4 switch resistance are shown. It seems
that vbus(t) leads to an health LSD indicator even more sensitive to the different conditions
w.r.t. that computed starting from ibus(t).
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Figure 10. Evolution of the log spectral distance (LSD indicator) computed for the AR PSD in the
presence of additive noise with SNR = 20 dB in four different conditions (in the case of resistive
load). From left to right: healthy, OCF, ASYF, and SCF. All signals were decimated by a factor of
D = 5 and AR models of order p′ = 50 have been estimated. The red lines indicate the different
signal segments (frames) of N samples corresponding to the four different conditions.
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Figure 11. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (in the case of resistive load).
From left to right: healthy, 10Rsw4, 100Rsw4, and open circuit. The red lines indicate the different
signal segments (frames) of N samples corresponding to the four different conditions.

4.3. AR-Based FD: H-Bridge Inverter Supplying a WPT System

This subsection describes the results obtained by applying the proposed diagnosis
procedure in Section 3.2 to the H-bridge inverter supplying the WPT system (see Figure 2).
The bus current ibus(t) is the signal that was used to extract the AR models. Figure 15
shows the time domain waveform of ibus(t) in the nominal and faulty conditions.

Firstly, a suitable AR model order has been estimated by using sequences related to
healthy conditions. Both the FPE and MDL criteria lead to the selection of the order p = 160.
Then, AR model models of order p = 160 have been identified through the least squares
method and the associated power spectral densities have been computed from (11).

Figure 16a–c compares the PSDs related to the reference condition (red line) with those
obtained in the three fault scenarios (blue line). These figures show that the three faulty
conditions can be clearly distinguished form the healthy status.

Following the same lines described in Section 4.2, the procedure has been applied
to noisy signals obtained by adding white noise to the original signals in all conditions.
Again, a reference AR power spectral density Ŝre f

AR( f ) is first determined from a portion
of the healthy data. Then, the remaining healthy data and the faulty data are divided
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into overlapping frames of length N = 10,000 samples, each of which leads to an AR PSD
estimate ŜAR( f ). For each frame, the PSD ŜAR( f ) is compared with the reference one
through the health indicator (12). Figure 17 shows the evolution of the LSD health indicator
in the different conditions (healthy, OCF, ASYF, SCF) for SNR = 50 dB whereas Figure 18
refers to SNR = 20 dB. Figure 19 reports the evolution of LSD for different values of the
SW4 switch resistance: Rsw4 healthy, 10Rsw4, 100Rsw4, and Rsw4 → ∞ (open circuit). The
ability of the method to distinguish the different status of the converter is also clearly
confirmed for the case of the H-bridge inverter supplying a WPT system.
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Figure 12. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (in the case of resistive
load). From left to right: healthy, 10Rsw4, 100Rsw4, and open circuit. All signals have been decimated
by D = 5 and AR models of order p′ = 50 have been estimated. The red lines indicate the different
signal segments (frames) of N samples corresponding to the four different conditions.
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Figure 13. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in
the presence of additive noise with SNR = 50 dB in four different conditions (resistive load). From
left to right: healthy, OCF, ASYF, and SCF. AR models estimated from the bus voltage vbus(t). The
red lines indicate the different signal segments (frames) of N samples corresponding to the four
different conditions.

The same conclusion can be stated by observing Figures 20 and 21, which show the
evolution of the LSD indicator computed from AR models estimated from the bus voltage
signal vbus(t).
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Figure 14. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (in the case of resistive
load). From left to right: healthy, 10Rsw4, 100Rsw4, and open circuit. AR models estimated from
the bus voltage vbus(t). The red lines indicate the different signal segments (frames) of N samples
corresponding to the four different conditions.
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Figure 15. Time domain waveform of ibus(t) in four different conditions for the H-bridge inverter
with the WPT system: (a) healthy; (b) short circuit; (c) open circuit; (d) asymmetric input voltage.
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Figure 16. Comparison of the estimated AR power spectral densities in the different conditions
for the the H-bridge inverter with the WPT system. The reference (healthy) AR PSD Ŝre f

AR( f ) (red)
is compared with the AR PSD estimated in faulty conditions (blue): (a) healthy vs. short circuit;
(b) healthy vs. open circuit; (c) healthy vs. asymmetric input voltage.
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Figure 17. Evolutionof the log spectral distance (LSD indicator) computed from AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (inverter with a WPT
system). From left to right: healthy, OCF, ASYF, and SCF. The red lines indicate the different signal
segments (frames) of N samples corresponding to the four different conditions.
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Figure 18. Evolution of the log spectral distance (LSD indicator) computed from AR PSDs in the
presence of additive noise with SNR = 20 dB in four different conditions (inverter with the WPT
system). From left to right: healthy, OCF, ASYF, and SCF. The red lines indicate the different signal
segments (frames) of N samples corresponding to the four different conditions.
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Figure 19. Evolution of the log spectral distance (LSD indicator) computed from the AR PSDs in
the presence of additive noise with SNR = 50 dB in four different conditions (inverter with the
WPT system). From left to right: Rsw4 healthy, 10Rsw4, 100Rsw4, SW4 switch open circuit. The
red lines indicate the different signal segments (frames) of N samples corresponding to the four
different conditions.
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Figure 20. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (inverter with the WPT
system). From left to right: healthy, OCF, ASYF, and SCF. AR models estimated from the bus voltage
vbus(t). The red lines indicate the different signal segments (frames) of N samples corresponding to
the four different conditions.
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Figure 21. Evolution of the log spectral distance (LSD indicator) computed from the AR PSD in the
presence of additive noise with SNR = 50 dB in four different conditions (inverter with the WPT
system): Rsw4 healthy, 10Rsw4, 100Rsw4, and open circuit. AR models estimated from the bus voltage
vbus(t). The red lines indicate the different signal segments (frames) of N samples corresponding to
the four different conditions.

5. Conclusions

In this work, a diagnostic technique for power converters that exploits auto-regressive
modelling was proposed and analyzed. Its effectiveness was demonstrated by considering
a converter with H-bridge topology feeding a resistive load as the first case, and a resonant
WPT system as the second case. For both cases, fault situations with asymmetric dead time
and failure on one of the switches were emulated.

For both failure cases and for both systems considered, the technique proved capable
of detecting the failure. To evaluate its robustness, noise was also introduced. With low-
order AR models (i.e., p = 50) and signals with low sampling frequency (typical of a
low-cost implementation), the technique proved to be robust. Its accuracy was also tested
by hypothesizing failure cases in which the resistance of a switch was increased by 10 and
100 times, always in the presence of noise. Again, the algorithm was able to determine the
failure conditions robustly. This confirms that the proposed approach can be adopted for
monitoring the health conditions of converters and the degradation state of the components,
even during real-time operation, to warn of possible faults at an early stage.

An additional method to further validate the proposed procedure is the execution of
tests on real electronic circuits under different environmental and operating conditions,
including various amounts of noise, both colored and white. The use of input–output
models, such as ARX models, is also certainly of interest and could be another thread
to investigate.
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