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Abstract: Monitoring soil water content (SWC) is vital for various applications, particularly in
agriculture. This study compares SWC estimated by means of SCATSAR-SWI remote sensing (RS)
at different depths (T-values) with Cosmic Ray Neutron Sensing (CRNS) across four agricultural
sites in northern Italy. Additionally, it examines the spatial mismatch and representativeness of
SWC products’ footprints based on different factors within the following areas: the Normalized
Difference Vegetation Index (NDVI), soil properties (sand, silt, clay, Soil Organic Carbon (SOC)),
and irrigation information. The results reveal that RS-derived SWC, particularly at T = 2 depth,
exhibits moderate positive linear correlation (mean Pearson correlation coefficient, R = 0.6) and a
mean unbiased Root–Mean–Square Difference (ubRMSD) of 14.90%SR. However, lower agreement
is observed during summer and autumn, attributed to factors such as high biomass growth. Sites
with less variation in vegetation and soil properties within RS pixels rank better in comparing SWC
products. Although a weak correlation (mean R = 0.35) exists between median NDVI differences of
footprints and disparities in SWC product performance metrics, the influence of vegetation greenness
on the results is clearly identified. Additionally, RS pixels with a lower percentage of sand and SOC
and silt loam soil type correlate to decreased agreement between SWC products. Finally, localized
irrigation practices also partially explain some differences in the SWC products. Overall, the results
highlight how RS pixel variability of the different factors can explain differences between SWC
products and how this information should be considered when selecting optimal ground-based
measurement locations for remote sensing comparison.

Keywords: soil water content; remote sensing; cosmic ray neutron sensing; SCATSAR-SWI; spatial
representativeness

1. Introduction

Soil water content (SWC) plays a pivotal role in various applications, particularly in
agriculture [1]. The amount of water available to plants is directly influenced by SWC [2],
making its monitoring essential for tasks such as planning irrigation, predicting crop yield,
and ensuring food safety [3]. Despite its critical importance, tracking SWC poses substantial
challenges due to its temporal and strong spatial variability [4]. This variability is driven by
a combination of natural hydrological processes at the land surface [5] and human activities
like irrigation and drainage [6].

Today, an array of tools is available for monitoring SWC, ranging from localized
point-scale measurements to advanced large-scale remote sensing (RS) techniques [7].
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RS methods have gained immense popularity due to their capacity to cover large areas
and inaccessible or hard-to-reach regions [8]. Despite the increasing availability of RS
products, a key aspect is still the need for ground observations for the assessment and the
understanding of the value of the signal in the different applications [9,10].

Recognizing this need, an International Soil Moisture Network (ISMN) has been
established, progressively expanding with the integration of new technologies to cover
broader geographical areas [11,12]. However, the assessment of SWC at agricultural
sites within this network is still somewhat limited due to the high cost of deploying
enough stations within a satellite footprint to produce accurate estimates of SWC in specific
areas [13]. Recently, there has been an increased focus on developing and assessing proximal
SWC sensors [14]. These non-invasive detectors, located near the ground, offer benefits
such as the capability to measure SWC at sub-daily intervals on an intermediate scale
(within a radius of 10 to 200 m) and down to most of the root depth (e.g., 50 cm), which
opens up new possibilities for hydrological research in the agricultural field scale [15].
Among the various non-invasive methods, Cosmic Ray Neutron Sensing (CRNS) [16] has
shown reliable performance in different situations [17–20]. Unlike the difference in depth
range covered [21,22], the use of CRNS for RS assessments has been explored in several
studies, taking advantage of its benefits, such as recording long-term series with minimal
maintenance requirements [23–25].

While CRNS covers a larger area compared to point-scale measurements, there still
exists a spatial misalignment between CRNS and RS products, with resolutions varying
from hundreds of meters to tens of kilometers. For instance, the SWC product derived
from Sentinel-1 at 1 km resolution [26,27] falls into the former category, while ASCAT [28]
belongs to the latter. Consequently, it is essential to grasp the spatial representativeness of
ground SWC observations for an accurate assessment [29].

In this research, our objective is to compare the SCATSAR-SWI, a combined RS product
for daily SWC at different depths at a kilometer scale, to SWC measured by CRNS across
four agricultural sites in northern Italy. The Soil Water Index (SWI) developed by the
Copernicus Global Land Service (CGLS) is derived from the integration of 25 km ASCAT
Surface Soil Moisture (SSM) [28] and 1 km Sentinel-1 SSM [30] products. This fusion results
in a globally covered, high spatiotemporal product, enhancing our understanding of soil
water dynamics [31]. Furthermore, point-scale SWC measurements collected during Time
Domain Reflectometry (TDR) campaigns at the specified four locations are used to enhance
the evaluation of the estimates obtained from the different products.

To evaluate the spatial representativeness of the ground measurements more com-
prehensively, we initially utilized the Normalized Difference Vegetation Index (NDVI) as
an indicator of vegetation vigor and biomass, shedding light on the correlation between
vegetation dynamics and the agreement between the soil water content time series [32,33].
Additionally, we investigated soil physical parameters, including sand, silt, and clay, along-
side Soil Organic Carbon (SOC). These properties were selected based on previous studies
indicating their significant relationship with SWC values [33,34]. Finally, the irrigation
information within CRNS footprints at two experimental sites is analyzed to assess the
effect of agricultural water use on SWC variability and to interpret the possible differences
between the observations.

2. Materials and Methods
2.1. Experimental Sites

Observations collected at four experimental sites in the Po River Plain in northern Italy
were used for the comparison (Figure 1). For details about the sites and CRNS performances,
we refer to the study of Ref. [20]. Here, we summarize the main characteristics relevant
to interpreting the results. Specifically, the CRNS sensors were placed over low-biomass
grasslands flanked by agriculturally farmed fields at the San Pietro (44.65N, 11.64E) and
Legnaro locations (45.34N, 11.96E). In contrast, the CRNS sensors were placed in the middle
of agricultural fields where rapid biomass growth and irrigation occurred in Ceregnano
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(45.05N, 11.86E) and Landriano (45.31N, 9.26E). More precisely, a sprinkler system was
used at Landriano to both cultivate and irrigate sorghum, and a variable-rate irrigation
ranger system was used at Ceregnano to cultivate and water soybeans. The majority of
the sensor-investigated regions have relatively uniform soil texture, with the exception
of Ceregnano, where a sandy fluvial deposit crosses the loamy field. At each location,
meteorological stations administered by the Regional Environmental Protection Agencies
(ARPA) gathered weather data (namely precipitation) at the same locations as the CRNS
sensors or at a short distance apart (a few kilometers). In these instances, the meteorological
readings are considered to reflect the local conditions [20].

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 20 
 

 

biomass grasslands flanked by agriculturally farmed fields at the San Pietro (44.65N, 
11.64E) and Legnaro locations (45.34N, 11.96E). In contrast, the CRNS sensors were placed 
in the middle of agricultural fields where rapid biomass growth and irrigation occurred 
in Ceregnano (45.05N, 11.86E) and Landriano (45.31N, 9.26E). More precisely, a sprinkler 
system was used at Landriano to both cultivate and irrigate sorghum, and a variable-rate 
irrigation ranger system was used at Ceregnano to cultivate and water soybeans. The ma-
jority of the sensor-investigated regions have relatively uniform soil texture, with the ex-
ception of Ceregnano, where a sandy fluvial deposit crosses the loamy field. At each loca-
tion, meteorological stations administered by the Regional Environmental Protection 
Agencies (ARPA) gathered weather data (namely precipitation) at the same locations as 
the CRNS sensors or at a short distance apart (a few kilometers). In these instances, the 
meteorological readings are considered to reflect the local conditions [20]. 

 
Figure 1. Experimental sites. Upper panel: distribution of experimental sites in northern Italy. Lower 
panel: representation of locations of CRNS (red points), considered footprints of CRNS (green 
shaded circles), sampling grid of the TDR measurements for each site (orange points), and corre-
sponding SCATSAR-SWI 1 km Europe pixels (grid with yellow segments). The maps presented in 
this figure are depicted in the EPSG: 3857 coordinate reference system using Bing Satellite base map. 

  

Figure 1. Experimental sites. Upper panel: distribution of experimental sites in northern Italy. Lower
panel: representation of locations of CRNS (red points), considered footprints of CRNS (green shaded
circles), sampling grid of the TDR measurements for each site (orange points), and corresponding
SCATSAR-SWI 1 km Europe pixels (grid with yellow segments). The maps presented in this figure
are depicted in the EPSG: 3857 coordinate reference system using Bing Satellite base map.

2.2. Ground Measurements
2.2.1. Cosmic Ray Neutron Sensing (CRNS)

CRNS is a non-invasive technique employed for measuring SWC across intermediate-
scale areas [16]. In this study, we utilized observations from CRNS-FINAPP3 sensors
(https://www.finapptech.com/en/, accessed on 10 December 2023). These sensors, de-

https://www.finapptech.com/en/
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tailed in Ref. [20], operate by measuring neutron count rates, which are then transformed
into Volumetric Water Content (VWC). Standard corrections to account for variations in
atmospheric pressure, air humidity, and incoming neutron variability are first performed.
Then, these CRNS devices underwent calibration based on three independent soil sampling
gravimetric campaigns for each site; this calibration approach, consistent with studies by
Refs. [35,36], enhances the accuracy of CRNS measurements, aligning them with ground
truth data obtained through direct soil sampling. The CRNS sensors were operational
at all four sites for almost the entire vegetation season of 2021, spanning from March to
December, except San Pietro, which extended from March to September. The few gaps in
the time series were due to the low power supply by the solar panel. For more details about
the CRNS calibration and data processing, readers can refer to Ref. [20].

The footprint of CRNS is reasonable for many agricultural field-scale applications,
although the area cannot be defined exactly since the sensitivity of the sensor decreases by
increasing the radius. According to a detailed study [35], 120 m, equivalent to an area of
almost 5 hectares, would be a reasonable assumption to account for the major contribution
(86%) of CRNS footprint in the fields where the situation alternates between wet and
humid conditions. In this present study, a radius of 125 m was considered (Figure 1). The
penetration soil depth of the CRNS signal varies between 10 and 50 cm, also depending
on soil water content but with higher sensitivity to the upper soil layers. Following the
procedure described by Ref. [35], the average penetration depth at the four sites has been
estimated to be around 20 cm, i.e., deeper than the expected RS penetration depth. For this
reason, even though studies show that CRNS is highly suitable for validating satellite soil
moisture products because both RS sensors and CRNS are most responsive to the top few
centimeters of soil [37], and CRNS SWC is compared to the RS product extrapolated to
deeper depths using the exponential filter [2].

To enhance comparability among SWC products, RS value, expressed in the degree of
saturation (SR), is usually transformed to VWC matching the mean and variance of ground-
based and RS time series; e.g., Ref. [31]. Ground-based values are, however, uncertain at the
remote sensing scale (1 km2) and could introduce relevant errors. Furthermore, relatively
longer time series (e.g., >one year) are needed for representative mean and variance values.
For this reason, in this present study, we converted CRNS VWC to %SR based on soil
properties measured in soil samples collected over the CRNS footprint. Specifically, for
Ceregnano and San Pietro, the conversion utilized bulk density and porosity of the soil
at the study sites, employing Equations (1) [38] and (2) [39], where φ, ρbd [g/cm3], and
2.65 indicate porosity, soil bulk density, and average particle density, respectively. Moreover,
s and r express saturated and residual values of the SWC in VWC% (θ). To obtain SWC in
SR, assumptions of θr = 0 and θs = φ were considered. On the other hand, for Landriano and
Legnaro, since the maximum observed hourly CRNS VWC was higher than the porosity
extracted by Equation (1), we considered θs in Equation (2) to be equal to the maximum
measured amount of their hourly CRNS data.

φ = 1 − ρbd
2.65

(1)

SR =
θ − θr

θs − θr
(2)

Finally, to maintain uniform temporal resolution across datasets, CRNS values were
converted to daily averages; this adjustment ensures consistency in the comparison and
analysis of SWC dynamics over time.

2.2.2. Soil Moisture Surveys with Point-Scale Soil Moisture Sensor (TDR)

Additionally, for improved assessment of the SWC estimates, on-site point-scale SWC
measurements obtained through TDR campaigns conducted at the designated four locations
have been conducted. TDR is a point-scale method for SWC retrieval, functioning on the
principle of measuring the time taken for an electromagnetic pulse to travel along a sensor
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rod inserted into the soil and reflect back. The mechanism relies on the dielectric properties
of the soil, allowing for the determination of SWC at the sensed depth [40,41]. For this
research, a mobile TDR device was utilized (product manual: https://www.specmeters.
com/documents, FieldScout-TDR350, accessed on 20 August 2024). This choice allowed
for flexibility in the field, enabling the collection of point-scale measurements at different
locations within the agricultural sites.

Three campaigns were conducted at each site to ensure comprehensive data collection.
The results of these surveys are summarized in Table 1. A fixed rod length of 5 cm was
maintained for the TDR device to guarantee relatively equal conditions in terms of sensed
depth by RS. Nested sampling (regular grid of 30–40 m and five measurements at each
grid point) was implemented around the CRNS location during TDR campaigns (see
Figure 1). Each campaign involved a minimum of 500 measurements, providing a robust
dataset for comparison purposes. The average value for each date and site was calculated
to represent the daily average. The decision to use daily average values for the TDR
surveys and CRNS observations was made to enable effective comparison with the RS
product. The TDR surveys were conducted during a specific time frame, while CRNS
observations were aggregated at a daily time resolution to align with the RS product. The
average footprint of the areas where TDR measurements were conducted can be estimated
at ~12 hectares. The same procedure of unit conversion for CRNS was used for TDR
measurements, i.e., Volumetric Water Content by TDR was transformed to saturation (SR)
by means of Equations (1) and (2) and soil properties measured in soil samples collected at
the CRNS location.

Table 1. Information acquired at the different experimental sites in 2021. SWC in VWC% acquired by
TDR device and SWC in %SR, achieved using conversion steps; ρbd and φ are the soil bulk density
and porosity for each date, respectively.

Site Campaign Date ρbd [g/cm3] SWC [VWC%] φ SWC [%SR]

San Pietro

15 March 1.384 15.59 ± 4.58 0.478 32.63

10 May 1.373 15.66 ± 6.44 0.482 32.50

19 July 1.295 6.69 ± 2.61 0.511 13.08

Legnaro

29 March 1.409 20.59 ± 4.81 0.468 43.97

26 May 1.421 33.89 ± 4.18 0.464 73.07

3 August 1.336 12.02 ± 5.35 0.496 24.24

Landriano

22 March 1.322 17.8 ± 5.57 0.501 35.52

17 May 1.285 13.23 ± 4.18 0.515 25.68

29 July 1.295 10.46 ± 5.48 0.511 20.46

Ceregnano

10 March 1.397 24.8 ± 6.86 0.473 52.45

31 May 1.306 16.53 ± 4.23 0.507 32.59

15 July 1.386 17.86 ± 7.45 0.477 37.44

2.3. Remote Sensing Soil Moisture Product (RS)

The SWC product by RS utilized in this research is SCATSAR-SWI, which is a compre-
hensive indicator of daily soil water content at various depths with a spatial resolution of
1 km2. This product is developed by the Copernicus Global Land Service (CGLS), and its
fusion strategy involves integrating the data of two active sensors: 25 km ASCAT SSM [28]
and 1 km Sentinel-1 SSM [30] products. For a more detailed understanding, refer to the
work of Ref. [31] and the official portal of the product: https://land.copernicus.eu/global/
products/swi (accessed on 15 November 2023).

This RS product was chosen for our study due to its high spatial and temporal resolu-
tion, making it well-suited for agricultural field-scale investigations. It might be prudent
to include that 1 km resolution RS products were used in a considerable number of re-

https://www.specmeters.com/documents
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search studies in agricultural contexts, highlighting their capability to provide a satisfactory
level of resolution [42–44]. The SCATSAR-SWI’s fusion approach capitalizes on the high
temporal resolution of ASCAT and the high spatial resolution of Sentinel-1. Despite the at-
tenuation of the Sentinel-1 signal to some extent, the SCATSAR-SWI product benefits from
the Sentinel-1 parametrization, ensuring a comprehensive and more accurate representation
of SWC dynamics.

The SCATSAR-SWI retrieval method involves characteristic T-values, representing
different soil depths based on the approach proposed by Ref. [2]. It is important to note that
the SCATSAR-SWI does not consider soil texture in its retrieval process, which influences
the relationship between the T-value and soil depth [45]. To offer flexibility to users in
selecting the most appropriate data for their needs, eight T-values (2, 5, 10, 15, 20, 40, 60,
100) are provided per product. In our research, we focused on characteristic T-values of 2,
5, and 10, excluding deeper depths since our primary focus is on comparing to the CRNS
signal, which is also more sensitive to the upper soil layers [35].

This RS product comes with some quality flags where some problematic surfaces, like
frozen ones, are marked. The surfaces other than normal were disregarded during the data
processing of SCATSAR-SWI.

2.4. Assessment of the Spatial Variability and Representativeness

The spatial variability of soil water content is driven by several factors like topography,
weather and climate conditions, vegetation, and soil properties [46]. The areas investigated
in this present study are relatively small and flat. For this reason, the first two factors are
negligible, and we focus the analysis on the spatial variability of vegetation and soil. In
addition, the effect of irrigation management is investigated based on information provided
during the field surveys.

For the assessment of the vegetation, NDVI, a widely used greenness indicator derived
from RS data, is utilized. It assesses vegetation presence and health by analyzing near-
infrared (NIR) and red (RED) spectral bands. Ranging from −1 to 1, higher values indicate
healthier vegetation. NDVI correlates closely with SWC levels, as changes in SWC directly
impact vegetation health and NDVI values. Elevated SWC levels typically yield higher
NDVI values [47]. Studies in the literature, such as Refs. [48,49], have demonstrated the
effectiveness of NDVI as a spatial representativeness indicator.

For each site, NDVI values were achieved using Copernicus Sentinel-2 twin satellite
Bottom-of-Atmosphere level (L2A) images for two regions of the study: the area covered
by the CRNS and the 1 km resolution pixel of SCATSAR-SWI. The RED and NIR bands of
Sentinel-2 have a resolution of 10 m; therefore, the NDVI estimated using these bands from
this satellite also has a resolution of 10 m.

The studies were confined to the time frame during which the CRNS were operational
at the respective sites. Images with more than 40% cloudy pixels were filtered to ensure
data accuracy and sufficiency for analysis. The differences in median NDVI values be-
tween the CRNS footprint and remote sensing pixel-wise were investigated to quantify
representativeness and spatial mismatches between the CRNS and RS footprints.

For the assessment of the soil variability, SoilGrids (https://soilgrids.org/, accessed
on 20 February 2024) was used. This product provides global maps of soil properties with
a medium spatial resolution of 250 m cell size [50]. For our study areas, we extracted maps
of soil texture (sand, silt, and clay) and Soil Organic Carbon (SOC) because these prop-
erties play a fundamental role in determining water distribution, with studies indicating
their importance for spatial representativeness [51,52]. Also, for these soil properties, the
analysis focuses on the difference between the values within the CRNS footprint and the
distributions over the remote sensing pixel.

Finally, inquiries from farmers provide information on the irrigation at Ceregnano and
Landriano that has been further explored. The reported irrigation dates for Ceregnano are
22 July and 12 August 2021, while for Landriano is 23 June 2021. The irrigation quantity
for all dates and locations is around 20 mm per day. Please note that this value has been

https://soilgrids.org/
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assumed based on irrigation methods and communication of the farmers but was not
measured.

2.5. Performance Metrics

In this study, to assess the disparity among datasets, two common metrics were
employed: (1) Pearson correlation coefficient (R) and (2) unbiased Root–Mean–Square
Difference (ubRMSD). The association between ground reference data and product datasets
was quantified using R. The utilization of ubRMSD is recommended for estimating the
precision of remotely sensed SWC products, as it considers biases in the mean of estimated
SWC from both RS and ground-truth data [53]. Equations (3)–(6) are used for the aforemen-
tioned aims, where SWCRS represents satellite SWC retrieval and SWCCRNS denotes CRNS
measurement. N is the total number of data pairs. The covariance of two datasets, denoted
as Cov in Equation (3), encompasses the variance of satellite (σRS) and CRNS data (σCRNS).

R =
Cov(SWCRS, SWCCRNS)

σRSσCRNS
(3)

RMSD = (
1
N∑N

i=1(SWCRS − SWCCRNS)
2
i )

1
2

(4)

Bias =
1
N∑N

i=1(SWCRS − SWCCRNS)i (5)

ubRMSD = (RMSD2 − Bias2)
1
2 (6)

The assessment of SWC products and their spatial mismatch can vary significantly
across diverse hydrological conditions and time scales [54]. While various SWC products
may capture similar drying and wetting cycles, they may exhibit distinct short-term fluctua-
tions [55]. Therefore, in addition to comparing the raw time series of ground measurements
with remotely sensed products, we aim to break down the series into a low-frequency SWC
dynamic and a higher-frequency anomaly. The 35-day moving window was utilized based
on recommendations for seasonality as suggested in the literature [56,57]. In this method,
we derive performance metrics by grouping 35 daily data points [t − 17, t + 17] centered on
day t.3.

3. Results
3.1. Comparison of Remote Sensing and CRNS Soil Water Content

The time series of SWI products derived from RS and CRNS are presented in Figure 2.
The performance metrics are reported in Table 2. To calculate the metrics, days where
data were missing for one sensor were excluded. For instance, as shown in Figure 2,
the CRNS instrument in Ceregnano was not operational for approximately 20 days from
late September to mid-October. Therefore, both the CRNS and RS data were disregarded
during that period. Noteworthy, at all sites, a good agreement between the SWI products is
observed with dynamics that well respond to precipitation events. Some differences are
captured when looking at the absolute values with CRNS and TDR data exhibiting closer
agreement than the RS time series. More specifically, examining the RS-derived time series
at different depths (T = 2, T = 5, and T = 10), a general trend emerges, with RS-derived
SWI (T = 2) showing greater fluctuation and dynamic alignment with CRNS, suggesting
T = 2 to be the best deal of depth for our studied sites when comparing the SCATSAR-SWI
product. Considering seasonality, during spring, the time series show more similarities.
August onwards (earlier for San Pietro), divergence of values is evident. Entering the
winter period, RS-derived SWI tends to be higher than CRNS (although with a favorable
dynamic match), indicating potential overestimation of SWC by RS. As an example, the
pronounced difference (exceeding 40%SR) is noted for Ceregnano in December.
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Table 2. Performance metrics of different T-values between SWC derived from SCATSAR-SWI
product and CRNS for four sites separately and also average amounts for all sites.

Site T-Values R ubRMSD

Ceregnano
T = 2 0.38 19.01
T = 5 0.31 18.37
T = 10 0.26 17.40

Landriano
T = 2 0.80 1 10.35 2

T = 5 0.78 9.41
T = 10 0.74 8.85

Legnaro
T = 2 0.67 16.36
T = 5 0.61 17.16
T = 10 0.54 17.98

San Pietro
T = 2 0.55 13.88
T = 5 0.53 13.80
T = 10 0.48 14.05

All sites (mean)
T = 2 0.60 3 14.90 4

T = 5 0.56 14.68
T = 10 0.51 14.57

1 The highest R among sites. 2 The lowest ubRMSD among sites when T = 2. 3 Mean R of all sites for T = 2. 4 Mean
ubRMSD of all sites for T = 2.

For T = 2, the mean R and ubRMSD for the four sites are 0.6 and 14.90%SR, respectively
(Table 2). These metrics suggest a moderate positive linear relationship between CRNS
and RS, with Landriano exhibiting the strongest match (R = 0.80, ubRMSD = 10.35) and
Ceregnano the weakest (R = 0.38, ubRMSD = 19.01). The results at T > 2 show, in general,
lower performance and only a slight improvement when looking at ubRMSD.

Examining the time series of 35-day window metrics for T = 2 (Figure 3), major
and minor declines in correlation during the summer period (especially in August) and
December, respectively, are evident. Correlation generally tends to be strong in the spring
and autumn seasons. Conversely, the trend of ubRMSD varies across sites, precluding the
derivation of a generalized outcome.
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Site T-Values R ubRMSD 

Ceregnano 
T = 2 0.38 19.01 
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Landriano 
T = 2 0.80 1 10.35 2 
T = 5 0.78 9.41 
T = 10 0.74 8.85 
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T = 5 0.61 17.16 
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1 The highest R among sites. 2 The lowest ubRMSD among sites when T = 2. 3 Mean R of all sites for 
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Figure 3. Seasonal alteration of performance metrics for T = 2 at four sites.

3.2. Spatial Variability and Representativeness
3.2.1. SWC Variability as a Function of Vegetation

Figures 4 and 5 provide spatial and temporal overviews of the NDVI variations over
the areas covered by CRNS and the RS pixel, respectively. Specifically, Figure 4 shows
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the median NDVI values over the study period for each of the four sites. In contrast,
Figure 5 shows how the spatial variability (boxplot) changes over time. Medians NDVI
and differences between the medians NDVI over the pixel and over the CRNS footprint are
also plotted.
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Figure 4. NDVI heterogeneity maps. Representation of the variations in vegetation vigor (median
NDVI) within the areas covered by CRNS (white circles) and the SCATSAR-SWI footprint over the
study period for four sites (maps were produced by https://earthengine.google.com, accessed on 15
January 2024).

Generally, we notice a relatively high spatial variability of the NDVI over the RS pixel
(Figure 5, boxplot). However, the difference between the median NDVI over the pixel
and over the CRNS footprint is low (<0.25), suggesting good representativeness of the
CRNS location for RS comparison. The highest absolute difference in the medians of NDVI
values occurs in Ceregnano, reaching 0.57 in May. Noteworthily, this site had the lowest
performance when comparing SWC products.

To further investigate this effect, Figure 6 provides a more detailed examination of the
relationship between greenness and the performance of SWC products. For two statistics,
and by aggregating data from all sites, the y-axis illustrates the difference in the median of
NDVI of the footprints, while the x-axis represents the median NDVI over RS pixels. In
this scatterplot, the color of points indicates three separate classes for each metric. These
classes were chosen based on the 33rd and 66th percentiles (P33 and P66) of their datasets,
with blue representing P66 < R in the left panel (T = 2) and ubRMSD < P33 in the right
panel (T = 2), indicating stronger scores. The scattering of red points for R suggests that
weaker scores occur when the NDVI of the pixel has higher values, while the dispersion of
points for ubRMSD suggests that vegetation does not affect the performance in the absolute
differences. However, for both R and ubRMSD, it can be observed that high scores are not
present when there is a high difference in NDVI (i.e., >0.4).

To conduct a more quantitative analysis, we compared seasonal ubRMSD (e.g., Figure 3,
right panel) with absolute differences in the median NDVI of footprints (Figure 5, red lines).
To align the sample lengths, piecewise linear interpolation was applied to the absolute
differences in median NDVI, ensuring a consistent temporal resolution between the time
series. We then used R to measure the correlation between these two series (Table 3). The
analysis shows a positive correlation (R) across all sites when T value = 5 and T value = 10
are considered. The mean R for all sites (T = 10) is 0.35; the highest correlation is for
Ceregnano (R = 0.58) and the lowest for Landriano (R = 0.13). This result confirms that
the higher the differences between the NDVI, the lower the agreement between the SWI
products. Noteworthily, when T-value = 2 is considered, the results at two sites still
show a positive correlation (San Pietro and Legnaro), while two sites show a negative
correlation (Landriano and Ceregnano). This difference can be explained considering that
SWC variability at deeper soil layers (i.e., T > 2) could be more affected by vegetation
while the SWC dynamic at a shallow soil depth (i.e., T = 2) could be more affected by the
atmospheric conditions (e.g., precipitation and air temperature) [58,59].

https://earthengine.google.com
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with performance scores among SWC products.

Table 3. Correlation R between NDVI differences and seasonal ubRMSD at the four experimental
sites for different T values.

Site T-Values R

Ceregnano

T = 2 0.48

T = 5 0.50

T = 10 0.58 1

Landriano

T = 2 −0.38

T = 5 0.10

T = 10 0.13

Legnaro

T = 2 −0.03

T = 5 0.31

T = 10 0.32

San Pietro

T = 2 0.13

T = 5 0.12

T = 10 0.38

All sites (mean)

T = 2 0.05

T = 5 0.26

T = 10 0.35 2

1 The highest R among sites. 2 The mean R of all sites for T = 10.

3.2.2. Soil Effect on SWC Mismatch

Referring to soil characteristics, Figure 7 illustrates soil heterogeneity by comparing
the variation in soil texture components and SOC around the median value within RS
pixels (depicted as the black line inside colored box plots) and their corresponding values
for CRNS footprints (highlighted as red points) across four sites. Figure 8 shows the spatial
variability of g/kg of sand at the four sites, as an example.
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Figure 8. Sand variability within RS pixels. Location and the considered covered area of CRNS
depicted with red points and green shaded circles, respectively, using Bing Satellite base map.

Taking all properties into account, Legnaro exhibits the greatest difference in medians,
trailed by Landriano, San Pietro, and Ceregnano, respectively. However, these differences
do not relate to the performance ranking (see Table 2). For this reason, the results suggest
that the difference between the median properties over the RS pixel and the soil in the CRNS
footprint is not relevant. Some more insight can be seen by looking at spatial variability
and soil type. Specifically, Landriano, where we had the best agreement between the SWC
products, has loam soil (with a high percentage of sand and SOC in comparison to other
sites) and a relatively low spatial variability within the RS pixel. In contrast, the other sites
that showed lower performance have higher percentages of silt and clay (>500 g/kg and
250 g/kg, respectively) and higher spatial variability. Despite the fact that the information
provided by SoilGrids should be taken with caution due to inherent uncertainty at this
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scale, the results suggest how the soil spatial variability and the soil type could be relevant
factors in explaining the different agreements in the SWC products.

3.2.3. Deviations in SWC in Relation to the Irrigation Management

Figure 9 shows the noticeable effect of irrigation on the CRNS values of both sites,
resulting in an increase of more than 10%SR. A potential effect of irrigation on RS at T = 2
is notable at Landriano and Ceregnano (only for the irrigation event of 12 August), but the
signal increases earlier and to a lesser extent (i.e., around 5%SR). While these results suggest
that the RS product, unlike CRNS, is less sensitive to the irrigation events, it should be noted
that the irrigation events recorded at the CRNS footprint could also not well represent the
RS resolution. Neighboring fields could have not been irrigated at Ceregnano, smoothing
the effect of the irrigation of the CRNS area over the RS pixel. In contrast, neighboring fields
could have been irrigated earlier at Landriano, explaining the early increase of RS-derived
SWI. For this reason, this comparison underlines the need for irrigation information over
the entire pixel for a proper assessment of RS soil moisture products and the capability to
assess irrigation amount properly [60].
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RS for Ceregnano and Landriano and their susceptibility to irrigation events. Lower panel: reported
irrigation and precipitation quantities in mm/d for Ceregnano (two irrigation events) and Landriano.

4. Discussion

The strong correlation between precipitation and SWC observations shows the sen-
sitivity of the measurements to external factors. The higher agreement between CRNS
data and TDR observations confirms the accuracy of the former in quantifying SWC and
suggests that CRNS could serve as a valuable assessment reference. RS-derived SWI (T = 2)
showing greater fluctuation and dynamic alignment with CRNS aligns with the expectation
that both products primarily capture SWC from upper soil layers. Increasing depth brings
enhanced stability to the observed trend, and naturally, this also influences the overall
decrease in the SWI quantity. Therefore, it can be concluded that considering that CRNS
and RS are more sensitive to upper layers, consistent with previous studies [37], the best T
for our studied areas in the case of evaluating SCARSAR-SWI data is T = 2. The R reinforces
this observation, indicating that the shallower depth (T = 2) provides a better match to
CRNS data. The slight decrease in ubRMSD with increasing depth can be explained by the
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enhanced stability in trends for deeper layers and the fact that ubRMSD reflects the overall
agreement in means.

The observed metrics of the raw SWI time series align with the site characteristics
presented in Figures 1 and 4. Landriano, with high homogeneity of vegetation greenness,
exhibits the strongest match, while Ceregnano and San Pietro, with dividable parts inside
their satellite pixels, show weaker results. San Pietro shows even stronger different behavior
than other sites, it experiences a considerable mismatch of SWC products between June
and October, attributed to the grass-covered CRNS area surrounded by dense maize fields;
this grass-covered area becomes notably dry in the summer period.

The examination of the 35-day performance metrics provided valuable insights into
the CRNS and RS-derived SWI relationship, emphasizing the significance of considering
seasonality when assessing SWC dynamics. This approach highlighted improved statistics
in smaller time intervals, reinforcing the importance of detailed analyses. Lower metrics
during the summer period (drop of R in August to around zero) are attributed to various
factors, including varying biomass growth rates among crops (which is also obvious in
Figure 4), diverse irrigation practices, and differing harvesting schedules across fields.
The slight decrease in metrics during the winter period and observed SCATSAR-SWI
overestimation need further studies, including on-site field investigation in the last months
of the year. Among other factors already highlighted in previous studies, like vegetation
and soil roughness [61], the presence of dew and fog in agricultural fields of northern
Italy during the winter should be considered [62]. Dew and fog significantly impact the
signals from remote sensing, particularly microwave remote sensing, by affecting leaf
surface wetness and potentially altering soil moisture estimations. The presence of surface
water generally increases the signal detected but it can complicate accurate soil moisture
measurement [63].

One critical aspect that warrants deeper exploration is the potential source of uncer-
tainty introduced through the fusion of data from different active remote sensing platforms,
such as Sentinel-1 and ASCAT. While both sensors operate at the same radar frequency
(C-band), their key difference lies in their spatial resolution. Sentinel-1, with its higher
spatial resolution, can capture more detailed surface-level variations [64], whereas ASCAT,
with its coarser resolution, integrates signals over a larger area. This difference in spatial
resolution could lead to discrepancies in the observed SWC, particularly in heterogeneous
landscapes where soil properties and moisture conditions vary significantly over short
distances. The fusion process must account for these differences in resolution to avoid
inconsistencies in SWC measurements.

Moving to spatial mismatch investigations, better alignment of RS-derived SWI
(T = 10) with NDVI variations could be explained by the lag in the impact of SWC on
vegetation growth, where stability in SWI (T = 10) better reflects the overall conditions over
time, considering the time required for the water to infiltrate deeper soil layers.

Despite the generally weak results of R when comparing seasonal ubRMSD of SWC
products and the absolute difference of median NDVI of two footprints (Table 3), the
outcomes reveal that the ranking, in this case, is completely revered considering the
grading of R we had when comparing SWC products. Notably, Ceregnano shows a higher
correlation in this analysis, while Landriano exhibits a lower correlation. This shift in
rankings suggests that, in cases with higher disparities in SWC products, the discrepancy
tends to be more related to alterations in NDVI within different footprints. Therefore,
although the difference in the vegetation vigor of footprints cannot be introduced as a
crucial agent for spatial representativeness, it is one of the factors that shows its effect.

Figure 6 illustrates the correlation of NDVI heterogeneity and median NDVI of the
1 km pixel with performance scores among SWC products. The behavior of R classes,
where lower correlation tends to be more present on the right side of the plot where the
median NDVI of RS pixels is high, supports the notion that biomass growth leads to weaker
correlations of SWC products. Additionally, the absence of higher scores of both R and
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ubRMSD in areas with large differences in NDVI demonstrates the slight impact of NDVI
heterogeneity between footprints on lower scores of SWC product matches.

Regarding soil properties, the rank of sites based on their soil homogeneity between
footprints differs from the initial results of metrics between SWC products. This outcome
for our studied areas prevents us from concluding that the difference in soil texture elements
(sand, clay, and silt) and SOC between footprints is representative of a spatial mismatch
between areas covered by CRNS and RS. However, sites with less variation in the RS pixel
tended to perform better when comparing SWC products (see Figures 7 and 8), which
indicates that soil properties play a notable role in explaining the differences in performance
scores between CRNS and RS. Variability in soil texture and SOC levels within RS pixels
affects the accuracy of SWC products. It is worth noting that sites with a lower percentage
of sand and SOC (silt loam soil type) generally had lower performance metrics compared
to sites with a loam soil type, such as Landriano, when evaluating SWC products.

The disparity in responses between CRNS records and RS-derived SWC to irrigation
events in Ceregnano and Landriano (Figure 9) underscores CRNS’s heightened sensitivity
to localized perturbations, likely owing to its finer spatial resolution enabling it to capture
localized changes more effectively within its footprint. Conversely, RS products, with their
larger pixel size, may attenuate their ability to distinguish irrigation effects. Essentially, for
this matter, we also require information about irrigation amount and date in neighboring
areas within the RS pixels. This underscores the significance of irrigation practices as a
factor influencing spatial variability and representativeness. Having a comprehensive
understanding of irrigation is crucial for comparing soil moisture data from various sources
and scales effectively. Nonetheless, the detection of irrigation impact by RS-derived SWC,
notably at depth T = 2 in Landriano and Ceregnano (only the irrigation event of 12 August),
adds credit to the efficacy of this method in agricultural monitoring.

The remote sensing component of this study requires further elaboration. The fusion
of ASCAT and Sentinel-1 data to produce a high-resolution SWC product is a significant
advancement, but it comes with inherent limitations. The SCATSAR-SWI product does not
account for soil texture in its retrieval process, which can lead to inaccuracies in representing
soil depths, particularly in heterogeneous agricultural fields. This limitation is evident in
the observed differences between SWC estimates at sites with varied soil textures and land
use practices. The influence of Soil Organic Carbon and sand content on the RS-derived
SWC also warrants closer examination, as these factors were found to correlate to decreased
agreement between the SWC products. By integrating soil texture data into the RS product’s
retrieval algorithm, future research could enhance the accuracy of SWC estimates, thereby
improving the utility of RS in precision agriculture.

Overall, this study highlights the need for an ongoing understanding of the complex
interplay of the different factors like vegetation, soil properties, and irrigation practices for a
proper intercomparison of the SWC products. These would put the basis for identifying the
best representative location or for developing and integrating upscaling and downscaling
techniques that should applied to harmonize the spatial mismatch.

5. Conclusions

This study compares the SCATSAR-SWI, a combined RS product for daily SWC at
different depths (T-values) at a kilometer scale, to Cosmic Ray Neutron Sensing (CRNS)
across four agricultural sites in northern Italy. Spatial variability and representativeness are
explored by means of the Normalized Difference Vegetation Index (NDVI), soil properties
(soil texture and Soil Organic Carbon), and irrigation practices. The analysis revealed
notable insights into the dynamics and accuracy of SWC estimation, as well as the influence
of spatial heterogeneity on comparison outcomes.

Higher agreement between CRNS data and Time Domain Reflectometry (TDR) points
(additional measurements for improved investigation) suggests that CRNS can serve as a
valuable assessment reference, demonstrating its merit in capturing the dynamics of SWC
to a good extent. RS-derived SWI showcased reasonable compliance with CRNS for all sites.
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SCATSAR-SWI (T = 2) exhibited the best alignment among T-values, with the mean Pearson
correlation coefficient (R) of 0.6 and unbiased Root–Mean–Square Difference (ubRMSD) of
14.90%SR, suggesting the shallow depth as being optimal for evaluating SCATSAR-SWI in
the studied areas.

Seasonal variations in performance metrics highlighted the importance of considering
seasonality in assessing SWC dynamics, with lower metrics observed during the summer
period interpreted by high biomass growth and irrigation practices. Further examination
is required to understand the slight decline in metrics during the winter season and the
observed overestimation in SCATSAR-SWI. Among other factors, in this study, the presence
of intense leaf wetness and its subsequent impact on the increase of the SAR signal could
explain the behavior, and it should be further explored.

Moving to investigations of spatial inconsistencies, the improved alignment between
SWI (T = 10) and variations in NDVI is attributed to the delay in the influence of SWC on
vegetation growth. In this context, the stability observed in SWI (T = 10) better reflects the
overall conditions over time. Analyses indicate that as NDVI values and their variation
within RS pixels increase, the correlation between SWC products diminishes. Despite
generally weak scores (mean R of 0.35), when analyzing the impact of NDVI differences on
the performance metric between SWC products, the findings suggest that in instances with
greater disparities in SWC products, the variation tends to be more closely associated with
changes in NDVI across different footprints. Thus, while the difference in vegetation vigor
of footprints cannot be singled out as the sole determinant for spatial representativeness, it
does demonstrate an influential factor.

Examining SoilGrids’ soil property maps, considering the fact that the information
provided by this platform should be taken with caution due to inherent uncertainty, reveals
that the ranking of sites according to their soil uniformity between footprints differs from
the initial findings regarding metrics among SWC products. Therefore, this aspect in
our sites cannot be considered an aiding element in the matter of understanding spatial
representativeness. On the other hand, investigating the variation of soil properties within
the RS pixel shows that sites with less variation had better rank when comparing SWC
products, which indicates variability in soil texture and SOC levels within the RS pixel
affects the accuracy of SWC products. It is noteworthy that locations with silt loam soil
type typically exhibited inferior performance metrics in comparison to sites with loam soil
type when assessing SWC products.

Considering irrigation, the impact of these events on SWC levels was more pro-
nounced in CRNS measurements compared to RS. This difference highlights the need for
information on irrigation in neighboring areas within RS pixels to properly assess soil
moisture products. These studies highlight the importance of considering irrigation as a
factor affecting spatial variability and representativeness, emphasizing the importance of
comprehensive irrigation information gathering within RS pixels. Despite RS products
showing less sensitivity to irrigation events, their ability to detect irrigation impacts adds
credibility to their effectiveness in agricultural monitoring.

Overall, the results highlight how RS pixel variability of the different environmental
factors can explain differences between SWC products. Based on this present study, it is
recommended for RS-derived SWC product assessment to dim the influence of summer
and winter seasons and to select pixels with the lowest variability of vegetation greenness
(NDVI), soil properties (sand, silt, clay, and SOC), and irrigation management. Alternatively,
protocols to identify the location of ground observations more representative of the RS
pixel should be tested and implemented.
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