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Supplementary Information 
 

Supplementary Note 1. Discussion of the role of Tb magnetic moments in the observed band 
structure change 

In this section, we explain in detail why: (1) there must be substantial contributions beyond Tb moments 
enhanced by exchange interactions to explain our observations, and (2) the effects from Tb magnetic 
moments are likely minimal in our system. 

First, we observe no change in the electronic density of states as the system enters from the paramagnetic 
to the ferromagnetic state (Extended Data Figure 1, Figure 2a). This is in contrast to the kagome 
ferromagnets (kagome net formed by magnetic atoms of Fe, Co or Mn) where band structure changes 
tremendously as the system enters the ferromagnetic phase.  

In principle, as the spins are aligned with external magnetic field, one could expect Tb magnetic moments 
and exchange interaction to affect the electronic bands, resulting in a continuous evolution. However, 
once all spins are fully aligned, applying additional magnetic field would lead to a minimal change, driven 
by the tiny conventional spin g-factor. This is what happens in the canonical case of Fe3Sn2, also a 
ferromagnet but with strongly spin-polarized low-energy kagome Fe d bands, where band structure 
change ceases to evolve exactly concomitant with the magnetization saturation 1,2. If this scenario was at 
the root of our observations, we would expect a noticeable discontinuity of band evolution measured by 
STM after the Tb magnetic moment saturation is reached. However, we do not observe any anomalies in 
the dispersion of band features measured by STM when magnetization saturation is reached 
(Supplementary Figure 1).  

Magnetization saturation will be somewhat temperature dependent. Therefore, we perform extensive 
comparison between the evolution of our STM data and bulk magnetization as a function of temperature 
(Supplementary Figure 1). In all cases, electronic band structure evolves well past the point when Tb 
magnetic moments are fully aligned out-of-plane. For example, at 2 K, band structure evolution extracted 
from STM continues to about 2 T, which is four times the value of magnetization saturation field Hc ~ 0.5 
T at that same temperature; at 4 K and about 0.5 T, bulk magnetization is ~90% of its maximum value 
while the energy shift measured by STM only reached ~20% of its ultimate value. From this we can 
conclude that the majority of the electronic band shift must come from factors other than Tb spin 
magnetic moment alignment and spin exchange physics. Berry curvature driven orbital magnetic 
moments m(k) present a concrete theoretical explanation for this regime, which nicely explains the 
enormous magnitude of the effect.  

Having established the contributions from m(k) for H > Hc, it is important to note that m(k) will also 
contribute to band shift for H < Hc (non-zero m(k) emerges even in zero field due to spin-orbit coupling). 
Extrapolating the rate of change dE*/dB just above Hc to fields less than Hc, one can see that the majority 
of the shift can be accounted for. From this we conclude that only a small portion of the electronic band 
shift at the order of a few meV may possibly come from Tb spin contributions via an exchange interaction, 
but that the majority of the observed band shift arises from the Berry curvature induced m(k).  

 

 



Supplementary Note 2. Qualitative understanding of the g factor at k=0 

We consider a well-known low-energy expansion of the kagome Hamiltonian with spin orbit coupling 
(SOC)  𝜆 near the Dirac point 3: 
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Where 𝑣 = 2√3𝑡 is the Fermi velocity, 𝜏௜ (𝑖 = 1, 2, 3) are Pauli matrices, and Δ = 4√3𝜆 is the SOC gap.  

 

By applying this low-energy effective Hamiltonian to the modern orbital magnetization formula (2): 
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where |𝑛⟩ is the nth eigenvector and 𝜀௡௞ is the nth eigenvalue of the Hamiltonian, with its gauge invariant 
form: 
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we are able to get an analytical expression for the k-dependent orbital magnetization magnitude near the 
Dirac point as: 
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where 𝑚௘ = 9.1 × 10ିଷଵ𝑘𝑔. As it can be seen, m(k) peaks at k = 0, which is consistent with what has been 

observed here in TbV6Sn6. Using the conversion − ଵ

ଶ
𝑔௞𝑢஻ ∙ 𝐵 = −𝑚௞ ∙ 𝐵, then the effective g factor at k 

= 0 can be written as: 

𝑔௞ୀ଴ =
4𝑚௘

ℏଶ

𝑣ଶ

∆
 

As a result, the maximum g factor is proportional to the square of the Dirac band velocity and inversely 
proportional to the Dirac gap size. This may provide a potential guiding principle to create solids with 
larger unconventional magnetic moments, by maximizing the Dirac velocity and generating a small, yet 
finite SOC-induced gap.  
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Supplementary Figure 1. Comparison between bulk magnetization data and the evolution of electronic 
band features from STM data as a function of temperature. Blue data points and lines represent bulk 
magnetization data taken at (a) 2 K, (b) 4 K and (c) 10 K respectively with magnetic field applied 
perpendicular to the sample surface. Red data points and dashed lines represent the positions of spectral 
features (E* ± 𝛿𝐸∗)  seen in STM dI/dV spectra in Figure 2 at those same temperatures. The insets at each 
temperature display the same data in a full magnetic field range up to 7 T. The error bar 𝛿𝐸∗ represents 
standard error of peak position in energy axis from Gaussian peak fittings of dI3/dV3 curve (number of data 
points for each curve is 126). STM setup conditions: Iset = 1 nA, Vsample = 300 mV, Vexc = 2 mV (2 K, 4 K); Iset 
= 500 pA, Vsample = 300 mV, Vexc = 2 mV (10 K). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 2. Waterfall plot of dI/dV spectra shown in main Figure 2(b). 
 
 
 
 
 
 
 



 
Supplementary Figure 3. The waterfall plot of dI/dV spectra acquired at an energy range near Fermi level 
as a function of magnetic field applied perpendicular to the sample surface. STM setup condition: Iset = 
300 pA, Vsample = 50 mV, Vexc = 1 mV. Measurement temperature was 4.2 K. 
 
 
 
 
 
 
 
 



 
Supplementary Figure 4. (a) STM topograph of the Sn2 surface. Average dI/dV spectra as a function of 
magnetic field applied perpendicular to the sample surface in: (b) defect free region enclosed by the pink 
rectangle in (a), and (c) on top of impurity regions enclosed by the two orange squares in (a). STM setup 
condition: Iset = 1 nA, Vsample = 300 mV (a); Iset = 1 nA, Vsample = 300 mV, Vexc = 2 mV (b,c). Measurement 
temperature was 4.2 K. 
 
 
 
 



 
 
Supplementary Figure 5. Atomic-scale origins of electron scattering and interference. (a) A 50 nm square 
topograph of the Sn2

 surface, and (b) a dI/dV map taken in the identical region. We identify at least 4 types 
of impurities that give rise to notable quasiparticle interference in (b). We locate these impurities by 
marking all dark spots where electronic ripples originate in (b), and superimpose them on top of the 
topograph in (a). The impurities are denoted as type 1 (cyan circles), type 2 (magenta circles), type 3 
(yellow circles) and type 4 (green circles). It can be seen that electronic waves propagates away from the 
impurities; select few examples are pointed out by blue arrows in (b). (c) Fourier Transform of (b), showing 
ring-shaped scattering wave vector q. Atomic Bragg peaks are circled in blue. (d) High spatial resolution 
topographs of the four types of impurities with Sn2 ball model superimposed on top. The relative position 
between the impurity center and the ball model show that the four types could be Sn1 or Tb vacancies or 
substitutions. STM setup conditions: Iset = 1 nA, Vsample = 300 mV, Vexc = 2 mV. 
 
 
 
 
 
 
 



 

 
Supplementary Figure 6. More details on band fitting for small wave vectors q. (a-c) The second 
derivative of radially averaged FT linecuts starting at the center of the FT for (a) Dirac band at 0T, (b) lower 
Dirac band at 2T and (c) upper Dirac band at 2T. (d-f) Horizontal cuts obtained from (a-c) in the energy 
range denoted by dashed lines in (a-c). Solid circles in (d-f) are the experimental data, and solid lines 
represent Gaussian fits. Data points plotted in (a-c) are only those where the two peaks in the FT linecuts 
in (d-f) can be clearly separated from the FT center.  




