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A B S T R A C T   

The brown marmorated stink bug (Halyomorpha halys) is one of the main insect pest species causing economic 
damage to several agricultural commodities worldwide and one of the worst threats to tree fruit crops in northern 
Italy, especially in the Emilia-Romagna region. Previous efforts in implementing H. halys surveillance at the 
regional level were mainly focused on studying the H. halys phenology, but they were not designed to provide a 
public service. In this paper, we propose a data-driven approach to support the application of Integrated Pest 
Management strategies against H. halys. The proposal is based on the experience of a three-year project in which 
a network of monitoring traps has been deployed throughout the whole Emilia-Romagna region and a data 
platform has been implemented to enable the real-time tracking of H. halys occurrence and distribution, inte-
grating these information with multiple data sources, and analytical capabilities through a public website. Be-
sides the real-time pest surveillance, the data platform allowed us to increase our understanding about H. halys 
seasonal invasion dynamics and the main factors contributing to its spread. The results will help individual 
growers in protecting their crops and the whole region in promoting more efficient usage of insecticides and 
more sustainable and healthy agricultural productions.   

1. Introduction 

Recent years have seen an increasing interest from the research 
community towards the development and advancement of precision 
agriculture techniques (Gebbers and Adamchuk, 2010; Kamilaris et al., 
2017). Several goals are pursued, including the reduction of resource 
consumption, the increase in sustainability of agricultural practices, and 
the improvement of counter-actions against insect pests that jeopardize 
the agricultural yields (Gallinucci et al., 2020). Indeed, land manage-
ment issues resulting from intensive agriculture have promoted the need 
to rethink agricultural systems to make them socially and environmen-
tally sustainable (Kloppenburg, 2004; Mcintyre et al., 2009). While 
there is considerable margin to pursue agricultural sustainability by 
mitigating the high levels of waste within the food supply chain, the 
debate on how to make technologies work for sustainability fits into this 

perspective (Bandh, 2021). In addition, recent research on the social 
context of data linkage has focused specifically on the use of data re-
sources and technologies to challenge harmful models of intensive 
agriculture, including a reflection on how the incentive to use land 
intensively, which is the assumption of most digital technologies and 
data collection systems, needs to be linked to a more critical perspective 
that takes into account the ecological damage caused by agriculture 
(Leonelli and Williamson, 2023a; Leonelli and Williamson, 2023b). 

One of the main threats to the sustainability of agricultural practices 
comes from invasive alien species, which adversely affect biodiversity 
and associated ecosystem services (Blackburn et al., 2019; Clarke and 
McGeoch, 2023). Specifically, invasive insects are the most responsible 
for the costs to the global economy and a major cause of damage to 
agricultural commodities worldwide (Bradshaw et al., 2016; Paini et al., 
2016; Renault et al., 2022). Preventing and mitigating the negative 
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impacts of invasive species is a top priority worldwide (European 
Parliament and Council, 2014; United States Department of Interior, 
2016), as they are also seen as a threat to the success of adaptation to 
climate change (Invasive Species Advisory Council, 2023). Indeed, the 
importance of sampling and monitoring is crucial to mitigating the 
impact of invasive insect species (Morey and Venette, 2023). 

Halyomorpha halys Stål 1855 (Heteroptera: Pentatomidae) (Taxo-
nomic Serial No. 915660, ITIS.gov) is an invasive insect that currently 
represents one of the greatest threats to tree fruit crops in northern Italy. 
Also known as the brown marmorated stink bug, H. halys is a highly 
polyphagous agricultural insect pest that causes important economic 
losses to several horticultural, vegetable, and arable crops, as well as 
ornamental plants (Lee et al., 2013; Leskey et al., 2012). In addition, 
H. halys is considered an urban nuisance since in autumn it invades 
buildings to overwinter, causing problems not only to the growers but 
also to the citizens (Hancock et al., 2019; McPherson, 2018). Due to the 
high invasive capacity facilitated by trade and other human activities 
(Maistrello et al., 2018), this species is currently found on every conti-
nent in the northern hemisphere, North Africa, and South America. In 
Europe, it was recorded for the first time in 2004 in Zurich, Switzerland 
(Haye et al., 2014). In Italy, H. halys was first detected in 2012 (Lara and 
Paride, 2014) in Emilia-Romagna, which has been the earliest Italian 
region suffering economic damages caused by H. halys in tree fruit crops 
(Maistrello et al., 2017). In northern Italy, H. halys in 2019 caused about 
€740 million losses in fruit production, of which about €270 million in 
the Emilia-Romagna region; together with the direct damages caused to 
the agricultural commodities, consequent indirect losses have been 
recorded in several horticultural supply chains, where the lack of fruits 
(which were not harvested due to H. halys damages) in 2019 caused an 
estimated loss of over half a million working days (Cimice asiatica, 
2022). Ten years after its first detection (Maistrello et al., 2016), H. halys 
can still be considered a phytosanitary emergency ubiquitous in all 
Emilia-Romagna provinces, due to its peculiar characteristics: great 
invasive capacity, easy adaptability, extreme polyphagia, high mobility, 
and occurrence both inside and outside agricultural areas. 

In this paper, we support the application of Integrated Pest Man-
agement (IPM) strategies against H. halys in the Emilia-Romagna region 
by proposing a data-driven approach based on the experience of a three- 
year project. In particular, the goal of our research work is to provide 
growers and pest control advisors with an effective and reliable tool to 
monitor in real-time the H. halys seasonal invasion dynamics, its abun-
dance and phenology across the region, and to improve the under-
standing of the main factors contributing to its spread. This goal is 
achieved by means of the following novel contributions.  

1. The creation of an open source H. halys monitoring network covering 
the different provinces of the Emilia-Romagna region, standardizing 
the sampling techniques and the data collection in order to create 
and publish an area-wide reliable historical dataset. Previous efforts 
in implementing H. halys surveillance at regional level that involved 
the citizen science approach (Malek et al., 2018; Malek et al., 2019) 
were mainly focused on studying the H. halys phenology, but they 
were not designed to provide a public service. In the present network 
of traps covering different agroecosystems in the various provinces, 
one major goal was to deliver standardized information to the 
stakeholders; indeed, before this project, no standardization in terms 
of monitoring methods was considered among researchers, pest 
control advisors, and growers at the regional scale.  

2. The implementation and deployment of a data platform for the real- 
time monitoring and analysis of H. halys occurrence and distribution. 
The data platform integrates data from the trap network with mul-
tiple environmental data sources to uncover correlated factors that 
describe the H. halys spread. These data sources include information 
on the weather parameters and the distribution of water resources, 
crops, buildings, and spontaneous vegetation close to the monitored 
sites. The integrated data are available to growers and pest control 

advisors via a web application to provide both tactical and strategic 
support. The web application and all datasets (including the code to 
process and analyze them) are publicly available (see point 4). To the 
best of our knowledge, this is the first proposal for a public data 
platform to support H. halys management practices.  

3. The execution of a series of analytical evaluations to infer useful 
knowledge on the main environmental parameters driving the 
H. halys occurrence and distribution, and to demonstrate the value of 
a data-driven approach to agricultural problems. These results will 
not only help individual growers in protecting their crops, but will 
also contribute to the growth of the region as a whole by encouraging 
more efficient use of insecticides and thus more sustainable and 
healthier agricultural production.  

4. The publication of the following open resources.  

• The real-time monitoring web application: https://big.csr. 
unibo.it/projects/stink-bug/monitoring/.  

• Open data and data processing code1: https://github. 

com/big-unibo/stink-bug. 

The knowledge gained from our proposal will be crucial for the 
implementation of cost-effective management techniques, including the 
optimization of insecticide use and the biological control approach 
(mainly based on egg parasitoids, such as the exotic Trissolcus japonicus) 
through controlled releases of natural enemies where and when needed 
(Zapponi et al., 2021). Indeed, recent research work has demonstrated 
that the combination of on-field data with environmental information 
can prove decisive in estimating and predicting insect spread and in 
implementing effective control strategies in line with IPM guidelines 
(Bono Rosselló et al., 2023). 

The paper outline is as follows. Section 2 summarizes the related 
literature, Section 3 describes our approach in full details, and Section 4 
presents the obtained results; conclusions are drawn in Section 5. 
Finally, Appendix A digs deeper into the data and storage organization 
of the data platform. 

2. Related literature 

Integrated Pest Management programs rely on the mutual integra-
tion of several control methods and complementary practices to effec-
tively protect agricultural crops from insect pests and plant diseases 
(Elliott et al., 1995; Flint and Van den Bosch, 2012). For instance, to 
keep an insect pest population at a level that is under the economic 
damage threshold, the use of insecticides is combined with other control 
tools, such as the application of good agronomical practices and the 
implementation of biological control dynamics. In order to minimize 
and rationalize the use of plant protection products, and consequently 
reduce the adverse side effects that they may cause, a key factor is to 
know exactly where and when to intervene. Field monitoring is there-
fore the basis to support any decision, allowing the prediction of pest 
outbreaks and consequently to act timely, choosing and effectively 
applying the appropriate intervention methods before any crop damage 
is caused (Dent and Binks, 2020). While reliable monitoring tools allow 
robust forecasting, the success of IPM strategies depends on the preci-
sion and effectiveness of the field monitoring programs. It is crucial to 
select a proper sampling technique to detect the occurrence of any insect 
pest species, to estimate their population size, and to measure changes in 
their abundance. Among the possible monitoring method options, the 
use of pheromone-baited traps is one of the most adopted worldwide 
(Prasad and Prabhakar, 2012). Insect pheromones are volatile organic 
compounds, usually very species-specific since they are chemical signals 
commonly used in the intra-specific communication between insects; 
their use as baits for monitoring traps guarantees a high selectivity of the 

1 Persistent identifier: https://zenodo.org/records/10817206 
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insect captures (Bell and Cardé, 2013). 
Effective monitoring of the invasive pest H. halys is nowadays 

possible thanks to the notable and significant advances in the knowledge 
of its chemical ecology. H. halys aggregation pheromone has been 
identified and synthesized, a synergism with the pheromone of another 
Asian stink bug species has been documented, and several trap designs 
have been developed to provide the market with low-cost H. halys 
monitoring traps and lure solutions (Weber et al., 2017). The H. halys 
male-produced aggregation pheromone is a 3.5:1 mixture of two ste-
reoisomers, (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and 
(3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol (known as murgantiol). 
This blend is synergized by methyl (2E,4E,6Z)-2,4,6-decatrienoate 
(known as MDT), which is the aggregation pheromone of the brown- 
winged green stink bug, Plautia stali Scott, providing a reliable attrac-
tant for H. halys, both juvenile forms and adults. Different trap designs 
have been tested to retain H. halys individuals (Rice et al., 2018) and the 
pyramid traps proved to be one of the most effective monitoring tools 
available in the market (Acebes-Doria et al., 2018). Several studies have 
been carried out to acquire further knowledge about H. halys monitoring 
systems, including the trap plume reach and the trapping area (Kirk-
patrick et al., 2019), the effects of border habitat on the H. halys captures 
(Bergh et al., 2021), and the optimization of the pheromone lures 
(Leskey et al., 2021). 

The monitoring of H. halys has been extensively exploited in several 
countries where this invasive pest has been detected, including North 
America and Europe (Morrison et al., 2017; Nielsen et al., 2013; Nielsen 
and Hamilton, 2009), as well as in the area of its origin (Lee et al., 2013). 
Extensive surveillance of H. halys at the regional level has already been 
investigated also in Italy, involving the citizen science approach 
(Maistrello et al., 2016; Maistrello et al., 2018; Malek et al., 2019), as it 
has been explored in other countries (Vétek et al., 2021). However, 
monitoring networks based on citizen science were not designed to 
provide a public service, but were mainly focused on studying the 
H. halys phenology and updating the spread of invasive populations in 
countries of introduction. 

In the Veneto region (Italy), the public service “Veneto Agricoltura” 
provides an online weekly bulletin to inform farmers and pest man-
agement advisors about the status of H. halys in the area (Agenzia Veneta 
per l’innovazione nel Settore primario, 2024). This bulletin is similar to 
the one provided in our research project, but in this case there is no 
freely accessible map with individual H. halys capture data to visualize 
and download, as proposed in our network. In the U.S.A., the occurrence 
of H. halys is reported on a state-by-state basis (StopBMSB.org, 2024), 
which shows on a map the risk level of each state and also provides 
useful information such as the state-by-state occurrence of the main 
natural control agent of H. halys, Trissolcus japonicus. In this case, the 
website is rich in fact sheets and material to increase growers’ awareness 
and knowledge of this pest, but reports on pest distribution are at a 
national level. In our research project, we present a capillary distribu-
tion of the pest occurrence and infestation level, showing trap data at the 
farm level, with information useful for stakeholders in a given territory 
and province within the whole Emilia-Romagna region. 

At the local scale in Emilia-Romagna (mainly in the province of 
Modena where this exotic species was initially recorded), H. halys 
occurrence has been constantly recorded over an 8-year monitoring 
period (2015–2022). Nevertheless, up to date, a network of traps 
covering different agroecosystems in the various provinces was lacking, 
as no standardization in terms of monitoring methods was considered 
among researchers, pest management advisors, and growers at a 
regional scale. 

Additionally to the standardized monitoring method, one of our 
main contributions is the data-driven approach supported by a data 
platform to carry out analytical activities on H. halys spread, integrated 
with information from a wide range of data sources. In this paper, we 
fully discuss topics including the architecture of the data platform and 
the management and integration of data. While the interest in 

approaches that support precision agriculture activities is rapidly 
increasing, these topics are rarely the focus of related work. While many 
approaches are dedicated to sensors (Ojha et al., 2015) and remote 
sensing (Almstedt et al., 2023; Vibhute and Bodhe, 2012), the majority 
of related papers focus on the application of machine learning tech-
niques to ad hoc agricultural datasets (Kamilaris et al., 2017). An open 
and integrated cyber-physical infrastructure was presented in (Chen et al., 
2015), where heterogeneous monitoring sensors were integrated with 
different precision agriculture applications through a middleware built 
on open standards. However, the focus was mainly on the problem of 
data collection and no extensive support for analytical features was 
provided. Another work in this direction is (Sawant et al., 2016); here, 
the PRIDE (Progressive Rural Integrated Digital Enterprise) business 
model is presented to promote the advantages of providing timely and 
integrated data for precision agriculture applications, but the architec-
ture and data model are not discussed in details. 

More recently, a hybrid architecture for tactical and strategic pre-
cision agriculture called Mo.Re.Farming has been proposed in (Galli-
nucci et al., 2020) (and generalized in (Francia et al., 2021)). The goal of 
Mo.Re.Farming is to provide a Decision Support System for agricultural 
technicians and to enable analyses related to the use of water and 
chemical resources, in terms of optimization and environmental impact; 
also, it serves as a hub for agricultural data, collected and integrated 
from both public and private sources. The work presented in this paper 
builds on the results presented in (Gallinucci et al., 2020), extends it to 
further data sources, and applies it to the study of H. halys pest species to 
support the IPM strategies in the Emilia-Romagna region. 

Ultimately, we register few efforts to design data platforms to sup-
port pest monitoring and analysis activities - not necessarily on H. halys. 
In (Liu et al., 2022), a big data platform to monitor generic diseases and 
pests in the Guizhou province of China is presented; it is based on just 10 
traps, it is deployed in crops of hot peppers, and very few high-level 
details of the platform are disclosed. Similarly, little information is 
provided about the data platform envisioned in (Lina and Xiuming, 
2020), whose main focus is an image classification algorithm for pest 
detection. (Wang et al., 2020) presents only a dataset for pest detection 
through deep learning techniques, while (Vanegas et al., 2018) proposes 
a method based on unmanned aerial vehicles to detect pests, but does 
not disclose details about the underlying platform. Finally, (Lagos-Ortiz 
et al., 2020) presents AgriEnt as a knowledge-based web platform for 
managing pests: its main focus is the ontological model that aids 
decision-making for insect diagnosis and treatment, but it is not coupled 
with a monitoring network and is envisioned as a web service to provide 
support to farmers based on pre-elaborated information. 

3. Materials and methods 

The study was conducted over three consecutive years (2020, 2021, 
and 2022) in the plain of the Emilia-Romagna region (Italy). Fig. 1 
shows the duration of the monitoring sessions: in 2020, it began on June 
29 and finished on October 18; in 2021, it began on February 26 and 
finished on October 24; in 2022, it began on March 21 and finished on 
October 23. 

In the following, we present all the details about the monitoring 
network and the data platform in Sections 3.1 and 3.2, respectively. 

3.1. The monitoring network 

A total of 145, 165, and 101 farms specialized in tree fruit crops 
production were selected for the survey in 2020, 2021, and 2022, 
respectively; 43 of these farms were the same over the three-year survey. 
Most of the farms were located in the central-eastern part of the Emilia- 
Romagna region. This area is characterized by intensive agriculture and 
has a high level of specialization in fruit production: pome fruits (pears 
and apples), stone fruits (peaches and nectarines, apricots, plums, and 
cherries), kiwifruit and grapevine are the main crops, followed by other 
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crops such as persimmon, walnut, and olive. All these crops can be 
considered host crops for the target pest H. halys, with a variable level of 
preference according to the plant’s phenological stage, the cultivar, and 
the agroecosystem landscape. The geographical distribution of the traps 
over the three years is shown in Fig. 2. 

3.1.1. Trap setup and monitoring system 
In each farm, a black pyramid trap (Dead-Inn Trap, AgBio Inc., 

Westminster, CO, USA) was installed to monitor H. halys (an example is 
shown in Fig. 3). Traps were baited with a commercial aggregation 
pheromone dual lure (Pherocon BMSB DUAL Lure, Trécé Inc., Adair, OK, 
USA) containing a mixture of murgantiol and MDT and specifically 
attractive for H. halys. Lures were replaced at about 90-day intervals, as 
indicated by the manufacturer (12-week lure longevity). In each loca-
tion, the monitoring trap was positioned near an orchard, keeping a 
distance of 5–10 m from the orchard edges and, when possible, near 
untreated vegetation (e.g., hedges, gardens, uncultivated areas) and 
buildings. 

H. halys specimens captured in the collection jars of the monitoring 
traps were weekly removed and counted, dividing them into adults 
(both males and females), second and third age nymphs (small juvenile 
instars, or simply small instars), and fourth and fifth age nymphs (large 
juvenile instars, or simply large instars). In each monitoring season, the 
operators carried out the following tasks. 

1. Trap installation: executed at the beginning of each season, it con-
sisted in physically placing the monitoring trap and collecting in-
formation about the environmental elements in its surroundings.  

2. Trap monitoring: performed on a weekly basis, it consisted in 
manually counting and removing the H. halys individuals captured 
by the trap. Each trap was consistently monitored on the same 
weekday (e.g., Monday) throughout the season. Information about 
the trap functionality, the number of H. halys individuals captured, 
divided into adults, small instars, and large instars, and the occur-
rence of other non-target species captures were weekly collected 
from each monitoring site. 

3.1.2. On-field data crowdsourcing with CASE 
The acquisition of data concerning the installation and monitoring of 

H. halys traps have been aided by CASE (Collaborative Agro SEnsing), a 
dynamic-questionnaire application for on-field data crowdsourcing in 
the agricultural domain. CASE has been developed to facilitate and 
standardize the communications between on-field operators with first- 
hand visuals of a given field/orchard and the technicians needing a 
360-degree view of all fields/orchards for real-time monitoring, opera-
tional oversight, coordination, and analytical purposes. Details about 
CASE’s databases are provided in Appendix A.1. In the context of this 
project, CASE has been used to collect data from the operators in charge 
of trap installation and monitoring activities, with ad-hoc questionnaires 
being devised for the H. halys use case. As shown in Fig. 4, the Android 
CASE application provides an easy-to-use interface for operators to 
register and automatically validate the data, thus minimizing the risk of 
incorrect data registration. CASE enables the registration and 

geopositioning of traps at installation time by automatically retrieving 
the latitude and longitude values from the smartphone’s GPS. On a 
weekly basis, on-field operators receive the questionnaires to report trap 
monitoring information in the form of tasks to be fulfilled; CASE pro-
vides map-based visualizations to help operators locate the traps that are 
yet to be monitored in the current week and sends reminders on the yet- 
unfulfilled tasks. 

3.2. The data platform 

Fig. 5 gives an overview of the data platform in charge of collecting 
the data from the aforementioned sources, integrating them, and 
exposing them to end users through several fruition options. It is 
implemented on a two-rack cluster of 18 Ubuntu machines with a 
minimum configuration of i7 8-core CPU @3.2GHz, 32GB RAM, and 6 
TB hard disk drives, each machine running the Cloudera Distribution for 
Apache Hadoop (CDH) 6.2.0.2 

Data are organized into three tiers, in accordance with multi-tier 
architectures (Ravat and Zhao, 2019; Zburivsky and Partner, 2021) to 
logically separate the subsequent processing activities. The Raw tier 
hosts the data lake (Stein and Morrison, 2014), i.e., a storage repository 
that holds the data in its raw, native format. The Harbor tier provides an 
integrated and comprehensive view of the available data at the finest 
level of detail. The Access tier provides a higher-level view of data that is 
ready to be consumed for analytical purposes. Details about the tech-
nological stack and the conceptual/logical representations of the data 
stored in the different tiers are provided in Appendix A. 

In the following, we disclose all the details of the main data platform 
components, starting with the presentation of all data sources (Section 
3.2.1) and continuing with the integration and enrichment processes 
(Section 3.2.2), the validation and loading processes (Section 3.2.3), and 
concluding with the analytical fruition (Section 3.2.4). 

3.2.1. Data sources 
A summary of the many data sources is shown in Table 1, which 

reports the frequency of updates and space occupation for each source. 
The monitoring network (managed by CASE, introduced in Section 

3.1.2) is the main source, providing the number of H. halys captures on a 
weekly basis. For each deployed trap, we collected the coordinates of 
deployment and a list of environmental elements visually identified in 
the surroundings by the technician that deployed the trap (e.g., tree fruit 
crops, herbaceous crops, buildings). Then, for each deployed trap and 
week within the monitoring session, we collected the number of H. halys 
captured (divided into small instars, large instars, and adults), together 
with an indication of the correct functioning of the trap. 

Satellite images of the Emilia-Romagna region were collected from 
the Sentinel-2 satellites of the European Space Agency (ESA). Each 
image is composed of one or more granules, each covering a squared 
100 km2 area with a 10 m resolution and containing several bands, 

Fig. 1. Duration of monitoring sessions over the three-year project.  

2 The high amount of resources is due to the cluster being used to support 
several research projects, including the one presented in this paper. 
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including visible (red, green, blue) and non-visible ones (e.g., infrared). 
Depending on the satellite’s trajectory in space, up to 3 images are 
available each week. Satellite images are available as open data3 and 
enable the computation of vegetation indexes, which are useful to infer 
the amount of vegetation in the trap’s proximity. 

Weather data were collected from the Regional Agency for Pre-
vention, Environment, and Water (ARPAE), which publishes them as 
open data.4 ARPAE creates a grid of squared 25 km2 non-overlapping 
cells and provides daily weather data that are representative for each 
cell, including air temperature in ◦C (minimum, average, and 
maximum), wind speed in m/s (average and maximum), percentage of 
relative humidity (minimum, average, and maximum), and total pre-
cipitations in kg/m2. The data is aggregated to get weekly totals and 
averages by the pre-processing tasks that load the data to the Raw tier. 

Environment data were collected from the regional consortium for 
the Emilia-Romagna’s irrigation channel (Consorzio Canale Emiliano 
Romagnolo, CER), which provides yearly snapshots of the main envi-
ronmental elements in the region. For each year, we obtained a classi-
fication of all water basins and channels in the Emilia-Romagna region 

and a detailed report on all crops being cultivated in each plot of land of 
the Emilia-Romagna region. 

Remarkably, all data are georeferenced, meaning that each record is 
associated with precise spatial identifiers. H. halys captures are identi-
fied by the location of each monitoring trap, obtained through the CASE 
application; satellite images and weather data are described by the co-
ordinates of the granule/cell that they cover; environment elements are 
associated with geometrical data types (e.g., polygons, lines) describing 
the shape of the element and locating them on the map. 

3.2.2. Integration processes and enrichment of H. halys captures 
A fundamental aspect of the data platform is the integration of 

H. halys captures with the other data sources, which enables the study of 
the factors aiding/hindering the presence of H. halys individuals. This is 
achieved by relying on the spatial features of both H. halys traps and 
other sources to find overlaps from the spatial perspective and to extract 
relevant enrichments, i.e., additional information that can be correlated 
with H. halys captures. 

The integration with environment data allows the identification 
of the environmental elements in the close surroundings of a trap.5 

Fig. 2. Geographical distribution of H. halys monitoring traps network.  

3 ESA’s satellite images available at https://scihub.copernicus.eu/dhus.  
4 ARPAE’s weather data available at https://dati.arpae. 

it/dataset/erg5-interpolazione-su-griglia-di-dati-meteo. 

5 The “close surroundings of a trap” is meant as the circular area with a 200 m 
radius centered on the trap deployment location. 
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Indeed, H. halys individuals may be attracted by specific crops (Zobel 
et al., 2016) or the presence of water basins that are related to the 
occurrence of wild vegetation (Moore, 2018). 

The integration with satellite images allows the calculation of the 
spontaneous vegetation percentage (SVP) in the close surroundings of a 
trap. Indeed, spontaneous vegetation is a known attraction factor 
(Venugopal et al., 2015a; Venugopal et al., 2015b). This datum is also 
asked to the operator that deploys the trap; from here on, we indicate the 
latter with “SVP (manual)”, whereas “SVP (auto)” refers to the one 
calculated from satellite images. Manually determining the correct SVP 
value by sight is not trivial, due to the operator’s subjectivity and the 
often inconvenient observation point at the ground level. Satellite im-
ages offer a systematic and objective way to calculate it. Several tech-
niques are known in the literature to extract vegetation statistics from 
satellite images, the most known being the Normalized Difference 
Vegetation Index6 (NDVI) (Deering, 1978). In short, the index assigns to 
each pixel p a numeric value ndvi(p) ∈ [ − 1,1], where negative values 
indicate an absence of vegetation (Myneni et al., 1995). Based on (Dash 
and Curran, 2004), we consider τ = 0.7 the minimum value of ndvi(p) for 
p to be considered representative of spontaneous vegetation. It must be 
noted that high NDVI values do not necessarily imply the presence of 
spontaneous vegetation, as they could be measured even for certain 

crops (e.g., a pear orchard); however, these cases can be avoided by 
overlapping satellite images with the environment registers and 
excluding pixels falling within an area of a cultivated field. Ultimately, 
SVP (auto) for a trap is calculated as |p∈P:ndvi(p)≥τ|

|P| , where P is the set of 
pixels in the close surroundings of a trap not falling within any crop in 
the environment registers. 

The integration with weather data allows the calculation of the 
degree days (Haye et al., 2014) and the cumulative degree days registered 
at a given trap site during each week of a monitoring session. Degree 
days are a way to measure the development time needed by an insect 
species to reach a given status. According to the minimum and 
maximum insect development temperature thresholds and the actual air 
temperatures recorded in a given area, it is possible to predict the 
development period of an insect (from one instar to the following instar, 
from juvenile forms to the adult stage). In particular, degree days indi-
cate the number of degrees cumulated per day by which the average 
daily air temperature is higher than a given threshold θ; based on (Haye 
et al., 2014), we consider θ = 12.2 ◦C. Given a trap t and a day d with an 
average daily temperature of avgTemp(d, t), they are calculated as 
dd(t, d) = max(0, avgTemp(d, t) − θ ). Degree days are calculated at the 
week level by summing the values in the days of the monitored week (i. 
e., from the day of the previous monitoring — or, if not present, from the 
day of installation — to the one of the current monitoring). Then, the 
cumulative degree days CDD(t, d) are the cumulative sum of degree days 
from the beginning of the season. The temperature values considered by 
each trap are those associated with the squared cell of 25 km2 in the 
weather dataset that contains the trap. 

The results of these integration and enrichment activities are mate-
rialized in the Harbor tier of the data platform, which provides an in-
tegrated and comprehensive view of the available data at the finest level 
of detail. The relational schema of the integrated data is discussed in 
Appendix A.2. 

3.2.3. Validation and loading of enriched H. halys captures 
Data about H. halys captures were collected weekly through the 

CASE application. This activity has been carried out by technicians who 
physically visited the field to directly check the monitoring traps and 
then use the app to register data. While this ensured a correct count of 
the captures (and the CASE app aided technicians in validating the data), 
some factors that caused non-uniformity in the data have to be consid-
ered. On the one hand, despite weekly reminders from the CASE app, 
technicians were not always able to visit all traps on a weekly basis. On 
the other hand, malfunctioning of traps may have prevented them from 
working correctly and returning trustworthy data on a weekly basis; in 
this case, the possible malfunctioning of a trap has been signaled 
through CASE. 

For these reasons, a validation process is needed to ensure that 
analytical activities are carried out on clean and consistent data. In 
particular, we validate H. halys captures as follows.  

• Traps with at least 10 consecutive weeks of non-entered data or with 
at least 5 registered malfunctioning were reported as “invalid” and 
not used in the data analysis.  

• Traps with no more than 3 consecutive weeks of non-entered data 
were tolerated, reported as “noisy” and used in the data analysis.  

• In any case, missed monitoring tasks would generate inconsistencies 
(as the registered number of captures is the result of two or more 
weeks of trap activity). In these cases, the captures registered with n 
weeks of non-entered data are divided by n and distributed in equal 
numbers among the current week and the preceding ones with non- 
entered data. For instance, let c be the number of H. halys adults 
captured at week wi after n weeks of non-entered data; then, we 
normalize the data by registering c/n H. halys adults captured in 
week wj ∀j ∈ [i − ni]. Each capture added with this method is re-
ported as “normalized”. 

Fig. 3. Dead-Inn pyramid trap baited with aggregation pheromones used in the 
H. halys monitoring network. 

6 The rationale in NDVI index computation is to compare the reflectance 
values on different spectral bands, as the chlorophyll in plants’ leaves reflects 
light in different ways under different conditions. 
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(a) (b) (c)

Fig. 4. Snapshots from the CASE application showing the list of monitoring tasks (a), the map of traps with associated monitoring tasks (b), and the summary of data 
sent in a task (c). 

Fig. 5. Overview of the data platform.  
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The validated data is then loaded to the Access tier through an in-
cremental ETL (extract, transform, and load) procedure acquiring the 
validated data from the Harbor tier. 

3.2.4. Analytical fruition 
The provisioning of analytical capabilities often builds on multidi-

mensional representations of the data, which offer efficient support to 
query answering (Golfarelli and Rizzi, 2009). To this end, a multidi-
mensional spatial cube called Captures is created in the Access tier. 
The schema of the cube is shown in Fig. 6 using the conceptual DFM 
notation (Golfarelli and Rizzi, 2009). Full details about the interpreta-
tion of the conceptual model are disclosed in Appendix A.3. 

Domain experts have private access to the spatial cube, enabling 
SOLAP (Spatial OnLine Analytical Processing)7 (Rivest, 2001) queries. 
Basic connectivity with common OLAP tools (e.g., Tableau, Power BI) is 
provided, enabling a self-service OLAP experience. Sample SOLAP 
queries on the cube using Tableau are shown in Fig. 7. The data from the 
Captures cube have been used also to perform statistical analyses with 
R software (v. 4.0.3, R Core Team 2020) (R. C. Team, 2013). H. halys 
captures have been analyzed using generalized linear mixed-effects 
models (glmer) with Poisson distribution. The models tested the ef-
fects of several factors surrounding the traps (SVP and several Envi-
ronmental elements, such as the number of buildings, presence of 
tree fruit crops, herbaceous crops, river banks and channels, gardens and 
groves, hedges and borders) on the cumulated H. halys captures per trap 
over the season, considering these factors individually as predictors 
together with the Year and the trap location (Province). As expected, 
the Year and the trap location (Province) were found to have a sig-
nificant effect on the trap captures (p < 0.001) and these factors were 
also set as random effects in the models. Akaike’s information criteria 
(AIC) and residuals were used to select the fitted models. A multiple 
comparison post hoc test was performed on the fitted models (glht 
function from the multcomp package) and Tukey’s test (p < 0.05) was 
adopted to discriminate significant differences. 

A public website has also been developed and made openly available 
(link in Section 1). It presents a guided analytics experience, providing 
real-time open access to the Access and Harbor tiers and enabling 
farmers and technicians (and any other interested party) to continuously 
monitor the trend of H. halys captures throughout the regional territory 
and obtain useful insights at multiple analytical levels. Screenshots of 
the dashboards are shown in Fig. 8. The main component of the dash-
board is the map (Fig. 8a), showing the distribution of traps on the 
territory, where the size of circles indicates the number of traps and the 
color indicates the number of H. halys captures; the top-right selection 
buttons allow to switch between monitoring seasons and to add layers 
from external sources (i.e., satellite images, weather data, and envi-
ronmental elements). Below the map, a timeline allows time-traveling to 
previous weeks, gauges provide some statistics on the coverage, and a 
weekly bulletin is provided by domain experts to summarize the latest 
events in the monitoring network. The dashboards provide interactive 
reports at different levels of detail, e.g., plotting the trends of captures at 
the provincial level or showing all the data communicated by an on-field 
operator through CASE on a given date for a given trap. 

4. Results and discussion 

The monitoring website has been advertised among growers and pest 
control advisors across the region throughout conferences, events in the 
territory (FreshPlaza.it, 2021; Preti et al., 2021a; Vaccari et al., 2022), 
and the Emilia-Romagna IPM bulletins (Bollettini interprovinciali di 
produzione integrata e biologica 2022). Statistics by Google Analytics 
indicate that, in 2021 and 2022, the website has been visited by more 
than 2000 distinct users, mostly (79%) from Italy and the Emilia- 
Romagna region (60% of Italian users), with an average engagement 
time of 3 min. These statistics are encouraging as they indicate wide-
spread interest in the initiative. 

An important result obtained in this project is the publication of 
weekly bulletins (see Fig. 8a), i.e., short documents provided by domain 
experts to highlight the most relevant biological events, issued at the 
beginning of each week and detected during the previous week by the 
monitoring network (e.g.: first mating, start of ovipositions, emergence 
of a certain developmental stage, risk of H. halys migration in neigh-
boring crops). The bulletins complement the information released 
through the website to identify the areas with a major presence of 
H. halys. Indeed, knowing when peak populations are expected in each 
area and which cropping systems are vulnerable to attack can be useful 
in conducting timely IPM decisions. 

4.1. Analysis of H. halys captures 

It is known that under the typical temperate Mediterranean climate 
conditions, H. halys develops two generations per year, and that in 
spring adults leave their overwintering sites, resume feeding, and begin 
reproduction (Costi et al., 2017). In this section, we present the moni-
tored yearly trends of H. halys captures, providing exhaustive details 
about the generations’ life cycles, verifying the consistency with the 
literature, and evaluating the consistency in the different investigation 
areas. 

Analysis and results. Fig. 9 compares the trends of average weekly 
H. halys captures in the trap network, grouped by three life stages (total 
adults, both males and females; small juvenile instars, including second 
and third age nymphs; large juvenile instars, including fourth and fifth 
age nymphs) over the three years of monitoring. With the exception of 
2020, the monitoring seasons began before the average daily tempera-
tures stably exceeded 12 ◦C, a necessary condition for the noticeable 
adult emergence beginning (Rot et al., 2022). 

In Tables 2 to 4, the CDD reflecting the main biological events 
highlighted in Fig. 9 are presented (in the tables, the term “comeback” 
refers to the beginning of a new increase in captures after the capture 
peak and the subsequent decrease of the captures). 

Fig. 10 shows the pairwise comparison of average weekly captures 
between the three main Investigation Areas (West, North-east, and 
South-east) in the Emilia-Romagna region (see Fig. 2); the linear cor-
relation values are then shown in Table 5. 

Discussion. The cycles of H. halys in the three life stages are evident 
in Fig. 9 – except for the first cycles of adults in 2020 due to the delayed 
deployment of the monitoring trap network. The observed trends are 
consistent across the investigation areas, as Fig. 10 shows: despite the 
level of H. halys captures being different (with the western area regis-
tering more captures than the others), the linear regression indicates the 
existence of a good correlation (see the correlation values in Table 5) in 

Table 1 
Summary of data sources.  

Source Provider Frequency Granularity Yearly size 

Monitoring network CASE Weekly Monitoring task 5.2 MB 
Satellite images ESA 2–3 days 100 km2 granule 370 GB 
Weather ARPAE Daily 25 km2 cell 6.5 GB 
Environment CER Yearly Environmental element 4.3 GB  

7 The term SOLAP refers to geo-business intelligence technologies allowing 
online analysis of a massive volume of multidimensional data. 
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terms of average weekly captures. Therefore, regardless of the size of the 
H. halys population in the different sites, the trend of captures across the 
season was comparable for the different areas. 

The observed trends are also consistent with another study on 
H. halys biology and phenology conducted on the same geographic area, 
but based on active monitoring techniques (Maistrello et al., 2017). In 
all monitoring years, adult captures became noticeable from the end of 
March and had a first peak between the mid and the end of May. From 
the beginning of July, adult captures started to increase again until the 
end of July-beginning of August and remained at the same levels until 
the beginning of September. In September, there was a very strong in-
crease in adult captures, which reached a peak at the beginning of 
October. The captures of juvenile forms instead showed only two peaks 
that anticipate the second and third adult peaks by 5–6 weeks in the case 
of small juvenile instar and by about 3 weeks in the case of large juvenile 
instar. 

In general, the capture peaks of the same H. halys life stage can vary 
between one and four weeks among different years (Tables 2 to 4). 
Neverthless, considering the CDD these differences among years are 
lower: the maximum variability can be observed in late summer when 
the second peak of large nymphs is reached with differences of 214 CDD 
between 2021 and 2022 (Table 4). Our results collected in Emilia- 
Romagna are consistent with Rot et al. (Rot et al., 2022), who 

investigated the biological parameters of H. halys in Nova Gorica 
(western Slovenia) calculating the CDD with the same temperature 
thresholds. In particular, in the Slovenian study, the first juvenile instar 
(first age nymphs) is reported to occur at 200 CDD, while the peak of 
oviposition of the overwintering generation at 200–400 CDD (Rot et al., 
2022). We recorded the first capture of small instars (second age 
nymphs) between 271 and 278 CDD and the peak of the small instars 
(second and third age nymphs) at 521–541 CDD, totally in line with (Rot 
et al., 2022). The first juvenile instar (first age nymphs) of the second 
generation in Slovenia was recorded at ca. 917.8 CDD (between late July 
and early August), while we observed an increase of the small instars 
(second and third age nymphs) between 1002 and 1080 CDD. Finally, in 
Slovenia the second generation of adults occurs just before 1400 CDD; in 
our Italian study, we recorded the second increase of adult captures 
between 1375 and 1398 CDD. 

4.2. Validation of the automatic SVP quantification 

Spontaneous vegetation is usually one of the factors that attracts 
H. halys individuals (Venugopal et al., 2015a; Venugopal et al., 2015b); 
in this study, its quantification in the surroundings of a monitoring trap 
(i.e., the spontaneous vegetation percentage within a 200 m radius from 
the trap) is done both manually (via CASE, by the technician that installs 

Fig. 6. Multidimensional schema of the Captures spatial cube.  

Fig. 7. Sample results of SOLAP queries, showing the average values of Tot captured by Province with filter Year = 2021 (a), and the average values of Tot 
precipitations and Tot precipitations by Date with filter Year = 2021 and Province = “Bologna” (b). 
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Fig. 8. Screenshot of the website’s dashboards.  

Fig. 9. Trend of average weekly H. halys captures by insect stage and monitoring season.  

Table 2 
Timing and average cumulative degree days (CDD) of the main events in the lifecycle of H. halys adult individuals.  

Year 1st Peak 1st Comeback 2nd Peak 2nd Comeback 3rd Peak 

Week CDD Week CDD Week CDD Week CDD Week CDD 

2020   Jul 13–19 (W29) 729 Aug 17–23 (W34) 1169 Sep 7–13 (W37) 1398 Sep 28-Oct 4 (W40) 1552 
2021 May 24–30 (W21) 163 Jul 12–18 (W28) 722 Aug 9–15 (W32) 1099 Sep 6–12 (W36) 1382 Sep 27-Oct 3 (W39) 1547 
2022 May 16–22 (W20) 141 Jul 4–10 (W27) 727 Jul 25–31 (W30) 1025 Aug 22–28 (W34) 1375 Sep 19–25 (W38) 1646  
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the trap and gives a visual estimate) and automatically (through the 
procedure presented in Section 3.2.2 that relies on satellite images and 
the NDVI index). In this section, we verify the correctness of the auto-
matic quantification to recommend it as a better alternative to the 
manual one and to validate the subsequent analyses. 

Analysis and results. The scatter plot in Fig. 11 indicates, for each 
monitored trap, the corresponding SVP values quantified employing the 
manual and automatic methods. The correlation is noticeably weak, 
with a Pearson correlation coefficient (Benesty et al., 2009) of 0.61. 

To assess the accuracy of the two methods, we conducted a manual 
validation process with the support of a domain expert on a sample of 15 
traps, randomly selected with varying agreement levels (5 among those 
with the highest agreement, 5 among those with the lowest agreement, 5 
with an average agreement). By relying on a high-resolution Google 
Maps satellite image, the domain expert used the QGIS8 software tool to 
draw the polygons corresponding to the areas containing spontaneous 
vegetation. Then, a ground truth reference for the actual SVP of a trap has 
been obtained by dividing the sum of the areas of such polygons by the 
area corresponding to a 200 m radius. The process is exemplified in 
Fig. 12. 

Discussion. The comparison of the quantified SVP values with the 
ground truth shows that the automatic SVP is only slightly less precise 
than the manual one, with an average error of 8% and 5%, respectively. 
Several factors can negatively impact the automatic quantification. On 
the one side, the environment registry is not always accurate; for 
instance, crops may be positioned over areas of spontaneous vegetation 

(causing an underestimation of the SVP by the algorithm) or not re-
ported at all (causing an overestimation, as the algorithm mistakes them 
for spontaneous vegetation). On the other side, the low granularity of 
Sentinel-2 satellite images (i.e., 10 m2 for the RGB bands, and 20 m2 for 
the near-infrared band required to compute NDVI) fails to capture areas 
of spontaneous vegetation that are not significantly wide (e.g., a line of 
trees on the side of a river or a road). 

The slight difference between the two methods suggests that the 
automatic SVP quantification method can be used as a valid and effec-
tive replacement for the manual one. Ultimately, this result (i) demon-
strates how the power of the data platform can be harnessed to relieve 
technicians from a burdensome and easily error-prone manual activity, 
and (ii) provides the necessary validation to use the automatic calcula-
tion for the subsequent analytical activities. 

4.3. Factors influencing H. halys presence 

The integration and enrichment activities in the data platform enable 
the association of H. halys captures with several attributes (or features) 
that can motivate the presence of the target pest. The nature of these 

Table 3 
Timing and average cumulative degree days (CDD) of the main events in the lifecycle of H. halys small instars (second and third age nymphs).  

Year 1st Capture 1st Peak 1st Comeback 2nd Peak 

Week CDD Week CDD Week CDD Week CDD 

2020     Aug 10–16 (W33) 1080 Aug 24–30 (W35) 1256 
2021 Jun 7–13 (W23) 278 Jun 28-Jul 4 (W26) 551 Aug 2–8 (W31) 1002 Aug 16–22 (W33) 1199 
2022 May 30-Jun 5 (W22) 271 Jun 20–26 (W25) 521 Jul 25–31 (W30) 1025 Aug 15–21 (W33) 1299  

Table 4 
Timing and average cumulative degree days (CDD) of the main events in the lifecycle of H. halys large instars (fourth and fifth age nymphs).  

Year 1st Capture 1st Peak 1st Comeback 2nd Peak 

Week CDD Week CDD Week CDD Week CDD 

2020   Jul 27-Aug 2 (W31) 901 Aug 17–23 (W34) 1169 Sep 7–13 (W37) 1398 
2021 Jun 21–27 (W25) 455 Jul 19–25 (W29) 810 Aug 9–15 (W32) 1099 Sep 6–12 (W36) 1382 
2022 Jun 13–19 (W24) 424 Jul 4–10 (W27) 727 Aug 8–14 (W32) 1205 Sep 12–18 (W37) 1596  

Fig. 10. Pairwise comparison of average weekly H. halys captures across the three main Investigation Areas monitored in the Emilia-Romagna region.  

Table 5 
Correlation of average weekly H. halys captures across the three main Inves-
tigation Areas monitored in the Emilia-Romagna region.  

Investigation Area West North-east South-east 

West 1.00 0.80 0.93 
North-east 0.80 1.00 0.82 
South-east 0.93 0.82 1.00  

8 QGIS: https://www.qgis.org/en/site/ 
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factors is manifold, as some vary on a weekly basis (e.g., the tempera-
ture), while others remain the same throughout the season (e.g., the 
proximity to water resources). Thus, we analyze these features at both 
weekly and seasonal levels. 

4.3.1. Factors influencing H. halys presence on a weekly level 
Analysis and results. On a weekly level (i.e., considering the single 

events in the spatial cube), we calculate the maximal information co-
efficient (MIC) between all the measures available in the cube.9 The 
correlation matrix is calculated with two methods. In the first one, for 
each trap in the monitoring network we calculate an individual corre-
lation matrix with the trap’s weekly data; then, the final matrix is 
determined with the median values in each cell. In the second method, 
we directly calculate the final correlation matrix with the average 
weekly values from all traps. The results are shown in Fig. 13 (first 
method on the left, second method on the right). 

Fig. 14 shows the weekly captures compared with the total precipi-
tation (a) and average wind speed (b) registered on the same week; the 
red line is the LOESS (locally estimated scatterplot smoothing) (Cleve-
land, 1979). 

Discussion. First of all, we notice that the correlation values in the 
matrixes of Fig. 13 are consistent across the two methods. Besides trivial 
correlations (e.g., the ones between temperature measurements), the 
matrices show a clear correlation between the total (and adult) H. halys 
captures and the cumulative values of degree days (CDD). This is a 
confirmation of the results from recent research showing that temper-
ature and photoperiod (which can vary with latitude and other 
geographical parameters) have a great influence on H. halys develop-
ment, survival, voltinism, population density, size, and overwintering 
behavior (Costi et al., 2017; Haye et al., 2014; Rot et al., 2022). The 
absence of correlation with non-cumulative values is expected, as cap-
tures are primarily driven by the cycles of the H. halys individuals 
(which are well modeled by the cumulative values of the same mea-
surements). Ultimately, the correlation is less evident with small and 
large juvenile instars as the majority of captures are of adult individuals 
(the latter composing the 59% of all captures). 

The correlation matrices do not reveal a correlation between H. halys 
captures and meteorological factors such as wind speed and precipita-
tion. Nevertheless, these factors have an influence on the target pest 

captures, because H. halys individuals are less likely to move when it is 
either windy or rainy. This is observable in the scatter plots in Fig. 14. 
Indeed, low values of Tot precipitations and Average wind 
speed are not determinant, but high values visibly account for fewer 
H. halys captures on the traps. This is also confirmed by the LOESS curve, 
which does not increase significantly when precipitations and wind are 
absent. 

4.3.2. Factors influencing H. halys presence on a seasonal level 
Analysis and results. The evaluation on a seasonal level is done by 

considering the total number of H. halys captures cumulated for every 
trap in a whole season and taking into account both the different trap 
locations and the three years of survey. 

The average yearly captures are analyzed by every categorical 
feature that remains constant throughout the year; the most interesting 
comparisons are shown in Fig. 15. In addition, Fig. 16 focuses on the 
presence of buildings in the surroundings of the traps10; the number of 
buildings surrounding the traps was grouped into four levels: sites 
without buildings (0), sites with one or two buildings (1–2), sites with 
three or four buildings (3–4), and sites with five or more buildings (≥ 5). 

Discussion. Interestingly, the features showing a distinctive differ-
ence in the number of trap captures are those related to the environ-
mental elements in the surroundings of the traps (Fig. 15). In particular, 
we notice significantly higher cumulated H. halys captures with higher 
SVP (χ2 = 2057.9; p < 0.001) and in presence of gardens and groves 
(χ2 = 172.9; p < 0.001), hedges and borders (χ2 = 211.5; p < 0.001), 
and river banks and channels (χ2 = 1004.1; p < 0.001). The effect of 
these factors was expected since the above-mentioned environmental 
elements are known to be attractive for H. halys considering that wild 
host plants can grow among the spontaneous vegetation, such as in 
garden and groves, hedges and borders, and along the water sources. 
The complexity of the agroecosystem with one or more of such envi-
ronmental elements can therefore serve as a refuge for this pest species, 
providing a hospitable habitat in which to feed, develop, and lay eggs. 

On the contrary, the presence of herbaceous crops in the surrounding 
of the traps had no significant effect on the trap captures (χ2 = 1.44; p =

0.23), with a comparable number of cumulated H. halys captures 
(number of traps; mean value ± SE) in sites where herbaceous crops 
occurred close to the traps (N = 256; 410 ± 20) and in sites where there 
were no herbaceous crops in the surrounding of the traps (N = 92; 
380 ± 30). This result can be easily understood because not all the 
herbaceous crops present in this study are attractive to H. halys and the 
ones that can be considered host plants are infested only in specific 
phenological stages, for instance when bearing fruits or seeds. There-
fore, the restricted time period of pest occurrence in a given attractive 
herbaceous crop can not be appreciated taking into consideration the 
totality of the herbaceous crops and the entire vegetative season. 

Further analyses should consider defined host crops (e.g., soybean) 
and specific phenological periods (e.g., after seed formation) to better 
evaluate the effect of the herbaceous crops on the H. halys trap captures. 
Such evaluations were not carried out in this study considering the 
limited number of sites (N = 10) with comparable conditions. 
Regarding the effect of tree fruit crops on the trap captures, no analysis 
was carried out since only a few sites (N = 5) had no orchards in the 
surrounding of the monitoring traps; in fact, the whole trap network was 
set up taking into consideration the tree fruit production of Emilia- 
Romagna region and the majority of the sites (N = 343) intentionally 
had tree fruit crops in the area around the monitoring trap. 

As to the presence of buildings (Fig. 16), there are significant dif-
ferences in terms of captures among the different levels of buildings 
(χ2 = 471.2; p < 0.001) when looking at the cumulated H. halys 

Fig. 11. Scatter plot comparing manual and automatic SVP.  

9 MIC (Reshef et al., 2011) is a statistical algorithm to determine both linear 
and non-linear correlation between two variables, returning values between 
0 (no correlation) and 1 (maximum correlation). 

10 Agricultural buildings and the farmhouses in the surroundings of the traps 
were summarized together since H. halys can overwinter in both types of 
buildings. 
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captures over the entire season (Fig. 16a). However, the trend of these 
captures is not clear since various factors not included in the analysis 
(such as the attractiveness of the surrounding host species in the 
different phenological stages and the agroecosystem complexity) may 
affect the number of captures during the season much more than the 
presence of buildings. Considering the cumulated H. halys captures only 
in the spring period (i.e., from the beginning of the monitoring until May 
31 of each year), there is a significant effect of the presence of buildings 
(χ2 = 102.4; p < 0.001) and, as typically observed by the growers and 
pest control advisors, the H. halys captures are higher in sites with 
buildings compared to those without. This trend is very well explained 
by the behavior of the overwintering H. halys adults that during autumn 
aggregate in protected and dry shelters such as the buildings; however, 
in spring no difference in terms of captures was observed among sites 
with different numbers of buildings (Fig. 16b). Finally, taking into 

consideration only the cumulated H. halys during the autumn period (i. 
e., from September 1 until the end of the monitoring session of each 
year), the effect of buildings on the captures is also significant (χ2 =

274.8; p < 0.001), but again the trend of captures among different 
number of buildings is not clear. In this period, the summer adults look 
for shelters in which to overwinter, but the building factor alone cannot 
explain the H. halys captures in autumn because other factors not 
included in the analysis (e.g. crops not yet harvested in September and 
the temperature trend during September–October) affect the H. halys 
dispersal before overwintering. 

4.4. Degree-day phenological model 

From the discussion in Section 4.3 it emerged that CDD are highly 
correlated with weekly H. halys captures. In this section, we demonstrate 

Fig. 13. Correlation matrices with MIC on a weekly level, obtained by taking median values from the matrices calculated for every single trap (left) or by simply 
considering average weekly values (right). 

Fig. 12. Left (a): a Google Maps image centered on a trap (red circle in the middle), with its 200 m radius; polygons with white borders are crops mapped in the CER 
dataset; polygons in green are indications of spontaneous vegetation by the domain expert. Middle (b): the same setup, but with a Sentinel-2 image in the back-
ground. Right (c): the visible 10 m2 squares contain an NDVI value ≥ 0.7 (the brighter the shade of green, the higher the NDVI value). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

C. Forresi et al.                                                                                                                                                                                                                                  



Ecological Informatics 82 (2024) 102713

14

Fig. 15. Average yearly number of H. halys captures by range of SVP (manual) (a) and by closeness to at least one environmental element of Category “Gardens 
and groves” (b), “Hedges and borders” (c), and “River lands and channels” (d). Confidence intervals represent the standard error (SE). 

Fig. 16. Average yearly number of H. halys captures by the number of buildings in the close surroundings of the traps, considering captures over the whole season 
(a), only in spring (b), or in autumn (c). Confidence intervals represent the standard error (SE). 
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Fig. 14. Scatter plot of Tot captured against either Tot precipitations (a) or Avg wind speed (b).  
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that the quality and quantity of the data collected in our study enables 
the study and creation of a phenological model for H. halys. 

Analysis and results. In the literature, phenological models based 
on CDD have been defined to describe and predict the spread of insect 
pests, including H. halys (Kamiyama et al., 2021; Nielsen et al., 2008; 
Nielsen et al., 2016). Existing models are not directly applicable to our 
study, as they are either based on features that we do not monitor 
((Nielsen et al., 2008) studies the mortality of H. halys individuals in a 
closed and controlled environment) or they do not provide sufficient 
elements to ensure their reproducibility (Kamiyama et al., 2021; Nielsen 
et al., 2016). 

For a demonstrative purpose, we adopt here the phenological model 
presented in (Damos et al., 2018), which is based on Cydia pomonella, the 
key Lepidopteran pest of pome fruit crops. (Damos et al., 2018) presents 
a three-parameter non-linear regression model: 

F(x, α, β, γ) =
α

1 + e
−

(
x− γ

β

)+ ϵi 

In the equation above, F is the cumulative percentage of H. halys 
captures, x is the value of CDD, and ϵi is the standard error term that is 
assumed to have a normal distribution and zero variance. The behavior 
of this curve is affected by three key constant variables: α, β, and γ. The 
model is quite flexible since the curve can be twisted around to fit most 
conceivable variations of its basic shape depending on the parameter 
values (Damos et al., 2018); α and β designate the upper and lower as-
ymptotes, respectively, and set the vertical limits of the curve. The 
parameter γ is the gradient that sets the length of time of the curve, 
which represents the CDD of 50% H. halys captures. Separate models are 
created for each cycle of each specimen. Values for α, β, and γ have been 
calculated from the trends in Section 4.1 by manually isolating the cy-
cles of each specimen. For simplicity, the cycles of each specimen have 
been assumed as non-overlapping, even though they actually are (Costi 
et al., 2017). The obtained models are shown in Fig. 17, together with 

the data collected in 2020 and 2021. 
Discussion. The model shows high accuracy, with an RMSE of 8.41, 

confirming the goodness of CDD as a measure highly correlated with 
H. halys captures. The curve of the third cycle for H. halys adults shows a 
different behavior, due to monitoring season being closed before all 
adults have found shelter for the winter. While the model hereby pro-
posed is based on a different insect species and presents many simpli-
fications, the results demonstrate the goodness of the data collected in 
this study and encouragingly call for further developments in this 
direction. 

5. Conclusions 

In this paper, we presented a data-driven approach to monitor and 
analyze the occurrence, distribution, and spread of H. halys in the 
Emilia-Romagna region, Italy. The field monitoring was carried out for 
three consecutive years and relied on a wide network of traps across the 
whole region, supported by a data platform for the collection and inte-
gration of data on H. halys trap captures with several external data 
sources, including weather data and information concerning environ-
mental elements close to the traps. The data platform enabled analytical 
activities that led to a deeper understanding of H. halys population dy-
namic, considering both its occurrence, distribution, and phenology in 
the monitored territory. Most importantly, the study revealed how 
weekly H. halys captures are highly correlated with degree days and 
partially influenced by atmospheric events like rain and wind, whereas 
yearly captures are mainly driven by the amount of spontaneous vege-
tation in the close surroundings, such as by gardens and groves, hedges 
and borders, and the presence of water sources. Some factors occurring 
in the agroecosystem affect the captures only in specific periods of the 
season; for instance, in early spring, the presence of buildings acting as 
shelter for the overwintered population of H. halys adults significantly 
impacted on the trap captures compared to sites without buildings. 
Finally, other factors are very difficult to control and analyze, such as the 

Fig. 17. Phenological models by specimen and cycle.  
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different attractiveness of the host plants over the season, according to 
the plant phenology stages and the ripening calendar of the different 
crops, cultivars, and wild vegetation, considering their occurrence and 
mutual interaction within each area infested by H. halys. 

The knowledge on H. halys occurrence, distribution, and phenology 
is crucial to effectively apply the IPM strategies; in particular, high-
lighting the periods of the pest’s high abundance can help focus and 
rationalize the insecticide-based control (Short et al., 2016). Our study 
reached these needs, providing the stakeholders (both growers and pest 
control advisors) with several useful information to set the alerts, to 
choose the appropriate control methods, and therefore to optimize the 
insecticide usage in the management of H. halys during the project. The 
weekly bulletins provided with this study, together with the level of 
H. halys captures in the monitored areas, were available for the stake-
holders to better evaluate their control programs against this pest, acting 
as a supplementary decision support system. In fact, the information 
provided by the punctual monitoring at the orchard and farm scales, 
combined with the information derived from this area-wide monitoring 
at the territory scale, is crucial to implement effective IPM strategies, 
which differ locally case by case requiring as much information as 
possible to be reasonable. In addition, the CDD calculated on the field 
data collected during the period 2020–2022 could be exploited to set 
intervention thresholds based on the different biological events of 
H. halys during the vegetative season and according to the weather 
trend. Ultimately, the data collected in this study can be further 
exploited to develop, calibrate, and validate a phenological model of the 
H. halys development, in order to facilitate growers in predicting the 
lifecycle parameters of this pest and adopting a more efficient and sus-
tainable usage of counteractive measures. 

The results presented in this paper open several opportunities for 
further development. First of all, smart traps (similar to those used in 
(Gallinucci et al., 2020)) can be used to automatically count the trapped 
individuals and send the data to the data platform; this solution would 
alleviate the huge effort of manually checking all the traps on a weekly 
basis (Preti et al., 2021b). A further step is a novel automated moni-
toring system that combines drone imagery with artificial intelligence- 
based insect detection. This was first demonstrated by (Giannetti 
et al., 2024), who were able to develop a system capable of detecting and 
quantifying the presence of H. halys using high-altitude, high-resolution 
imagery; this makes the method potentially applicable to a range of 
crops and pests. Another important improvement that this study calls 

for, concerns the quality of the data in the regional environmental reg-
istry, which currently limits the effectiveness of automatic SVP detection 
techniques. This aspect is crucial to combine the field scouting activities 
with remote sensing data and implement data platforms exploitable for 
integrated analyses combining different information. 

In conclusion, the analytical results of this project demonstrate the 
importance of adopting a data-driven approach and call for IPM stra-
tegies in agriculture, specifically for insect pests such as H. halys that 
require an area-wide monitoring and management approach. 
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Appendix A. The data platform’s multi-layer storage 

Storage in the data platform is organized into three tiers, so as to logically separate the subsequent processing activities. In this section, we provide 
fine-grained details about the data stored in the different tiers. 
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A.1. The Raw tier 

The Raw tier hosts the data lake (Stein and Morrison, 2014), i.e., a storage repository that holds a vast amount of raw data in its native format, 
including structured, semi-structured, and unstructured data. The data lake is used to store all the data coming from external sources in their raw 
format and to host the enrichment activities required before their integration. The Raw tier is composed of the Hadoop Distributed File System (HDFS) 
(used to store the raw and enriched files), the distributed database Apache HBase (used to store the data extracted from weather files), and the 
PostgreSQL RDBMS (used to store data collected from CASE).

Fig. A.18. Relational schema of the data managed by CASE.  

The relational schema of CASE’s database is shown in Fig. A.18. CASE is based on a concept of Task, i.e., a questionnaire that must be fulfilled by a 
User (i.e., an on-field operator). Each task is composed by a set of Questions, categorized in different types (e.g., multiple answers, date picker) each 
composed by a set of predefined Answers (one of which could be an open answer, defined by the user when selecting the Given answer). The 
dynamic aspect of CASE’s questionnaires lies in the association of each possible answer with a different one to be shown next. Thus, users fulfilling the 
same task may follow different paths of questions depending on the given answers. This enables a customized and efficient user experience, as detailed 
questions on a given topic may be asked only if such a topic has been mentioned by the user. Instances of tasks (i.e., Task on geo-object) are 
associated with Geo-objects, i.e., georeferenced elements (e.g., fields, plants, traps) that are the subject of the questionnaire. Thus, the fulfillment of 
a task is limited to users who are located within a given maximum distance. Users have visibility on the geo-objects in a given Area (e.g., a farm, a 
province), and geo-objects are associated with a period of activity named Monitoring session. 
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A.2. The Harbor tier 

The Harbor tier provides an integrated and comprehensive view of the available data at the finest level of detail. Data integration takes place at this 
level and is mainly based on the spatial features of data: the relationships between heterogeneous data are found thanks to geopositioning even in the 
absence of direct references. The Harbor tier is implemented on the same PostgreSQL instance of the Raw tier, which enables spatial features through 
its spatial extension called PostGIS.

Fig. A.19. Relational schema of the integrated data in the Harbor tier.  

The relational schema of the integrated data is shown in Fig. A.19. The main role is played by the H. halys traps, whose spatial coordinates enable 
the integration with the different data sources. As CASE is a multi-purpose application, only the data relevant to H. halys captures is extracted; also, 
with a slight abuse of notation, the Measurements [] and Categories [] columns in the weather and environment registry datasets are place-
holders for the respective lists of measurements and categories, that are here omitted for better readability. Tables highlighted in blue materialize the 
spatial proximity joins between traps and static references in the other datasets (e.g., a trap is always localized within the same weather grid). 
Tables Automated SVP and Monitored week weather materialize measures computed as indicated above. 

A.3. The Access tier 

The Access tier provides a higher-level view of data that is ready to be consumed for analytical purposes. It mainly relies on a spatial cube to enable 
SOLAP activities. Multidimensional data are organized in cubes describing domain events called facts, which are characterized by numerical indicators 
called measures (e.g., the number of H. halys captures) and dimensions to be used for analyses (e.g., time, traps). Each dimension is described by a 
hierarchy of concepts that describes the dimension of analysis at different granularity levels (e.g., a trap is placed in a province, which in turn belongs to 
a macro-area). Data can be analyzed using SOLAP operators such as spatial slice and spatial drill, which allow for aggregating measure values along 
hierarchies with SQL operators. The Access tier is implemented on a different spatially-enabled instance of PostgreSQL. 

The schema is obtained with a data-driven approach, i.e., by choosing the weekly H. halys captures as the fact of interest, then following the 
functional dependencies coded within the integrated schema, and finally validating the result during a meeting with domain experts. 

The Captures cube (shown in Fig. 6) features three dimensions: Date, Trap, and Normalized. The latter features a single attribute with a 
boolean value (either “yes” or “no”) depending on whether the indicated H. halys captures are the result of the normalization process. The Date 
dimension develops into a temporal hierarchy and contains all dates within each monitoring season; each Year is decomposed into three Seasons 
(“Spring” from the beginning of the monitoring to the 31st of May;”Summer” from the 31st of June to the 31st of August;”Autumn” from the 31st of 
September to the end of the monitoring). The Trap dimension develops into a hierarchy with all the information associated with each trap, either 
collected manually at installation time or obtained automatically in the integration phase. Most importantly:  

• SVP refers to the spontaneous vegetation percentage; SVP (manual) is the one collected via CASE, while SVP (auto) is the average of the values 
calculated via satellite images throughout the season. Both SVP values are discretized into bins of 15% width.  

• Validity indicates the trustworthiness of the trap; its value is either “valid”, “noisy”, or “invalid”.  
• Crop type and Water resource type are the elements within the close surroundings, obtained from the environmental registries. 
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• Environmental element (manual) are the elements indicated by the technician at installation time (e.g., fruit trees, crops, buildings), which 
can be aggregated by Category (i.e., “Agricultural buildings”, “Tree fruit crops”, “Herbaceous crops”, “Hedges and borders”, “Residential 
buildings”, “Gardens and groves”, and “River banks and channels”).  

• Investigation Area is a grouping of traps based on their geographical concentration (see Fig. 2). The main values are “West” (including traps 
in the provinces of Modena and Reggio Emilia), “North-east” (including traps in the province of Ferrara and the north-eastern part of Bologna), and 
“South-east” (including traps in the city of Imola and the provinces of Ravenna and Forlì-Cesena); traps too distant from these groupings (i.e., those 
in the provinces of Piacenza and Parma, and those close to the Tuscany region) are classified as “Peripheral”. 

The events in this cube are the weekly captures of each trap, enriched with further data and statistics obtained from the external sources. In 
particular:  

• Small instars captured, Large instars captured, and Adults captured are the normalized values, computed as discussed above. Tot 
captured is the sum of the three measures.  

• Avg/Max/Min temperature/humidity/wind speed and Tot precipitations are the weather information obtained from ARPAE.  
• Tot/Cumulative degree days are the additional measures computed as discussed in Section 3.2.2. 
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